
DFSORT

Application Programming Guide
Release 14

SC33-4035-21

���

DFSORT

Application Programming Guide
Release 14

SC33-4035-21

���

Twenty Second Edition (March 2002)

This edition replaces and makes obsolete the previous edition, SC33-4035-20. Technical changes for this edition are
summarized under “Summary of Changes” and are indicated by a vertical bar to the left of a change. Editorial
changes that have no technical significance are not noted.

This edition applies to Release 14 of DFSORT, Program Number 5740-SM1, and to any subsequent releases until
otherwise indicated in new editions or technical newsletters. Make sure you are using the correct edition for the level
of the product.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Any pointers in this publication to external Web sites are provided for convenience only and do not in any manner
serve as an endorsement of these Web sites.

© Copyright International Business Machines Corporation 1973, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note!
Before using this information and the product it supports, be sure to read the
general information under Appendix F, “Notices” on page 651.

Contents

Preface . xi
About This Book. xi
Where to find more information xii
DFSORT Publications . xii

DFSORT Library Softcopy Information xii
How to Send Your Comments xiii
Notational Conventions . xiii

Summary of Changes . xv
Twenty-Second Edition, March 2002 xv

New Programming Support for Release 14 (PTFs — March, 2002) xv
Twenty-First Edition, July 2000 xviii

New Programming Support for Release 14 (PTFs — July, 2000) xviii
Twentieth Edition, March 1999 xxi

New Programming Support for Release 14 (PTFs — March 1999) xxi
Nineteenth Edition, September 1998 xxi

New Programming Support for Release 14 xxi

Chapter 1. Introducing DFSORT 1
DFSORT Overview . 1
DFSORT on the Web . 3
DFSORT FTP Site . 4
Invoking DFSORT . 4
How DFSORT Works . 4

Operating Systems . 5
Control Fields and Collating Sequences 5
Cultural Environment Considerations 6
DFSORT Processing . 7

Input Data Sets—SORTIN and SORTINnn. 10
Output Data Sets—SORTOUT and OUTFIL 10
Data Set Considerations . 11

Sorting or Copying Records 11
Merging Records . 12
Data Set Notes and Limitations 12

SmartBatch Pipe Considerations 15
HFS File Considerations . 15
Installation Defaults . 16
Migrating to DFSORT from Other Sort Products 21
DFSORT Messages and Return Codes 22
Use Blockset Whenever Possible 23

Chapter 2. Invoking DFSORT with Job Control Language 25
Using the JCL . 25
Using the JOB Statement . 27
Using the EXEC Statement . 27

Specifying EXEC Statement Cataloged Procedures 28
Specifying EXEC/DFSPARM PARM Options 29
Aliases for PARM Options . 58

Using DD Statements . 59
Duplicate Ddnames . 61
Shared Tape Units . 61
System DD Statements . 62
Program DD Statements . 64

© Copyright IBM Corp. 1973, 2002 iii

Chapter 3. Using DFSORT Program Control Statements 95
Using Program Control Statements 97
Control Statement Summary . 98

Describing the Primary Task 98
Including or Omitting Records 98
Reformatting and Editing Records 98
Producing Multiple Output and Reports and Converting Records 99
Invoking Additional Functions and Options 99
Using Symbols . 99

General Coding Rules . 100
Continuation Lines . 101
Inserting Comment Statements 102
Coding Restrictions . 102

ALTSEQ Control Statement . 103
Altering EBCDIC Collating Sequence—Examples 104

DEBUG Control Statement . 105
Specifying Diagnostic Options—Examples 110

END Control Statement . 110
Discontinue Reading Control Statements—Examples 110

INCLUDE Control Statement 111
Relational Condition . 113
Comparisons . 114
Including Records in the Output Data Set—Comparison Examples 119
Substring Comparison Tests 121
Including Records in the Output Data Set—Substring Comparison Example 122
Bit Logic Tests . 122
Method 1: Bit Operator Tests 123
Padding and Truncation . 124
Including Records in the Output Data Set—Bit Operator Test Examples 124
Method 2: Bit Comparison Tests 125
Including Records in the Output Data Set—Bit Comparison Test Examples 127
Date Comparisons . 128
Including Records in the Output Data Set—Date Comparisons 130
INCLUDE/OMIT Statement Notes 130

INREC Control Statement . 131
INREC Statement Notes . 140
Reformatting Records Before Processing — Examples. 141

MERGE Control Statement . 145
Specifying a MERGE or COPY—Examples 147

MODS Control Statement . 148
Identifying User Exit Routines—Examples 151

OMIT Control Statement . 151
Omitting Records from the Output Data Set—Example 154

OPTION Control Statement . 155
Aliases for OPTION Statement Options 199
Specifying DFSORT Options or COPY—Examples 200

OUTFIL Control Statements. 204
OUTFIL Statements Notes 267
OUTFIL Features—Examples 270

OUTREC Control Statement 285
OUTREC Statement Notes 292
Reformatting the Output Record—Examples 293

RECORD Control Statement 296
Describing the Record Format and Length—Examples 299

SORT Control Statement . 300
SORT/MERGE Statement Notes 308

iv DFSORT R14 Application Programming Guide

||

Specifying a SORT or COPY—Examples 308
SUM Control Statement . 310

SUM Statement Notes. 312
Adding Summary Fields—Examples 313

Chapter 4. Using Your Own User Exit Routines 315
User Exit Routine Overview. 316
DFSORT Program Phases . 317
Functions of Routines at User Exits 319

DFSORT Input/User Exit/Output Logic Examples 319
Opening and Initializing Data Sets 320
Modifying Control Fields . 320
Inserting, Deleting, and Altering Records 321
Summing Records . 321
Handling Special I/O . 321
VSAM User Exit Functions 322
Determining Action when Intermediate Storage Is Insufficient 322
Closing Data Sets . 322
Terminating DFSORT . 322

Addressing and Residence Modes for User Exits 322
How User Exit Routines Affect DFSORT Performance 323
Summary of Rules for User Exit Routines 323

Loading User Exit Routines 324
User Exit Linkage Conventions 324
Dynamically Link-Editing User Exit Routines. 325

Assembler User Exit Routines (Input Phase User Exits) 326
E11 User Exit: Opening Data Sets/Initializing Routines 326
E15 User Exit: Passing or Changing Records for Sort and Copy Applications 326
E16 User Exit: Handling Intermediate Storage Miscalculation 329
E17 User Exit: Closing Data Sets 330
E18 User Exit: Handling Input Data Sets 330
E19 User Exit: Handling Output to Work Data Sets 333
E61 User Exit: Modifying Control Fields 334

Assembler User Exit Routines (Output Phase User Exits) 336
E31 User Exit: Opening Data Sets/Initializing Routines 336
E32 User Exit: Handling Input to a Merge Only 336
E35 User Exit: Changing Records 337
E37 User Exit: Closing Data Sets 341
E38 User Exit: Handling Input Data Sets 341
E39 User Exit: Handling Output Data Sets 341

Sample Routines Written in Assembler. 342
E15 User Exit: Altering Record Length 342
E16 User Exit: Sorting Current Records When NMAX Is Exceeded 343
E35 User Exit: Altering Record Length 344
E61 User Exit: Altering Control Fields 344

COBOL User Exit Routines . 345
COBOL User Exit Requirements 345

COBOL User Exit Routines (Input Phase User Exit) 348
COBOL E15 User Exit: Passing or Changing Records for Sort 348

COBOL User Exit Routines (Output Phase User Exit) 354
COBOL E35 User Exit: Changing Records 354

Sample Routines Written in COBOL. 360
COBOL E15 User Exit: Altering Records 360
COBOL E35 User Exit: Inserting Records 361

E15/E35 Return Codes and EXITCK 363

Contents v

Chapter 5. Invoking DFSORT from a Program 367
Invoking DFSORT Dynamically 367
What Are System Macro Instructions? 367
Using System Macro Instructions 367
Using JCL DD Statements . 368
Overriding DFSORT Control Statements from Programs 368
Invoking DFSORT With the 24-Bit Parameter List. 369

Providing Program Control Statements. 369
Invoking DFSORT With The Extended Parameter List 375

Providing Program Control Statements. 375
Writing the Macro Instruction 379

Parameter List Examples. 379
Restrictions for Dynamic Invocation 383

Merge Restriction . 383
Copy Restrictions . 383

Chapter 6. Using ICETOOL 385
Overview . 386

ICETOOL/DFSORT Relationship 387
ICETOOL JCL Summary . 387
ICETOOL Operator Summary 388
Complete ICETOOL Examples. 389
Using Symbols . 390
Invoking ICETOOL . 390
Putting ICETOOL to Use . 391

Job Control Language for ICETOOL 394
JCL Restrictions . 396

ICETOOL Statements . 396
General Coding Rules . 396

COPY Operator . 397
Operand Descriptions . 398
COPY Examples . 399

COUNT Operator . 401
Operand Descriptions . 402
COUNT Examples . 403

DEFAULTS Operator . 403
Operand Description . 405
DEFAULTS Example . 405

DISPLAY Operator . 407
Simple Report . 408
Tailored Report . 408
Sectioned Report . 409
Operand Descriptions . 410
DISPLAY Examples. 429

MODE Operator . 444
Operand Descriptions . 445
MODE Example . 445

OCCUR Operator . 446
Simple Report . 447
Tailored Report . 448
Operand Descriptions . 449
OCCUR Examples . 455

RANGE Operator . 458
Operand Descriptions . 459
RANGE Example . 460

SELECT Operator . 461

vi DFSORT R14 Application Programming Guide

Operand Descriptions . 462
SELECT Examples . 464

SORT Operator . 467
Operand Descriptions . 468
SORT Examples . 469

STATS Operator . 471
Operand Descriptions . 471
STATS Example . 473

UNIQUE Operator . 473
Operand Descriptions . 473
UNIQUE Example . 474

VERIFY Operator . 475
Operand Descriptions . 475
VERIFY Example . 476

Calling ICETOOL from a Program 477
TOOLIN Interface . 477
Parameter List Interface . 477

ICETOOL Notes and Restrictions. 483
ICETOOL Return Codes . 484

Chapter 7. Using Symbols for Fields and Constants 485
Field and Constant Symbols Overview 485

DFSORT Example . 486
SYMNAMES DD Statement . 488
SYMNOUT DD Statement . 488
SYMNAMES Statements . 488

Comment and Blank Statements 488
Symbol Statements . 489
Keyword Statements . 495
Using SYMNOUT to Check Your SYMNAMES Statements 498

Using Symbols in DFSORT Statements 498
SORT and MERGE . 499
SUM . 499
INCLUDE and OMIT . 500
INREC and OUTREC . 500
OUTFIL . 501

Using Symbols in ICETOOL Operators. 503
COUNT . 503
DISPLAY . 503
OCCUR . 503
RANGE . 504
SELECT . 504
STATS, UNIQUE and VERIFY 504
ICETOOL Example . 504

Notes for Symbols . 505

Chapter 8. Using Extended Function Support 509
Using EFS . 510
Addressing and Residence Mode of the EFS Program 510
How EFS Works . 511

DFSORT Program Phases 511
DFSORT Calls to Your EFS Program 512

What You Can Do with EFS. 516
Opening and Initializing Data Sets 517
Examining, Altering, or Ignoring Control Statements 517
Processing User-Defined Data Types with EFS Program User Exit Routines 519

Contents vii

||

Supplying Messages for Printing to the Message Data Set 519
Terminating DFSORT . 519
Closing Data Sets and Housekeeping 519

Structure of the EFS Interface Parameter List 519
Action Codes . 521
Control Statement Request List 522
Control Statement String Sent to the EFS program 522
Control Statement String Returned by the EFS Program 524
EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements 525
D1 Format on FIELDS Operand 525
D2 Format on COND Operand 526
Length of Original Control Statement 527
Length of the Altered Control Statement 527
EFS Program Context Area 528
Extract Buffer Offsets List 528
Record Lengths List . 528
Information Flags . 528
Message List . 530

EFS Program Exit Routines. 530
EFS01 and EFS02 Function Description 531
EFS01 User Exit Routine. 531
EFS02 User Exit Routine. 532
Addressing and Residence Mode of EFS Program User Exit Routines 534

EFS Program Return Codes You Must Supply 535
Record Processing Order . 535
How to Request a SNAP Dump 537
EFS Program Example . 538

DFSORT Initialization Phase: 538
DFSORT Termination Phase 540

Chapter 9. Improving Efficiency 541
Improving Performance . 542
Design Your Applications to Maximize Performance 542

Directly Invoke DFSORT Processing 542
Plan Ahead When Designing New Applications. 543
Specify Efficient Sort/Merge Techniques 543
Specify Input/Output Data Set Characteristics Accurately 544
Use Sequential Striping . 545
Use Compression . 545
Use DFSMSrmm-Managed Tapes, or ICETPEX 545
Use SmartBatch Pipes . 545
Use VIO in Expanded Storage. 545
Specify Devices that Improve Elapsed Time 546
Use Options that Enhance Performance 546
Use DFSORT’s Fast, Efficient Productivity Features 548
Avoid Options that Degrade Performance. 549
Use Main Storage Efficiently 549
Allocate Temporary Work Space Efficiently 553
Use Hipersorting . 555
Sort with Data Space . 555
Use ICEGENER Instead of IEBGENER 556
ICEGENER Return Codes 558

Use DFSORT’s Performance Booster for The SAS System 559
Use DFSORT’s BLDINDEX Support. 559

Chapter 10. Examples of DFSORT Job Streams 561

viii DFSORT R14 Application Programming Guide

Summary of Examples . 561
Storage Administrator Examples 562
REXX Examples . 562
CLIST Examples . 563
Sort Examples . 564

Example 1. Sort with ALTSEQ 564
Example 2. Sort with OMIT, SUM, OUTREC, DYNALLOC and ZDPRINT 565
Example 3. Sort with ISCII/ASCII Tapes 566
Example 4. Sort with E15, E35, FILSZ, AVGRLEN and DYNALLOC 567
Example 5. Called sort with SORTCNTL, CHALT, DYNALLOC and FILSZ 568
Example 6. Sort with VSAM Input/Output, DFSPARM and Option Override 570
Example 7. Sort with COBOL E15, EXEC PARM, COBEXIT and MSGDDN 571
Example 8. Sort with Dynamic Link-Editing of Exits 573
Example 9. Sort with the Extended Parameter List Interface 575
Example 10. Sort with OUTFIL 578
Example 11. Sort with SmartBatch Pipes and OUTFIL SPLIT 580
Example 12. Sort with INCLUDE and LOCALE. 581
Example 13: Sort with HFS Files 582

Merge Examples . 583
Example 1. Merge with EQUALS 583
Example 2. Merge with LOCALE and OUTFIL 584

Copy Examples . 585
Example 1. Copy with EXEC PARMs, SKIPREC, MSGPRT and ABEND 586
Example 2. Copy with INCLUDE and VLSHRT. 587

ICEGENER Example . 588
ICETOOL Example . 589

Appendix A. Using Work Space 593
Introduction. 593
Hiperspace . 593
Work Data Set Devices . 594

DASD and Tape Devices . 594
Number of Devices . 594
Non-Synchronous Storage Subsystems 595

Allocation of Work Data Sets 595
Dynamic Allocation of Work Data Sets 596
Dynamic Over-Allocation of Work Space 598
JCL Allocation of Work Data Sets 598

DASD Capacity Considerations 599
Exceeding DASD Work Space Capacity 600

Tape Capacity Considerations 600
Exceeding Tape Work Space Capacity 601

Appendix B. Specification/Override of DFSORT Options 603
Main Features of Sources of DFSORT Options 604

DFSPARM Data Set . 604
EXEC Statement PARM Options 604
SORTCNTL Data Set . 604
SYSIN Data Set . 604
Parameter Lists . 604
Override Tables . 605

Directly Invoked DFSORT . 605
Notes to Directly Invoked DFSORT Table. 614

Program Invoked DFSORT with the Extended Parameter List 614
Notes to Extended Parameter List Table 623

Program Invoked DFSORT with the 24-Bit Parameter List 623

Contents ix

||

Notes to 24-Bit List Table 632

Appendix C. Data Format Descriptions. 633

Appendix D. EBCDIC and ISCII/ASCII Collating Sequences 641
EBCDIC . 641
ISCII/ASCII . 643

Appendix E. DFSORT Abend Processing 647
Checkpoint/Restart . 647
DFSORT Abend Categories. 648
Abend Recovery Processing for Unexpected Abends 648
Processing of Error Abends with A-Type Messages 649
CTRx Abend processing . 649

Appendix F. Notices . 651
Programming Interface Information 652
Trademarks. 652

Summary of Changes . 653
New Programming Support for Release 13 (PTFs after April, 1996) 653

Additional Year 2000 Features 653
OS/390 Registration . 653

New Programming Support for Release 13 (PTFs – April, 1996) 653
Year 2000 Features. 653
Performance Improvements for FLR and VLR Blockset Sorts 653
Floating Point for SUM . 654
Security Improvements . 654
EXCPVR Processing Removed 654

New Device Support for Release 13 (PTFs) 654
New Programming Support for Release 13 655

DFSORT’s Performance Booster for The SAS** System 655
Dynamic Hipersorting . 655
Performance . 655
OUTFIL Processing. 655
National Language Support 656
ICETOOL Enhancements 656
INCLUDE/OMIT Substring Search 657
SMF Type-16 Record Enhancements 657
Other Enhancements . 657

New Programming Support for Release 12 (PTFs) 658
New Device Support for Release 12 (PTFs) 659

Index . 661

x DFSORT R14 Application Programming Guide

Preface

This book is intended to help you to sort, merge, and copy data sets using
DFSORT. This book is not designed to teach you how to use DFSORT, but is for
programmers who already have a basic understanding of DFSORT, and need a
task-oriented guide and reference to its functions and options. If you are a new
user, then you should read DFSORT Getting Started R14 first.DFSORT Getting
Started R14 is a self-study guide that tells you what you need to know to begin
using DFSORT quickly, with step-by-step examples and illustrations.

About This Book
The various sections of this book present related information grouped according to
tasks you want to do. The first four chapters of the book explain what you need to
know to invoke and use DFSORT’s primary record-processing functions. The
remaining chapters explain more specialized features. The appendixes provide
specific information about various topics.

v Chapter 1, “Introducing DFSORT” on page 1, presents an overview of DFSORT,
explaining what you can do with DFSORT and how you invoke DFSORT
processing. It describes how DFSORT works, discusses data set formats and
limitations, and explains the defaults that might have been modified during
installation at your site.

v Chapter 2, “Invoking DFSORT with Job Control Language” on page 25, explains
how to use job control language (JCL) to run your DFSORT jobs. It explains how
to code JOB, EXEC, and DD statements, and how you can use cataloged
procedures and EXEC PARM options to simplify your JCL and override DFSORT
defaults set during installation.

v Chapter 3, “Using DFSORT Program Control Statements” on page 95, presents
the DFSORT control statements you use to sort, merge, and copy data. It
explains how to filter your data so you work only with the records you need, how
to edit data by reformatting and summing records, and how to produce multiple
output data sets and reports. It explains how to write statements that direct
DFSORT to use your own routines during processing.

v Chapter 4, “Using Your Own User Exit Routines” on page 315, describes how to
use DFSORT’s program exits to call your own routines during program
processing. You can write routines to delete, insert, alter, and summarize records,
and you can incorporate your own error-recovery routines.

v Chapter 5, “Invoking DFSORT from a Program” on page 367, describes how you
use a system macro instruction to initiate DFSORT processing from your own
assembler program. It also lists specific restrictions on invoking DFSORT from
PL/I and COBOL.

v Chapter 6, “Using ICETOOL” on page 385, describes how to use the
multi-purpose DFSORT utility ICETOOL. It explains the JCL and operators you
can use to perform a variety of tasks with ICETOOL.

v Chapter 7, “Using Symbols for Fields and Constants” on page 485 explains how
to define symbols and use them in DFSORT control statements and ICETOOL
operators.

v Chapter 8, “Using Extended Function Support” on page 509, explains how to use
the Extended Function Support (EFS) interface to tailor control statements, to
handle user-defined data types and collating sequences, and to have DFSORT
issue customized informational messages during processing.

© Copyright IBM Corp. 1973, 2002 xi

v Chapter 9, “Improving Efficiency” on page 541, recommends ways with which you
can maximize DFSORT processing efficiency. This chapter covers a wide
spectrum of improvements you can make, from designing individual applications
for efficient processing at your site to using DFSORT features such as
Hipersorting, dataspace sorting, and ICEGENER.

v Chapter 10, “Examples of DFSORT Job Streams” on page 561, contains
annotated example job streams for sorting, merging, and copying records.

v Appendix A, “Using Work Space” on page 593, explains main storage
considerations and how to estimate the amount of intermediate storage you
might require when sorting data.

v Appendix B, “Specification/Override of DFSORT Options” on page 603, contains a
series of tables you can use to find the order of override for similar options that
are specified in different sources.

v Appendix C, “Data Format Descriptions” on page 633, gives examples of the
assembled data formats.

v Appendix D, “EBCDIC and ISCII/ASCII Collating Sequences” on page 641, lists
the collating sequences from low to high order for EBCDIC and ISCII/ASCII
characters.

v Appendix E, “DFSORT Abend Processing” on page 647, describes the ESTAE
recovery routine for processing abends, and the Checkpoint/Restart facility.

v Appendix F, “Notices” on page 651, includes the notices, Programming Interface
information, and the trademark list.

Where to find more information
For up-to-date descriptions of all of the books that support z/OS, refer to the z/OS
Information Roadmap. You can obtain a softcopy version of this book from the z/OS
internet library at http://www.ibm.com/ servers/eservers/zseries/zos/bkserv/.

DFSORT Publications
The DFSORT Application Programming Guide R14 is a part of a more extensive
DFSORT library. The additional books in the library are listed below.

Task Publication Title Order Number

Planning For and Customizing
DFSORT

DFSORT Installation and
Customization R14

SC33-4034

Learning to Use DFSORT Panels DFSORT Panels Guide GC26-7037

Learning to Use DFSORT DFSORT Getting Started R14 SC26-4109

Quick Reference DFSORT Reference Summary R14 SX33-8001

Diagnosing Failures and Interpreting
Messages

DFSORT Messages, Codes and
Diagnosis Guide R14

SC26-7050

Tuning DFSORT DFSORT Tuning Guide R14 SC26-3111

You can order a complete set of DFSORT publications with the order number
SBOF-1243, except for DFSORT Licensed Program Specifications R14,
GC33-4032, which must be ordered separately.

DFSORT Library Softcopy Information
A softcopy version of the DFSORT library is available on CD-ROM as shown in the
table that follows. The CD-ROM contains all of the DFSORT books for Release 13

xii DFSORT R14 Application Programming Guide

|
|

and Release 14 with the exception of the DFSORT Reference Summary.

Order Number Title

SK3T-4269 z/OS Collection

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and high-quality
information. If you have any comments about this book or any other DFSORT
documentation:

v Send your comments by e-mail to:

– IBMLink from US: starpubs@us.ibm.com

– IBMLink from Canada: STARPUBS at TORIBM

– IBM Mail Exchange: USIB3VVD at IBMMAIL

– Internet: starpubs@us.ibm.com

Be sure to include the name of the book, the part number of the book, version
and product name, and if applicable, the specific location of the text you are
commenting on (for example, a page number or a table number).

v Fill out one of the forms at the back of this book and return it by mail or by giving
it to an IBM representative. If the form has been removed, address your
comments to IBM Corporation, RCF Processing Department G26/050, 5600
Cottle Road, San Jose, California 95193-0001, U.S.A.

Notational Conventions
The syntax diagrams in this book are designed to make coding DFSORT program
control statements simple and unambiguous. The lines and arrows represent a path
or flowchart that connects operators, parameters, and delimiters in the order and
syntax in which they must appear in your completed statement. Construct a
statement by tracing a path through the appropriate diagram that includes all the
parameters you need, and code them in the order that the diagram requires you to
follow. Any path through the diagram gives you a correctly coded statement, if you
observe these conventions:

v Read the syntax diagrams from left to right and from top to bottom.

v Begin coding your statement at the spot marked with the double arrowhead.

v A single arrowhead at the end of a line indicates that the diagram continues on
the next line or at an indicated spot.

A continuation line begins with a single arrowhead.

v Strings in upper-case letters, and punctuation (parentheses, apostrophes, and so
on), must be coded exactly as shown.

– Semicolons are interchangeable with commas in program control statements
and the EXEC PARM string. For clarity, only commas are shown in this book.

DFSORT Publications

Preface xiii

v Strings in all lowercase letters represent information that you supply.

v Required parameters appear on the same horizontal line (the main path) as the
operator, while optional parameters appear in a branch below the main path.

v Where you can make one choice between two or more parameters, the
alternatives are stacked vertically.

If one choice within the stack lies on the main path (as in the example above,
left), you must specify one of the alternatives. If the stack is placed below the
main path (as in the example above, right), then selections are optional, and you
can choose either one or none of them.

v The repeat symbol shows where you can return to an earlier position in the
syntax diagram to specify a parameter more than once (see the first example
below), to specify more than one choice at a time from the same stack (see the
second example below), or to nest parentheses (see the third example below).

Do not interpret a repeat symbol to mean that you can specify incompatible
parameters. For instance, do not specify both ABEND and NOABEND in the
same EXEC statement, or attempt to nest parentheses incorrectly.

Use any punctuation or delimiters that appear within the repeat symbol to
separate repeated items.

v A double arrowhead at the end of a line indicates the end of the syntax diagram.

�� Required
Optional

��

�� Operator Required Choice 1
Required Choice 2
Required Choice 3

Optional Choice 1
Optional Choice 2

��

a,b,c Choice-1
Choice-2
Choice-3

, (,

Notational Conventions

xiv DFSORT R14 Application Programming Guide

Summary of Changes

Twenty-Second Edition, March 2002

New Programming Support for Release 14 (PTFs — March, 2002)

z900
DFSORT can now exploit the z900’s 64-bit real architecture by backing storage and
data spaces in real storage above 2 gigabytes, and by using central storage instead
of expanded storage for Hipersorting.

Multiple Hiperspaces
DFSORT can now use multiple Hiperspaces for external storage requirements,
increasing DFSORT’s ability to use Hipersorting for large sort applications when
sufficient system resources are available.

Managed Tapes
DFSORT can now automatically obtain accurate input file size information for tapes
managed by tape management systems that supply a tape exit routine (ICETPEX).
This can result in improved sort performance and more accurate dynamic work
space allocation.

DFSORT can now automatically obtain input and output attributes such as RECFM,
LRECL and BLKSIZE, for tapes managed by tape management systems that supply
a tape exit routine (ICETPEX).

ICETOOL Enhancements
New EMPTY, NOTEMPTY, HIGHER(n), LOWER(n), EQUAL(n) and NOTEQUAL(n)
options of ICETOOL’s COUNT operator allow you to set RC=12 or RC=0 based on
the count of records in a data set.

A new FIRSTDUP option of ICETOOL’s SELECT operator allows you to keep just
the first record of each set of duplicates.

A new LASTDUP option of ICETOOL’s SELECT operator allows you to keep just
the last record of each set of duplicates.

The DISCARD(savedd) option of ICETOOL’s SELECT operator can now be
specified without the TO(outdd) operand.

The maximum length for a CH field used with ICETOOL has been raised to 1500.

The maximum length for a HEX field used with ICETOOL has been raised to 1000.

New DT1, DT2 and DT3 formats of ICETOOL’s DISPLAY and OCCUR operators
allow you to produce meaningful representations of SMF date values.

New TM1, TM2, TM3 and TM4 formats of ICETOOL’s DISPLAY and OCCUR
operators allow you to produce meaningful representations of SMF time values.

A new INDENT(n) option of ICETOOL’s DISPLAY and OCCUR operators allows you
to specify the number of blanks for indentation.

A new BETWEEN(n) option of ICETOOL’s DISPLAY and OCCUR operators allows
you to specify the number of blanks between columns.

© Copyright IBM Corp. 1973, 2002 xv

A new STATLEFT option of ICETOOL’s DISPLAY operator allows you to print the
headings for statistics to the left of the first column of data.

The use of formatting items has been extended to the record length, record number
and break field of ICETOOL’s DISPLAY operator, and to the data field, record
length and value count of ICETOOL’s OCCUR operator.

Additional formatting items are now provided as follows: E’pattern’ (use a specified
pattern for numeric digits such as phone numbers, social security numbers, dates,
and so on), /D (divide by 10), /C (divide by 100), /DK (divide by 10000), /CK (divide
by 100000), LZ (leading zeros for mask), NOST (no statistics), and Ndd (dd digits).

A new DATENS(abc) option of ICETOOL’s DISPLAY and OCCUR operators allows
you to insert the date of your ICETOOL run into your titles without a separator.
Separators are included for existing options DATE and DATE(abcd).

A new TIMENS(ab) option of ICETOOL’s DISPLAY and OCCUR operators allows
you to insert the time of your ICETOOL run into your titles without a separator.
Separators are included for existing options TIME and TIME(abc).

OUTFIL Enhancements
A new FTOV option of OUTFIL allows you to convert fixed-length input records (for
example, FB) to variable-length output records (for example, VB). A new VTOF
option of OUTFIL (an alias for CONVERT) allows you to convert variable-length
input records (for example, VB) to fixed-length output records (for example, FB).

A new VLTRIM=byte option of OUTFIL allows you to remove trailing bytes such as
blanks, binary zeros or asterisks, from variable-length output records.

A new REMOVECC option of OUTFIL allows you to remove the ANSI control
characters from a report.

New DATEn, DATEn(c) and DATEnP options of OUTFIL OUTREC allow you to
insert the date of your DFSORT run into your records in various forms.

New TIMEn, TIMEn(c) and TIMEnP options of OUTFIL OUTREC allow you to insert
the time of your DFSORT run into your records in various forms.

New DT1, DT2 and DT3 formats of OUTFIL OUTREC allow you to produce
meaningful representations of SMF date values.

New TM1, TM2, TM3 and TM4 formats of OUTFIL OUTREC allow you to produce
meaningful representations of SMF time values.

A new TRAN=LTOU option of OUTFIL OUTREC allows you to change lowercase
EBCDIC letters anywhere in a field to uppercase EBCDIC letters.

A new TRAN=UTOL option of OUTFIL OUTREC allows you to change uppercase
EBCDIC letters anywhere in a field to lowercase EBCDIC letters.

A new TRAN=ALTSEQ option of OUTFIL OUTREC allows you to change characters
anywhere in a field according to the ALTSEQ translation table in effect.

A new M26 edit mask of OUTFIL OUTREC allows you to edit numeric values
according to the pattern ST...T (S is the sign and T is a significant digit).

xvi DFSORT R14 Application Programming Guide

The maximum position for the end of a field used with OUTFIL INCLUDE and OMIT
has been raised to 32752.

New DATEn, DATEn(c) and DATEnP options of OUTFIL INCLUDE and OMIT allow
you to compare fields with various formats to the date of your DFSORT run.

A positive decimal number (n or +n) can now be compared to a binary (BI) field for
OUTFIL INCLUDE and OMIT.

A new DATENS=(abc) option of OUTFIL HEADERx and TRAILERx allows you to
insert the date of your DFSORT run into your headers and trailers without a
separator. Separators are included for existing options DATE and DATE=(abcd).

A new TIMENS=(ab) option of OUTFIL HEADERx and TRAILERx allows you to
insert the time of your DFSORT run into your headers and trailers without a
separator. Separators are included for existing options TIME and TIME=(abc).

A new SKIP=0L option of OUTFIL SECTIONS allows you to suppress blank lines
between sections on the same page.

INREC and OUTREC Enhancements
New DATEn, DATEn(c) and DATEnP options of INREC and OUTREC allow you to
insert the date of your DFSORT run into your records in various forms.

New TIMEn, TIMEn(c) and TIMEnP options of INREC and OUTREC allow you to
insert the time of your DFSORT run into your records in various forms.

New DT1, DT2 and DT3 formats of INREC and OUTREC allow you to produce
meaningful representations of SMF date values.

New TM1, TM2, TM3 and TM4 formats of INREC and OUTREC allow you to
produce meaningful representations of SMF time values.

A new TRAN=LTOU option of INREC and OUTREC allows you to change
lowercase EBCDIC letters anywhere in a field to uppercase EBCDIC letters.

A new TRAN=UTOL option of INREC and OUTREC allows you to change
uppercase EBCDIC letters anywhere in a field to lowercase EBCDIC letters.

A new TRAN=ALTSEQ option of INREC and OUTREC allows you to change
characters anywhere in a field according to the ALTSEQ translation table in effect.

A new M26 edit mask of INREC and OUTREC allows you to edit numeric values
according to the pattern ST...T (S is the sign and T is a significant digit).

SUM Enhancement
The VLSHRT option can now be used to process short SORT and MERGE control
fields, and INCLUDE and OMIT compare fields, when a SUM statement is
specified. Records with short SUM summary fields are left unsummed.

SORT and MERGE Enhancements
The maximum position for the end of a field used with SORT and MERGE has been
raised to 32752.

The maximum length for an AQ or AC field used with SORT and MERGE has been
raised to 4092.

Summary of Changes xvii

INCLUDE and OMIT Enhancements
New DATEn, DATEn(c) and DATEnP options of INCLUDE and OMIT allow you to
compare fields with various formats to the date of your DFSORT run.

The maximum position for the end of a field used with INCLUDE and OMIT has
been raised to 32752.

A positive decimal number (n or +n) can now be compared to a binary (BI) field for
INCLUDE and OMIT.

Other Enhancements
The IBM-supplied default for ICEMAC option DYNSPC has been changed from 32
megabytes to 256 megabytes. This allows DFSORT to sort more data by default
with dynamically allocated work space when the input file size is unknown.

DYNSPC can now be specified as a run-time option. This allows you to adjust the
dynamically allocated work space for individual sort applications for which the input
file size is unknown.

DFSORT now issues message ICE118I, and sets on bit 3 of SMF type-16 record
field ICEFSZFL, when the input file size is unknown for a sort application. This
identifies sort applications which may benefit from a FILSZ=En or DYNSPC=n
value.

DFSORT copy can now be used when ICEGENER is called by a program that uses
an alternate SYSIN ddname with DUMMY. This can result in improved performance
for RACF’s IRRUT200 utility when ICEGENER is installed as a replacement for
IEBGENER.

When all of the input for variable-length records is supplied through an E15 or E32
exit, and RECFM is not specified for the output data set, DFSORT now sets the
output RECFM as blocked rather than unblocked, if that allows the use of the
system-determined optimum block size for output.

A hyphen (-) can now be used as the second or subsequent character in a
DFSORT symbol name.

DFSORT now issues message ICE042A and terminates if the QNAME option is
specified on an output DD statement.

Twenty-First Edition, July 2000

New Programming Support for Release 14 (PTFs — July, 2000)

Larger Tape Block Sizes with OS/390 R10
DFSORT can now use tape data sets with block sizes greater than 32760 bytes for
input and output, providing improved performance and tape utilization.

DFSORT can now select system-determined optimum block sizes greater than
32760 bytes for tape output data sets, if allowed by the BLKSZLIM value in effect.
Installation and run-time options SDB=INPUT (the new IBM-supplied default),
SDB=LARGE (new), SDB=YES (or its alias SDB=SMALL) and SDB=NO allow you
to control DFSORT’s use of system-determined block sizes, including block sizes
greater than 32760 bytes for tape output data sets.

xviii DFSORT R14 Application Programming Guide

DFSORT’s ICEGENER, like IEBGENER, will use SDB=value parameters you
specify.

New Device Support
DFSORT now supports FICON channels.

DFSORT now recognizes the IBM 2105 control unit and provides optimizations for it
appropriate for cached control units, such as cache fast write for work data sets.

DFSORT now treats work data sets on emulated 3390 model 9 devices as
desirable choices with respect to performance. DFSORT continues to treat work
data sets on real 3990 model 9 devices as undesirable choices with respect to
performance.

DFSMSrmm-Managed Tapes
DFSORT can now automatically obtain accurate input file size information for
DFSMSrmm-managed tapes. This can result in improved sort performance and
more accurate dynamic workspace allocation.

DFSORT can now automatically obtain input and output attributes such as RECFM,
LRECL and BLKSIZE for DFSMSrmm-managed tapes.

VSAM Processing
DFSORT now supports the VSAM extended addressability function for extended
format VSAM data sets, which provides the capability of VSAM data sets larger
than four gigabytes.

DFSORT now allows an empty VSAM input data set to be accepted and processed
as having zero records. New installation option VSAMEMT=YES/NO and run-time
options VSAMEMT and NVSAMEMT allow you to control the processing of empty
VSAM input data sets.

DFSORT now allows a VSAM output data set defined with REUSE to be processed
as a NEW or MOD data set. New installation option RESET=YES/NO and run-time
options RESET and NORESET allow you to control the processing of VSAM output
data sets.

DFSORT now allows a VSAM data set defined with REUSE to be sorted in-place.
New installation option VSAMIO=YES/NO and run-time options VSAMIO and
NOVSAMIO allow you to control the use of the same VSAM data set for input and
output.

HFS Files
DFSORT now supports Hierarchical File System (HFS) files for input and output.

Productivity and Easier Migration from other Sort Products
By default, DFSORT now uses the L3, OUTREC or INREC record length as the
SORTOUT LRECL when the SORTOUT LRECL is unavailable. New installation
option SOLRF=YES/NO and run-time options SOLRF and NOSOLRF allow you to
control the use of the reformatted record length for the SORTOUT LRECL.

DFSORT now provides enhanced capabilities for OUTFIL, including:

v Padding short records with blanks, by default, when converting variable-length
records to fixed-length records.

v Creation of edited counts and subcounts in trailers.

Summary of Changes xix

DFSORT now provides enhanced capabilities for INREC and OUTREC that were
previously only available with OUTFIL OUTREC, including:

v Hexadecimal display.

v Transformation of dates.

v Editing of numeric fields.

v Lookup and change.

DFSORT now provides enhanced capabilities for INREC, OUTREC and OUTFIL
OUTREC, including:

v Conversion of numeric fields to other numeric formats.

v Editing of transformed dates.

v Conversion of transformed dates to numeric formats.

v Creation of sequence numbers.

DFSORT now allows INCLUDE/OMIT fields that extend beyond variable-length
records (that is, short fields) to be compared as if they were padded with binary
zeros. This allows both the short and non-short fields to be compared. New
installation option VLSCMP=YES/NO and run-time options VLSCMP and
NOVLSCMP allow you to control the use of binary zero padding for short control
fields.

DFSORT now allows -0 and +0 to be treated as unsigned (that is, the same) for
processing by DFSORT statements INCLUDE, INREC, MERGE, OMIT, OUTFIL,
OUTREC and SORT. New installation option SZERO=YES/NO and run-time options
SZERO and NOSZERO allow you to select signed or unsigned zero processing for
these statements.

DFSORT now allows -0 and +0 to be treated as unsigned (that is, the same) for
processing by ICETOOL operators DISPLAY, OCCUR, SELECT and UNIQUE. New
option UZERO allows you to select unsigned zero processing for these operators.

DFSORT now always determines or assigns the record type (F or V) when the input
is VSAM, or when an E15 or E32 exit supplies all of the input records.

DFSORT now allows an LRECL greater than 80 for SYSIN, SORTCNTL and
DFSPARM; only the first 80 bytes of each control statement are used.

DFSORT now allows variable-length output records that are longer than the output
data set LRECL to be truncated to the LRECL. New installation option
VLLONG=YES/NO and run-time options VLLONG and NOVLLONG allow you to
control the truncation of long variable-length output records.

DFSORT now accepts and processes the following as EXEC/DFSPARM PARM
options: COBEXIT=COB1/COB2, NOVERIFY, NOVLSHRT, NZDPRINT,
OVFLO=RC0/RC4/RC16, PAD=RC0/RC4/RC16, SPANINC=RC0/RC4/RC16,
TRUNC=RC0/RC4/RC16, VERIFY, VLSHRT and ZDPRINT.

DFSORT now accepts and processes the following as OPTION statement options:
EXITCK=STRONG/WEAK, WRKREL and WRKSEC.

DFSORT now accepts and processes Y2PAST=s/f as a SORT and MERGE
statement option.

xx DFSORT R14 Application Programming Guide

DFSORT now accepts, and processes or ignores as appropriate, many more
aliases for DFSORT options.

DFSORT now accepts and processes the following as 24-Bit Parmlist control
statement entry codes: X’10’, X’16’, X’18’ and X’20’ through X’29’.

Twentieth Edition, March 1999

New Programming Support for Release 14 (PTFs — March 1999)

New Generation of Year 2000 Features
New Y2T, Y2U, Y2V, Y2W, Y2X, and Y2Y formats handle CH, ZD, and PD full dates
like yymmdd, yyddd, yymm, yyq, mmddyy, dddyy, mmyy, and qyy, and their special
indicators like zeros and nines, according to the specified fixed or sliding century
window.

You can use these new formats in the SORT, MERGE, INCLUDE, OMIT, and
OUTFIL statements to sort, merge, compare, and transform full dates.

Nineteenth Edition, September 1998

New Programming Support for Release 14

Symbols for Fields and Constants
DFSORT now provides a simple and flexible method for using symbols in DFSORT
and ICETOOL statements. You can define and use a symbol for any field or
constant that is recognized in a DFSORT control statement or ICETOOL operator.
This makes it easy to create and reuse collections of symbols (that is, mappings)
for your frequently used data.

In addition, you can obtain and use collections of DFSORT symbols created
specifically for data associated with other products (for example, RACF,
DFSMSrmm and DCOLLECT) or by your site.

DFSORT symbols can increase your productivity by automatically providing the
positions, lengths and formats of the fields and the literals, numbers, and bit flags of
the constants, associated with the particular records you are processing with
DFSORT or ICETOOL.

Improvements in Performance, Capacity and Storage Usage
Blockset copy and merge applications can now use storage above 16MB virtual,
providing improved performance and virtual storage constraint relief.

Blockset copy and merge modules will now reside above 16MB virtual, providing
virtual storage constraint relief.

DFSORT can now handle a significantly larger number of INCLUDE and OMIT
conditions.

DFSORT can now handle a significantly larger number of SUM fields.

The upper limit for the number of JCL and dynamically allocated work data sets that
can be specified and used by DFSORT’s Blockset technique has been raised from
100 to 255. The use of more work data sets increases the maximum amount of
data DFSORT can process in a single sort application. Any valid ddname of the

Summary of Changes xxi

form SORTWKdd or SORTWKd can now be used for DASD work data sets (for
example, SORTWK01, SORTWKC3, SORTWK2, SORTWK#5, SORTWKA,
SORTWKXY and so on).

The upper limit for the number of input data sets that can be specified and used for
a Blockset merge application has been raised from 16 to 100. The use of more
merge input data sets increases the maximum amount of data DFSORT can
process in a single merge application.

Time-of-Day Option Controls
New time-of-day installation modules (ICETD1-4) allow different sets of installation
defaults to be used, based on the day and time DFSORT applications run. Each
environment installation module (ICEAM1-4) can enable one or more time-of-day
installation modules. This capability allows new levels of control for installation
defaults. For example, larger storage, hiperspace and data space limits could be
used only for batch program-invoked DFSORT applications that run off-shift during
the week, and all weekend.

Repackaging
The product has been repackaged to simplify installation and customization:

v IBM’s DFSORT, DFSMSdfp, and MVS/DFP teams have simplified the process of
replacing IEBGENER with ICEGENER. You now only need to apply a DFSMS or
DFP PTF that supplies an alias of ″IEBGENR″ for IEBGENER and place
ICEGENER with an alias of ″IEBGENER″ ahead of IEBGENER in the system’s
search order for programs.

v The number of FMIDs has been reduced from 10 to 3.

v The number of libraries required to install DFSORT has been reduced from 40 to
26.

v DFSORT R14 now supports a single installation of the product for both resident
and nonresident features. This allows you to decide how to use DFSORT
independent of the installation method, thus reducing the number of decisions
you have to make at installation time.

v All FMIDs in DFSORT R14 can be installed together, including the FMIDs for
both English and Japanese messages and panels.

OUTFIL Processing Enhancements
OUTFIL now supports creation of multiple output records using the fields of the
input record. This allows you to split each record into pieces, include a field in more
than one record, include different fields in different records, and more.

OUTFIL now supports processing of variable-length input records which are too
short to contain all specified OUTFIL OUTREC fields. OUTFIL’s new VLFILL=byte
operand can be used to replace missing bytes in OUTFIL OUTREC fields with the
specified fill byte so the filled fields can be processed.

ICETOOL Enhancement
A new DISCARD(savedd) operand of ICETOOL’s SELECT operator allows you to
save the records that are not selected, in the savedd data set. Thus, in one pass,
you can create an outdd data set with the records that meet your specified criteria,
and a savedd data set with the records that do not meet your specified criteria.
DISCARD(savedd) can be used to save the records discarded by ALLDUPS,
NODUPS, HIGHER(x), LOWER(y), EQUAL(v), FIRST or LAST.

Installation and Run-Time Option Enhancements
A new p% value for the EXPRES, EXPOLD, and EXPMAX installation options and
the HIPRMAX installation and run-time options is now available. p% can be used to

xxii DFSORT R14 Application Programming Guide

vary the limit DFSORT calculates for the corresponding option as a percentage of
the configured expanded storage on the system at run time. If the configured
expanded storage on a system changes, p% will cause a corresponding change in
the run-time limit calculated for the corresponding option. When sharing DFSORT
installation options between systems, such as in a sysplex, p% can be used to tailor
the limit DFSORT calculates for the corresponding option to the system on which
the application runs.

A new SPANINC installation and run-time option allows you to specify what you
want DFSORT to do if it detects incomplete spanned records. This gives you control
over the action (continue by eliminating incomplete spanned records and recovering
valid records, or terminate), type of message (informational or error) and return
code (0, 4 or 16) for incomplete spanned records.

A new OVFLO installation and run-time option allows you to specify what you want
DFSORT to do when BI, FI, PD or ZD summary fields overflow. This gives you
control over the action (continue or terminate), type of message (informational or
error) and return code (0, 4 or 16) for summary overflow.

A new PAD installation and run-time option allows you to specify what you want
DFSORT to do when the SORTOUT LRECL is larger than the SORTIN/SORTINnn
LRECL. This gives you control over the action (continue or terminate), type of
message (informational or error) and return code (0, 4 or 16) for LRECL padding.

A new TRUNC installation and run-time option allows you to specify what you want
DFSORT to do when the SORTOUT LRECL is smaller than the SORTIN/SORTINnn
LRECL. This gives you control over the action (continue or terminate), type of
message (informational or error) and return code (0, 4 or 16) for LRECL truncation.

The IBM-supplied default for ICEMAC option DSA has been changed from 16MB to
32MB.

The IBM-supplied default for ICEMAC option GENER has been changed from
IEBGENER to IEBGENR.

The maximum value for ICEMAC option OVERRGN has been changed from 64KB
to 16128KB.

Other Enhancements
New messages ICE178I and ICE179A provide information about reallocation of VIO
work data sets.

The option-in-effect messages (ICE127I-ICE133I) are now printed for Blockset copy
and merge applications.

The user exit address constant can now be passed to E32 user exits for Blockset
merge applications.

Null segments in variable spanned input records are now processed by DFSORT
and no longer result in termination. A null segment means that there are no more
segments in the block.

OS/390 and MVS/ESA Only
DFSORT Release 14 only supports the OS/390 and MVS/ESA environments.
MVS/XA and VIRTDSP processing for MVS/XA are no longer supported.

Summary of Changes xxiii

xxiv DFSORT R14 Application Programming Guide

Chapter 1. Introducing DFSORT

DFSORT Overview . 1
DFSORT on the Web . 3
DFSORT FTP Site . 4
Invoking DFSORT . 4
How DFSORT Works . 4

Operating Systems . 5
Control Fields and Collating Sequences 5
Cultural Environment Considerations 6
DFSORT Processing . 7

Input Data Sets—SORTIN and SORTINnn. 10
Output Data Sets—SORTOUT and OUTFIL 10
Data Set Considerations . 11

Sorting or Copying Records 11
Merging Records . 12
Data Set Notes and Limitations 12

General Considerations. 12
Padding and Truncation 13
QSAM Considerations . 14
VSAM Considerations . 14

SmartBatch Pipe Considerations 15
HFS File Considerations . 15
Installation Defaults . 16
Migrating to DFSORT from Other Sort Products 21
DFSORT Messages and Return Codes 22
Use Blockset Whenever Possible 23

DFSORT Overview
This chapter introduces IBM DFSORT Licensed Program 5740-SM1.

DFSORT is intended to run in problem state and in a user key (that is, key 8 or
higher).

DFSORT is a program you use to sort, merge, and copy information.

v When you sort records, you arrange them in a particular sequence, choosing an
order more useful to you than the original one.

v When you merge records, you combine the contents of two or more previously
sorted data sets into one.

v When you copy records, you make an exact duplicate of each record in your
data set.

Merging records first requires that the input data sets are identically sorted for the
information you will use to merge them and that they are in the same order required
for output. You can merge up to 100 different data sets at a time.

In addition to the three basic functions, you can perform other processing
simultaneously:

You can control which records to keep in the final output data set of a DFSORT
run by using INCLUDE and OMIT statements in your application. These statements
work like filters, testing each record against criteria that you supply and retaining
only the ones you want for the output data set. For example, you might choose to

© Copyright IBM Corp. 1973, 2002 1

work only with records that have a value of “Kuala Lumpur” in the field reserved for
office location. Or perhaps you want to leave out any record dated after 1987 if it
also contains a value greater than 20 for the number of employees.

You can edit and reformat your records before or after other processing by using
INREC and OUTREC statements. INREC and OUTREC statements support a wide
variety of tasks including:

v Insertion of blanks, zeros, strings, current date, current time and sequence
numbers before, between, and after the input fields in the reformatted records.

v Sophisticated conversion capabilities, such as hexadecimal display, conversion of
EBCDIC letters from lowercase to uppercase or uppercase to lowercase,
conversion of characters using the ALTSEQ translation table, and conversion of
numeric values from one format to another.

v Sophisticated editing capabilities, such as control of the way numeric fields are
presented with respect to length, leading or suppressed zeros, thousands
separators, decimal points, leading and trailing positive and negative signs, and
so on.

Twenty-seven pre-defined editing masks are available for commonly used
numeric editing patterns, encompassing many of the numeric notations used
throughout the world. In addition, a virtually unlimited number of numeric editing
patterns are available via user-defined editing masks.

v Transformation of SMF date and time values to more usable forms.

v Transformation of various forms of two-digit year dates to various forms of
four-digit year dates using a specified fixed or sliding century window.

v Selection of a character or hexadecimal string from a lookup table, based on a
character, hexadecimal, or bit string as input (that is, lookup and change).

You can sum numeric information from many records into one record with the
SUM statement. For example, if you want to know the total amount of a yearly
payroll, you can add the values for a field containing salaries from the records of all
your employees.

You can create one or more output data sets for a sort, copy, or merge
application from a single pass over one or more input data sets by using OUTFIL
control statements. You can use multiple OUTFIL statements, with each statement
specifying the OUTFIL processing to be performed for one or more output data
sets. OUTFIL processing begins after all other processing ends (that is, after
processing for exits, options, and other control statements). OUTFIL statements
support a wide variety of output data set tasks, including:

v Creation of multiple output data sets containing unedited or edited records from a
single pass over one or more input data sets.

v Creation of multiple output data sets containing different ranges or subsets of
records from a single pass over one or more input data sets. In addition, records
that are not selected for any subset can be saved in a separate output data set.

v Conversion of variable-length record data sets to fixed-length record data sets.

v Conversion of fixed-length record data sets to variable-length record data sets.

v Insertion of blanks, zeros, strings, current date, current time and sequence
numbers before, between, and after the input fields in the reformatted records.

v Sophisticated conversion capabilities, such as hexadecimal display, conversion of
EBCDIC letters from lowercase to uppercase or uppercase to lowercase,
conversion of characters using the ALTSEQ translation table, and conversion of
numeric values from one format to another.

DFSORT Overview

2 DFSORT R14 Application Programming Guide

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|

|
|
|
|

v Sophisticated editing capabilities, such as control of the way numeric fields are
presented with respect to length, leading or suppressed zeros, thousands
separators, decimal points, leading and trailing positive and negative signs, and
so on.

Twenty-seven pre-defined editing masks are available for commonly used
numeric editing patterns, encompassing many of the numeric notations used
throughout the world. In addition, a virtually unlimited number of numeric editing
patterns are available via user-defined editing masks.

v Transformation of SMF date and time values to more usable forms.

v Transformation of two-digit year dates to various forms of four-digit year dates
using a specified fixed or sliding century window.

v Selection of a character or hexadecimal string for output from a lookup table,
based on a character, hexadecimal, or bit string as input (that is, lookup and
change).

v Highly detailed three-level (report, page, and section) reports containing a variety
of report elements you can specify (for example, current date, current time,page
number, character strings, and blank lines) or derive from the input records (for
example, character fields; edited numeric input fields; record counts; and edited
totals, maximums, minimums, and averages for numeric input fields).

v Creation of multiple output records from each input record, with or without
intervening blank output records.

You can control DFSORT functions with other control statements by specifying
alternate collating sequences, invoking user exit routines, overriding installation
defaults, and so on.

You can direct DFSORT to pass control during run time to routines you design
and write yourself. For example, you can write user exit routines to summarize,
insert, delete, shorten, or otherwise alter records during processing. However, keep
in mind that the extensive editing capabilities provided by the INCLUDE, OMIT,
INREC, OUTREC, SUM, and OUTFIL statements can eliminate the need to write
user exit routines. You can write your own routines to correct I/O errors that
DFSORT does not handle, or to perform any necessary abnormal end-of-task
operation before DFSORT terminates.

You can write an EFS (Extended Function Support) program to intercept
DFSORT control statements and PARM options for modification prior to use by
DFSORT or to provide alternate sequence support for user-defined data.

You can define and use a symbol for any field or constant that is recognized in a
DFSORT control statement or ICETOOL operator. This makes it easy to create and
reuse collections of symbols (that is, mappings) representing information associated
with various record layouts. See Chapter 7, “Using Symbols for Fields and
Constants” on page 485.

DFSORT on the Web
For articles, online books, news, tips, techniques, examples, and more, visit the
DFSORT/MVS home page at:
http://www.ibm.com/storage/dfsort/

DFSORT Overview

Chapter 1. Introducing DFSORT 3

|
|
|
|

|
|
|
|

|

DFSORT FTP Site
You can obtain DFSORT articles and examples via anonymous FTP to:
ftp.software.ibm.com/storage/dfsort/mvs/

Invoking DFSORT
You can invoke DFSORT processing in the following ways:

v With an EXEC job control statement in the input stream using the name of the
program (for example, PGM=ICEMAN or PGM=SORT) or the name of a
cataloged procedure (for example, SORTD). See Chapter 2, “Invoking DFSORT
with Job Control Language” on page 25.

TSO users can allocate the needed ddnames (for example, SYSOUT, SORTIN,
SORTOUT and SYSIN), and invoke DFSORT using a calling method equivalent
to PGM=ICEMAN. For example:

call *(iceman)

Note that TSO users cannot invoke DSORT using:
iceman

See Chapter 10, “Examples of DFSORT Job Streams” on page 561 for examples
of invoking DFSORT from REXX and CLISTs.

v With a program written in basic assembler language using a system macro
instruction. See Chapter 5, “Invoking DFSORT from a Program” on page 367.

v With programs written in either COBOL or PL/I with a special facility of the
language. See the programmer’s guide describing the compiler version available
at your location.

v With the ICETOOL utility. See Chapter 6, “Using ICETOOL” on page 385.

v With interactive panels supported under ISPF and ISMF. See DFSORT Panels
Guide for complete information.

Note: DFSORT Panels supports interactive panels for a subset of the functions
available with DFSORT. Although interactive panels for functions such as
DFSORT’s Year 2000 Features and the OUTFIL Statement are not provided,
you can use Free Form Entry panels to specify complete DFSORT Control
Statements for these functions.

In this book, the term directly invoked means that DFSORT is not initiated from
another program. The term program invoked means that DFSORT is initiated from
another program.

How DFSORT Works
This section contains a list of the operating systems supported by DFSORT and an
explanation of how DFSORT uses control fields and collating sequences to sort,
merge, and copy the records of a data set.

The Blockset technique is DFSORT’s most efficient technique for sorting, merging
and copying data sets. DFSORT uses the Blockset technique whenever possible to
take advantage of its highly optimized internal algorithms and efficient utilization of
IBM hardware. If Blockset cannot be used, DFSORT uses another of its techniques
— Peerage/Vale or Conventional.

DFSORT Overview

4 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|

|

|

|

|
|

Operating Systems
DFSORT runs under control of your operating system and must be initiated
according to the appropriate conventions. The operating systems this release
supports are:

v z/OS

v OS/390

Additionally, DFSORT runs under z/OS or OS/390 when it is running as a guest
under z/VM™ or VM/ESA.

DFSORT is compatible with all of the IBM processors supported by z/OS and
OS/390. In addition to any device supported by these operating systems for
program residence, DFSORT also operates with any device QSAM or VSAM uses
for input or output.

Control Fields and Collating Sequences
You define control fields to identify the information you want DFSORT to sort or
merge. When thinking of the contents of your data sets, you probably think of
names, dates, account numbers, or similar pieces of useful information. For
example, when sorting your data sets, you might choose to arrange your records in
alphabetical order, by family name. By using the byte position and length (in bytes)
of the portion of each record containing a family name, you can define it as a
control field to manipulate with DFSORT.

DFSORT uses the control fields you define as keys in processing. A key is a
concept, such as family name, that you have in mind when you design a record
processing strategy for a particular application. A control field, on the other hand, is
a discrete portion of a record that contains the text or symbols corresponding to that
information in a form that can be used by DFSORT to identify and sort, or merge
the records. For all practical purposes, you can think of keys as equivalent to the
control fields DFSORT uses in processing.

To arrange your records in a specific order, identify one or more control fields of
your records to use as keys. The sequence in which you list the control fields
becomes the order of priority DFSORT uses to arrange your records. The first
control field you specify is called the major control field. Subsequent control fields
are called minor control fields, as in first, second, third minor control fields, and so
on.

If two or more records have identical values for the first control field, they are
arranged according to the values in the second. Records with identical values for
the first and second are arranged according to the third, and so on, until a
difference is found or no more control fields are available.

Records with identical values for all the control fields specified retain their original
input order or are arranged randomly, depending upon which of the two options,
EQUALS or NOEQUALS, is in effect. You can direct DFSORT to retain the original
input order for records with identical values for all control fields by specifying
EQUALS.

Control fields may overlap, or be contained within other control fields (such as a
three-digit area code, within a 10-digit telephone number). They do not need to be

How DFSORT Works

Chapter 1. Introducing DFSORT 5

|

|

|
|

|
|
|
|

|
|

contiguous but must be located within the first 32752 bytes of the record (see
Figure 1).

DFSORT offers several standard collating sequences. You can choose to arrange
your records according to these standard collating sequences or according to a
collating sequence defined in the active locale. Conceptually, a collating sequence
is a specific arrangement of character priority used to determine which of two
values in the same control field of two different records should come first. DFSORT
uses EBCDIC, the standard IBM collating sequence, or the ISCII/ASCII collating
sequence when sorting or merging records. If locale processing is in effect,
DFSORT will use the collating sequence defined in the active locale.

The collating sequence for character data and binary data is absolute; character
and binary fields are not interpreted as having signs. For packed decimal, zoned
decimal, fixed-point, normalized floating-point, and the signed numeric data formats,
collating is algebraic; each quantity is interpreted as having an algebraic sign.

You can modify the standard EBCDIC sequence to collate differently if, for example,
you want to allow alphabetic collating of national characters. An alternate collating
sequence can be defined during installation with the ICEMAC ALTSEQ option, or
you can define it yourself at run-time with the ALTSEQ program control statement.
You can also specify a modified collating sequence with an E61 user exit or with an
EFS program.

You can specify the LOCALE installation or run-time option to use an active locale’s
collating rules.

Cultural Environment Considerations
DFSORT’s collating behavior can be modified according to your cultural
environment. Your cultural environment is defined to DFSORT using the X/Open**
locale model. A locale is a collection of data grouped into categories that describes
the information about your cultural environment.

The collate category of a locale is a collection of sequence declarations that defines
the relative order between collating elements (single character and multi-character
collating elements). The sequence declarations define the collating rules.

The cultural environment is established by selecting the active locale. The active
locale affects the behavior of locale-sensitive functions. In particular, the active
locale’s collating rules affect DFSORT’s SORT, MERGE, INCLUDE, and OMIT
processing as follows:

v Sort and Merge

Control
field 3

Control
field 4 Control field 1

(major)

Control
field 2

Record

Figure 1. Control Fields. Control fields may overlap, or be contained within other control fields.

How DFSORT Works

6 DFSORT R14 Application Programming Guide

|

|
|
|

|
|

DFSORT produces sorted or merged records for output according to the collating
rules defined in the active locale. This provides sorting and merging for single- or
multi-byte character data based on defined collating rules that retain the cultural
and local characteristics of a language.

v Include and Omit

DFSORT includes or omits records for output according to the collating rules
defined in the active locale. This provides inclusion or omission for single- or
multi-byte character data based on defined collating rules that retain the cultural
and local characteristics of a language.

The DFSORT option LOCALE specifies whether locale processing is to be used
and, if so, designates the active locale. Only one locale can be active at a time for
any DFSORT application.

DFSORT Processing
Unless you use DFSORT Panels to prepare and submit your job (see DFSORT
Panels Guide), you must prepare job control language (JCL) statements and
DFSORT program control statements to invoke DFSORT processing. JCL
statements (see Chapter 5, “Invoking DFSORT from a Program” on page 367) are
processed by your operating system. They describe your data sets to the operating
system and initiate DFSORT processing. DFSORT program control statements (see
Chapter 3, “Using DFSORT Program Control Statements” on page 95) are
processed by the DFSORT program. They describe the functions you want to
perform and invoke the processing you request.

A sort application usually requires intermediate storage as working space during the
program run. This storage can be one of the following:

1. Hiperspace, using DFSORT’s Hipersorting feature.

2. Work data sets—either allocated dynamically by DFSORT’s DYNALLOC facility
or specified by the user, using JCL DD statements. If specified by the user, the
intermediate storage devices and the amount of work space must be indicated.
Methods for determining the amount of work space to allocate are explained in
Appendix A, “Using Work Space” on page 593.

3. A combination of Hiperspace and work data sets.

Merge and copy applications do not require intermediate storage.

Figure 2 on page 8 illustrates the processing order for record handling, exits,
statements, and options. Use this diagram with the text following it to understand
the order DFSORT uses to run your job.

Cultural Environment Considerations

Chapter 1. Introducing DFSORT 7

As shown in Figure 2, DFSORT processing follows this order:

E15

STOPAFT

INREC

SORT / SUM
or

COPY

OUTREC

OUTFIL SPLIT

SORTIN

Sorting or Copying

SKIPREC

E15

E35 E35

OUTFIL INCLUDE
OUTFIL OMIT
OUTFIL SAVE

OUTFIL OUTREC
OUTFIL Reports

OUTFIL STARTREC
OUTFIL ENDREC

SORTOUT

Merging

INREC

MERGE / SUM

OUTREC

SORTINnn

E32

E35 E35

OUTFIL INCLUDE
OUTFIL OMIT
OUTFIL SAVE

OUTFIL STARTREC
OUTFIL ENDREC

SORTOUT

OUTFIL SPLIT

OUTFIL OUTREC
OUTFIL Reports

OUTFIL
Data Sets

INCLUDE / OMIT

INCLUDE / OMIT

OUTFIL
Data Sets

Figure 2. Record Processing Order

DFSORT Processing

8 DFSORT R14 Application Programming Guide

1. DFSORT first checks whether you supplied a SORTIN data set for SORT and
COPY jobs or SORTINnn data sets for MERGE jobs. If so, DFSORT reads the
input records from them.

v If no SORTIN data set is present for a SORT or COPY job, you must use an
E15 user exit to insert all the records. (This is also true if you invoke
DFSORT from a program with the address of an E15 user exit in the
parameter list, because SORTIN will be ignored.) DFSORT can use a
COBOL E15 routine if you specified the E15 user exit in the MODS
statement.

v If no SORTINnn data sets are present for a MERGE job, you must use an
E32 user exit to insert all the records.

2. If input records for SORT or COPY jobs are read from a SORTIN data set,
DFSORT performs processing specified with the SKIPREC option. DFSORT
deletes records until the SKIPREC count is satisfied. Eliminating records
before a SORT or COPY gives better performance.

3. If the input records for a SORT or COPY job are read from a SORTIN data
set, DFSORT checks whether you specified an E15 user exit. If so, DFSORT
transfers control to the user exit routine. You can use a COBOL E15 routine if
the E15 user exit is specified in the MODS statement. The E15 routine can
insert, delete, or reformat records.

4. DFSORT performs processing specified on an INCLUDE or OMIT statement. If
you used an E15 user exit routine to modify the record format, the
INCLUDE/OMIT control field definitions you specify must apply to the current
format rather than to the original format. If you use the INCLUDE or OMIT
statements to delete unnecessary records before SORT, MERGE, or COPY
processing, your jobs run more efficiently.

5. For SORT or COPY jobs, DFSORT performs processing specified with the
STOPAFT option. Record input stops after the maximum number of records (n)
you specify have been accepted. DFSORT accepts records for processing if
they are:
v Read from SORTIN or inserted by E15
v Not deleted by SKIPREC
v Not deleted by E15
v Not deleted by an INCLUDE or OMIT statement.

6. DFSORT performs processing specified in an INREC statement. If you
changed record format before this step, the INREC control and separation field
definitions you specify must apply to the current format rather than to the
original one.

7. DFSORT performs processing specified in the SORT, MERGE, or OPTION
COPY statement.

v For SORT, all input records are processed before any output record is
processed.

v For COPY or MERGE, an output record is processed after an input record is
processed.

v For SORT or MERGE, if a SUM statement is present, DFSORT processes it
during the SORT or MERGE processing. DFSORT summarizes the records
and deletes duplicates. If you made any changes to the record format prior
to this step, the SORT or MERGE and SUM field definitions you specify
must apply to the current format rather than to the original one.

8. DFSORT performs processing specified in an OUTREC statement. If you
changed record format prior to this step, the OUTREC control or separation
field definitions must apply to the current format rather than to the original one.

DFSORT Processing

Chapter 1. Introducing DFSORT 9

9. If an E35 user exit is present, DFSORT transfers control to your user exit
routine after all statement processing is completed. If you changed record
format, the E35 user exit receives the records in the current format rather than
in the original one. You can use a COBOL E35 routine if you specify the E35
user exit in the MODS statement. You can use the E35 exit routine to add,
delete, or reformat records.

If SORTOUT and OUTFIL data sets are not present, the E35 exit must dispose
of all the records because DFSORT treats these records as deleted. (This is
also true if you do not specify OUTFIL data sets and DFSORT is invoked with
the address of an E35 user exit in the parameter list, because SORTOUT will
be ignored.)

10. DFSORT writes your records to the SORTOUT data set, if present.

11. DFSORT performs processing specified in one or more OUTFIL statements, if
present:

v DFSORT performs processing specified with the STARTREC and/or
ENDREC options. Record input for the OUTFIL data sets starts with the
record indicated by STARTREC and ends with the record indicated by
ENDREC.

v DFSORT performs processing specified with the INCLUDE, OMIT, or SAVE
option. Records are included or omitted from the OUTFIL data sets
according to the criteria specified.

v DFSORT performs processing specified with the OUTREC, LINES,
HEADER1, TRAILER1, HEADER2, TRAILER2, SECTIONS, and NODETAIL
options. Data records are reformatted and report records are generated for
the OUTFIL data sets.

v DFSORT performs SPLIT processing. Records are distributed among the
OUTFIL data sets as evenly as possible.

v DFSORT writes your OUTFIL records to the appropriate OUTFIL data sets.

Input Data Sets—SORTIN and SORTINnn
DFSORT processes two types of input data sets, referred to as the SORTIN data
set (or just SORTIN) and the SORTINnn data sets (or just SORTINnn).

The SORTIN DD statement specifies the input data set (or concatenated input data
sets) for a sort or copy application. If a SORTIN DD statement is present, it will be
used by default for a sort or copy application unless you invoke DFSORT from a
program with the address of an E15 user exit in the parameter list.

The SORTINnn DD statements (where nn can be 00 to 99) specify the data sets for
a merge application. If a SORTINnn DD statement is present, it will be used by
default for a merge application unless you invoke DFSORT from a program with the
address of an E32 user exit in the parameter list.

“Data Set Considerations” on page 11 contains general information about input data
sets. For specific information about the SORTIN data set, see “SORTIN DD
Statement” on page 66. For specific information about the SORTINnn data sets, see
“SORTINnn DD Statement” on page 68.

Output Data Sets—SORTOUT and OUTFIL
DFSORT processes two types of output data sets, referred to as the SORTOUT
data set (or just SORTOUT) and the OUTFIL data sets.

DFSORT Processing

10 DFSORT R14 Application Programming Guide

The SORTOUT DD statement specifies the single non-OUTFIL output data set for a
sort, copy, or merge application. OUTFIL processing does not apply to SORTOUT. If
a SORTOUT DD statement is present, it will be used by default for a sort, copy, or
merge application unless you invoke DFSORT from a program with the address of
an E35 user exit in the parameter list.

The FNAMES and/or FILES parameters of one or more OUTFIL statements specify
the ddnames of the OUTFIL data sets for a sort, copy, or merge application. The
parameters specified for each OUTFIL statement define the OUTFIL processing to
be performed for the OUTFIL data sets associated with that statement. Each
ddname specified must have a corresponding DD statement.

Although the ddname SORTOUT can actually be used for an OUTFIL data set, the
term “SORTOUT” will be used to denote the single non-OUTFIL output data set.

“Data Set Considerations” contains general information about output data sets. For
specific information about the SORTOUT data set, see “SORTOUT and OUTFIL DD
Statements” on page 71. For specific information about the OUTFIL data sets, see
“SORTOUT and OUTFIL DD Statements” on page 71 and “OUTFIL Control
Statements” on page 204.

Data Set Considerations
You must define any data sets you provide for DFSORT according to the
conventions your operating system requires. You can use the label checking
facilities of the operating system during DFSORT processing. See Application
Development Guide for details.

Unless you use DFSORT Panels to create and submit your jobs, you must describe
all data sets (except those allocated with the DYNALLOC parameter) in DD
statements. You must place the DD statements in the operating system input
stream with the job step that allocates DFSORT processing.

DFSORT Panels operates in two modes: foreground and background. Foreground
mode uses CLIST processing instead of JCL, so if you choose this technique you
do not need JCL at all. Background mode creates DFSORT jobs containing the job
control language (including DD statements) already coded in the DFSORT Panels
user profile. This JCL is the same as that which you code yourself. See DFSORT
Panels Guide for more information.

Sorting or Copying Records
Input to a sort or copy application can be a blocked or unblocked QSAM or VSAM
data set containing fixed- or variable-length records. QSAM input data sets can be
concatenated even if they are on dissimilar devices. See “SORTIN DD Statement”
on page 66 for the restrictions that apply.

Output from a sort or copy application can be blocked or unblocked QSAM or
VSAM data sets, regardless of whether the input is QSAM or VSAM. Unless
OUTFIL is used to convert variable input to fixed output, or fixed input to variable
output, an output data set must be the same type (fixed or variable) as the input
data set.

Hierarchical File System (HFS) files are supported as input and output for sort and
copy applications.

Output Data Sets—SORTOUT and OUTFIL

Chapter 1. Introducing DFSORT 11

|
|
|
|
|

SmartBatch pipes are supported as input and output for sort and copy applications.

Merging Records
Input to a merge application can be up to 100 blocked or unblocked QSAM or
VSAM data sets containing fixed- or variable-length records. The input data sets
can be either QSAM or VSAM, but not both. The records in all input data sets must
already be sorted in the same order as that required for output.

Output from a merge application can be blocked or unblocked QSAM or VSAM data
sets, regardless of whether the input is QSAM or VSAM. Unless OUTFIL is used to
convert variable input to fixed output, or fixed output to variable output, an output
data set must be the same type (fixed or variable) as the input data set.

Hierarchical File System (HFS) files are supported as input and output for merge
applications.

SmartBatch pipes are supported as input and output for merge applications.

Data Set Notes and Limitations
There are some considerations and limitations that you need to be aware of. These
are described in the following sections.

For more information about specific DFSORT data sets, see “Using DD Statements”
on page 59.

General Considerations
Variable-length records are processed with a record descriptor word (RDW) in
positions 1-4, so the data starts in position 5. Fixed-length records are processed
without an RDW, so the data starts in position 1. Control statement positions should
be specified accordingly.

Your records can be EBCDIC, ISCII/ASCII, Japanese, and data types you define
yourself. To process Japanese data types with DFSORT, you can use the IBM
Double Byte Character Set Ordering Support Program (DBCS Ordering), Licensed
Program 5665-360, Release 2.0, or you can use locale processing with the
appropriate locale.

Input and output data sets must be on devices that can be used with QSAM or
VSAM.

Standard system data management rules apply to all data set processing. In
particular, be aware that when using fixed standard record format for input data
sets, the first short block is treated like an End of Volume. See z/OS DFSMS: Using
Data Sets for more details.

The maximum record length DFSORT can handle is subject to the following
limitations:

v Record length can never exceed the maximum record length you specify.

v Variable-length records are limited to 32756 bytes.

v VSAM variable-length records are limited to 32752 bytes.

v Fixed-length records are limited to 32760 bytes.

v Variable block-spanned records are limited to 32767 bytes.

v For a tape work data set sort, the maximum record length is limited to 32752
bytes with NOEQUALS in effect and to 32748 bytes with EQUALS in effect.

Data Set Considerations

12 DFSORT R14 Application Programming Guide

|
|
|
|

Note: If AQ format is specified, or CH format is specified and the CHALT option is
in effect, the maximum record length for variable-length records is 32767
bytes, less the length of the control fields.

The number of records that can be sorted using a given amount of storage is
reduced by:
v Processing control fields of different formats
v Large numbers of control fields
v Large numbers of intermediate data sets.

Providing an Extended Function Support program with an EFS01 routine can limit
the record length that can be used when processing variable-length records.

The minimum block length for tape work data sets is 18 bytes; the minimum record
length is 14 bytes.

Padding and Truncation
You can control the action that DFSORT takes when the SORTOUT LRECL is
smaller than the SORTIN/SORTINnn LRECL with the TRUNC option as described
in “OPTION Control Statement” on page 155.

DFSORT truncates fixed-length records on the right when the SORTOUT LRECL is
smaller than the SORTIN/SORTINnn LRECL provided that:

v The application is not a conventional merge or tape work data set sort.

v TRUNC=RC16 is not in effect.

You can control the action that DFSORT takes when a variable-length output record
is longer than the LRECL of the SORTOUT or OUTFIL data set to which it is to be
written by using the VLLONG or NOVLLONG option as described in “OPTION
Control Statement” on page 155.

You can control the action that DFSORT takes when the SORTOUT LRECL is
larger than the SORTIN/SORTINnn LRECL with the PAD option as described in
“OPTION Control Statement” on page 155.

DFSORT pads fixed-length records with binary zeros on the right when the
SORTOUT LRECL is larger than the SORTIN LRECL provided that:

v The Blockset technique is selected.

v The application is a sort or copy.

v PAD=RC16 is not in effect.

DFSORT does not pad or truncate records returned from an E15 or E35 user exit
since it expects the exit to pad or truncate each record appropriately.

You can use INREC, OUTREC, and OUTFIL to pad, truncate, and reformat records.
See INREC Control Statement on page 131 and “OUTREC Control Statement” on
page 285 for details.

See “Use ICEGENER Instead of IEBGENER” on page 556 for information about
padding and truncating with ICEGENER.

For more information about Blockset and other DFSORT techniques, see “Specify
Efficient Sort/Merge Techniques” on page 543.

Data Set Considerations

Chapter 1. Introducing DFSORT 13

QSAM Considerations
v If you use DSN=NULLFILE on your DD statement for an input data set, a system

restriction prevents DFSORT from using the EXCP access method.

v Empty input data sets can be used.

v If any of the input data sets are on tape without standard labels, DCB parameters
must be specified on their DD statements.

v ISO/ANSI Version 1 tape files can only be used as input—never as output.

v DFSORT sets appropriate BUFNO values for the input and output data sets;
specifying BUFNO in the DD statements for these data sets has no effect.

See “SORTIN DD Statement” on page 66 for additional considerations.

VSAM Considerations
v You can have DFSORT process VSAM records as fixed-length (F) or

variable-length (V). When you use VSAM input, DFSORT selects fixed-length
processing if you specify RECORD TYPE=F or variable-length processing if you
specify RECORD TYPE=V. If you do not specify RECORD TYPE=x, DFSORT
selects the record type to use according to the ″rules″ described in the
discussion of the TYPE operand in “RECORD Control Statement” on page 296.
The record type selected affects how the records are treated, and how control
statement positions should be specified, as follows:

– Variable-length processing: An RRDS, KSDS, ESDS or VRRDS can always
be processed as variable-length. For VSAM input, DFSORT reads each
record and prepends a record descriptor word (RDW) to it. For VSAM output,
DFSORT removes the RDW before writing each record. Since DFSORT uses
an RDW in positions 1-4 to process variable-length records, the data starts in
position 5. Control statement positions should be specified accordingly.

– Fixed-length processing: An RRDS can always be processed as
fixed-length. A KSDS, ESDS or VRRDS used for input should only be
processed as fixed-length if all of its records have a length equal to the
maximum record size defined for the cluster. Otherwise, input records which
are shorter than the maximum record size are padded with bytes that may or
may not be zeros (that is, ″garbage″ bytes). DFSORT does not use an RDW
to process fixed-length records, so the data starts in position 1. Control
statement positions should be specified accordingly.

v If a data set is password protected, passwords can be entered at the console or
(with some restrictions) through routines at user exits E18, E38, and E39.

Note: Passwords cannot be handled in this way for OUTFIL data sets.

v If VSAMIO and RESET are in effect, a data set defined with REUSE can be used
for both input and output for a sort; that is, the data set can be sorted in-place.

v A data set used for input or output must have been previously defined.

v If VSAMEMT is in effect, an empty input data set is processed as having zero
records.

v VSAM data sets must not be concatenated (system restriction).

v VSAM and non-VSAM input data sets must not be specified together for a sort,
merge or copy application.

v If output is a VSAM key-sequenced data set (KSDS), the key must be the first
control field (or the key fields must be in the same order as the first control field).
VSAM does not allow you to store records with duplicate primary keys.

Data Set Considerations

14 DFSORT R14 Application Programming Guide

v Any VSAM exit function available for input data sets can be used except
EODAD. See the description of E18 use with VSAM in Chapter 4, “Using Your
Own User Exit Routines” on page 315.

v You must build the VSAM exit list with the VSAM EXLST macro instruction giving
the addresses of your routines that handle VSAM exit functions.

v When processing variable-length records with VSAM input and non-VSAM
output, the output LRECL must be at least 4 bytes greater than the maximum
record size defined for the cluster. Non-VSAM variable-length records have a
record descriptor word (RDW) field 4 bytes long at the beginning of each record,
but VSAM records do not. The record size defined for the VSAM cluster is
therefore 4 bytes less than the non-VSAM LRECL.

v An output data set defined without REUSE is processed as MOD.

v If RESET is in effect, an output data set defined with REUSE is processed as
NEW. If NORESET is in effect, an output data set defined with REUSE is
processed as MOD.

v DFSORT cannot access VSAM data sets in RLS mode, that is, RLS=CR and
RLS=NRI are not supported for VSAM input and output data sets.

SmartBatch Pipe Considerations
SmartBatch pipe data sets can be used for input and output, but are only supported
by the Blockset technique. If Blockset is not selected for a DFSORT application that
uses SmartBatch pipe data sets, DFSORT will issue an error message and
terminate.

If DFSORT determines that a SmartBatch pipe data set is being used for input or
output:

v it automatically forces the ABEND option on, to ensure that an ABEND will be
generated if an error is detected, and

v it terminates with user ABEND zero instead of return code 16 if an E15, E32, or
E35 user exit requests termination.

If ICETOOL determines that a SmartBatch pipe data set is being used for input or
output, it automatically terminates with user ABEND 2222 instead of return code 12.

Generation of an ABEND in these situations allows for appropriate error propagation
by the system to other applications that may be accessing the same SmartBatch
pipe data set as DFSORT or ICETOOL.

If DFSORT or ICETOOL detects an error before determining that a SmartBatch pipe
data set is being used or before opening the SmartBatch pipe data set, appropriate
error propagation may not occur. This can cause another application to go into a
permanent wait for a SmartBatch pipe data set.

HFS File Considerations
Hierarchical File System (HFS) files can be used for input and output, but are only
supported by the Blockset technique. If Blockset is not selected for a DFSORT
application that uses HFS files, DFSORT will issue an error message and terminate.

You should be familiar with the information found in z/OS UNIX System Services
User’s Guide regarding HFS files if you use them. DFSORT uses BSAM to access
HFS files and is thus subject to all of the capabilities and restrictions that entails, as
described in z/OS DFSMS: Using Data Sets.

Data Set Considerations

Chapter 1. Introducing DFSORT 15

Installation Defaults
When your system programmers installed DFSORT, they selected separate sets of
installation (ICEMAC) parameters to be used by default for the following eight
installation modules:

ICEAM1 (JCL)
is the batch direct invocation environment installation module. This set of
defaults is used at run time when DFSORT is invoked directly (that is, not
through programs) by batch jobs, provided that an enabled time-of-day
installation module (ICETDx) is not activated.

ICEAM2 (INV)
is the batch program invocation environment installation module. This set of
defaults is used at run time when DFSORT is invoked through batch
programs, provided that an enabled time-of-day installation module
(ICETDx) is not activated.

ICEAM3 (TSO)
is the TSO direct invocation environment installation module. This set of
defaults is used at run time when DFSORT is invoked directly (that is, not
through programs) by foreground TSO users, provided that an enabled
time-of-day installation module (ICETDx) is not activated.

ICEAM4 (TSOINV)
is the TSO program invocation environment installation module. This set of
defaults is used at run time when DFSORT is invoked through programs by
foreground TSO users, provided that an enabled time-of-day installation
module (ICETDx) is not activated.

ICETD1 (TD1)
is the first time-of-day installation module. This set of defaults is used at run
time when it is activated for the time-of-day of the run, provided it is
enabled by the environment installation module (ICEAMx) in effect.

ICETD2 (TD2)
is the second time-of-day installation module. This set of defaults is used at
run time when it is activated for the time-of-day of the run, provided it is
enabled by the environment installation module (ICEAMx) in effect.

ICETD3 (TD3)
is the third time-of-day installation module. This set of defaults is used at
run time when it is activated for the time-of-day of the run, provided it is
enabled by the environment installation module (ICEAMx) in effect.

ICETD4 (TD4)
is the fourth time-of-day installation module. This set of defaults is used at
run time when it is activated for the time-of-day of the run, provided it is
enabled by the environment installation module (ICEAMx) in effect.

The selected defaults can affect the way your applications run, and in many cases
can be overridden by specifying the appropriate run-time parameters (see
Appendix B, “Specification/Override of DFSORT Options” on page 603 for full
override details). This book assumes that DFSORT was installed at your site with
the defaults that it was delivered with.

You can use an ICETOOL job similar to the following one to list the installation
defaults actually in use at your site for the eight installation modules and the
IBM-supplied defaults they override, where appropriate.

Installation Defaults

16 DFSORT R14 Application Programming Guide

Table 1. Using ICETOOL to List Installation Defaults

//DFRUN JOB A402,PROGRAMMER
//LISTDEF EXEC PGM=ICETOOL,REGION=1024K
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//SHOWDEF DD SYSOUT=A
//TOOLIN DD *
DEFAULTS LIST(SHOWDEF)
/*

See Chapter 6, “Using ICETOOL” on page 385 and “DEFAULTS Operator” on
page 403 for more information on using ICETOOL and the DEFAULTS operator.

The functions of the available ICEMAC parameters are summarized below.
DFSORT Installation and Customization R14 contains complete descriptions of the
available ICEMAC parameters, as well as planning considerations and general
information about installing DFSORT. Step-by-step installation procedures are listed
in the DFSORT Program Directory.

Parameter Function

INV|JCL|TSO|TSOINV|TD1|TD2|TD3|TD4
Specifies the environment installation module
(ICEAMx) or time-of-day installation module
(ICETDx) for which this set of ICEMAC defaults is
to be used.

ENABLE Specifies whether ICETDx installation modules are
to be used if activated for this ICEAMx environment
module.

day Specifies the time ranges for each day of the week
when this ICETDx installation module is to be
activated.

ABCODE Specifies the ABEND code used when DFSORT
abends for a critical error.

ALTSEQ Specifies changes to the ALTSEQ translation table.

ARESALL Specifies the number of bytes reserved above
16MB virtual for system use.

ARESINV Specifies the number of bytes reserved above
16MB virtual for the invoking program when
DFSORT is program invoked.

CFW Specifies whether DFSORT can use cache fast
write when processing work data sets.

CHALT Translates format CH as well as format AQ, or
translates format AQ only.

CHECK Specifies whether record count checking is
suppressed for applications that use an E35 user
exit routine without an output data set.

CINV Specifies whether DFSORT can use control interval
access for VSAM data sets.

COBEXIT Specifies the library for COBOL E15 and E35
routines.

Installation Defaults

Chapter 1. Introducing DFSORT 17

DIAGSIM Specifies whether a SORTDIAG DD statement is to
be simulated for DFSORT applications.

DSA Specifies the maximum amount of storage available
to DFSORT for dynamic storage adjustment of
Blockset sort applications.

DSPSIZE Specifies the maximum amount of data space to
use for dataspace sorting.

DYNALOC Specifies the default values for device name and
number of work data sets to be dynamically
allocated. These default values are used in
conjunction with the ICEMAC option DYNAUTO and
run-time option DYNALLOC.

DYNAUTO Specifies whether work data sets are dynamically
allocated automatically.

DYNSPC Specifies the total default primary space allocation
for all of the dynamically allocated work data sets
when the file size is unknown.

EFS Specifies the name of a user-written Extended
Function Support program to be called by DFSORT.

EQUALS Specifies whether the order of records that collate
identically is preserved from input to output.

ERET Specifies the action taken if DFSORT encounters a
critical error.

ESTAE Specifies whether DFSORT deletes its ESTAE
recovery routine early or uses it for the entire run.

EXITCK Specifies whether DFSORT terminates or continues
when it receives certain invalid return codes from
E15 or E35 user exit routines.

EXPMAX Specifies the maximum total amount of available
storage to be used at any one time by all
Hipersorting applications.

EXPOLD Specifies the maximum total amount of old storage
to be used at any one time by all Hipersorting
applications.

EXPRES Specifies the minimum amount of available storage
to be reserved for use by non-Hipersorting
applications.

FSZEST Specifies whether DFSORT treats run-time options
FILSZ=n and SIZE=n as exact or estimated file
sizes.

GENER Specifies the name that ICEGENER is to use to
transfer control to the IEBGENER system utility.
(ICEGENER is DFSORT’s facility for IEBGENER
jobs.)

GNPAD Specifies the action to be taken by ICEGENER for
LRECL padding.

Installation Defaults

18 DFSORT R14 Application Programming Guide

||
|
|

||
|
|

||
|
|

||
|
|

GNTRUNC Specifies the action to be taken by ICEGENER for
LRECL truncation.

HIPRMAX Specifies the maximum amount of Hiperspace to
use for Hipersorting.

IDRCPCT Specifies a percentage which represents the
approximate amount of data compaction achieved
by using the Improved Data Recording Capability
feature of IBM tape devices that support
compaction.

IEXIT Specifies whether DFSORT passes control to your
site’s ICEIEXIT routine.

IGNCKPT Specifies whether the checkpoint/restart facility is
ignored if it is requested at run-time and the
Blockset technique (which does not support the
checkpoint/restart facility) can be used.

IOMAXBF Specifies an upper limit to the amount of buffer
space to be used for SORTIN, SORTINnn and
SORTOUT data sets.

LIST Specifies whether DFSORT prints control
statements.

LISTX Specifies whether DFSORT prints control
statements returned by an Extended Function
Support program.

LOCALE Specifies whether locale processing is to be used
and, if so, designates the active locale.

MAXLIM Specifies an upper limit to the amount of main
storage available to DFSORT below 16MB virtual.

MINLIM Specifies a lower limit to the amount of main
storage available to DFSORT.

MSGCON Specifies the class of program messages DFSORT
writes to the master console.

MSGDDN Specifies an alternate name for the message data
set.

MSGPRT Specifies the class of program messages DFSORT
writes to the message data set.

NOMSGDD Specifies whether DFSORT terminates or continues
when the message data set is required but is not
available.

ODMAXBF Specifies an upper limit to the amount of buffer
space to be used for each OUTFIL data set.

OUTREL Specifies whether unused temporary output data
set space is released.

OUTSEC Specifies whether DFSORT uses automatic
secondary allocation for output data sets that are
temporary or new.

OVERRGN Specifies the amount of main storage above the
REGION value available to Blockset.

Installation Defaults

Chapter 1. Introducing DFSORT 19

OVFLO Specifies the action to be taken by DFSORT when
BI, FI, PD or ZD summary fields overflow.

PAD Specifies the action to be taken by DFSORT for
LRECL padding.

PARMDDN Specifies an alternate ddname for the DFSORT
DFSPARM data set.

RESALL Reserves storage for system and application use
when SIZE/MAINSIZE=MAX is in effect.

RESET Specifies whether DFSORT processes a VSAM
output data set defined with REUSE as a NEW or
MOD data set.

RESINV Reserves storage for programs invoking DFSORT
when SIZE/MAINSIZE=MAX is in effect.

SDB Specifies whether DFSORT should use the
system-determined optimum block size for output
data sets when the block size is zero.

SDBMSG Specifies whether DFSORT and ICETOOL should
use the system-determined optimum block size for
message and list data sets when the block size is
zero.

SIZE Specifies the maximum amount of main storage
available to DFSORT.

SMF Specifies whether DFSORT produces SMF type-16
records.

SOLRF Specifies whether DFSORT uses the reformatted
record length for the SORTOUT LRECL.

SORTLIB Specifies whether DFSORT searches a system or
private library for the modules used with a tape
work data set sort or Conventional merge.

SPANINC Specifies the action to be taken by DFSORT when
incomplete spanned records are detected.

STIMER Specifies whether DFSORT uses the STIMER
macro. If DFSORT does not use the STIMER
macro, processor timing data does not appear in
SMF records or in the ICETEXIT statistics.

SVC Specifies a user SVC number for DFSORT and
allows an installation to use two different releases
of DFSORT at the same time.

SZERO Specifies whether DFSORT treats numeric −0 and
+0 values as signed (that is, different) or unsigned
(that is, the same).

TEXIT Specifies whether DFSORT passes control to your
site’s ICETEXIT routine.

TMAXLIM Specifies an upper limit to the total amount of main
storage above and below 16MB virtual available to
DFSORT when SIZE/MAINSIZE=MAX is in effect.

Installation Defaults

20 DFSORT R14 Application Programming Guide

TRUNC Specifies the action to be taken by DFSORT for
LRECL truncation.

VERIFY Specifies whether the sequence of output records is
verified.

VIO Specifies whether virtual allocation of work data
sets is accepted.

VLLONG Specifies whether DFSORT truncates long
variable-length output records.

VLSCMP Specifies whether DFSORT pads short
variable-length compare fields.

VLSHRT Specifies whether DFSORT continues processing if
a short variable-length control field, compare field or
summary field is found.

VSAMBSP Specifies the number of VSAM buffers DFSORT
can use.

VSAMEMT Specifies whether DFSORT accepts an empty
VSAM input data set.

VSAMIO Specifies whether DFSORT allows a VSAM data
set defined with REUSE to be sorted in-place.

WRKREL Specifies whether unused temporary work data set
space is released.

WRKSEC Specifies whether DFSORT uses automatic
secondary allocation for temporary work data sets.

Y2PAST Specifies the sliding or fixed century window.

ZDPRINT Specifies whether DFSORT produces printable
numbers from positive ZD fields that result from
summarization.

Tables showing all the possible sources of specification and order of override for
each option are shown in Appendix B, “Specification/Override of DFSORT Options”
on page 603.

Migrating to DFSORT from Other Sort Products
If you are migrating to DFSORT, you should review the IBM-supplied ICEMAC
defaults and change them as appropriate to correspond to equivalent settings for
your previous sort product. In particular, the options shown in the table that follows
can make DFSORT operate more like other sort products, thus making migration
easier. The ICEMAC options, described in DFSORT Installation and Customization
R14, can be used to change the way DFSORT works globally by default. The
run-time options, described in Chapter 2, “Invoking DFSORT with Job Control
Language” on page 25 and Chapter 3, “Using DFSORT Program Control
Statements” on page 95, can be used to override the ICEMAC options for specific
jobs.

Table 2. Options That Can Ease Migration

ICEMAC Run-Time

ABCODE=MSG/n

DYNALOC=(d,n) DYNALLOC=(d,n)

Installation Defaults

Chapter 1. Introducing DFSORT 21

||
|

||
|
|

Table 2. Options That Can Ease Migration (continued)

ICEMAC Run-Time

DYNAUTO=YES/IGNWKDD/NO DYNALLOC=(d,n)

DYNSPC=n DYNSPC=n

EQUALS=YES/NO/VBLKSET EQUALS/NOEQUALS

EXITCK=STRONG/WEAK EXITCK=STRONG/WEAK

FSZEST=YES/NO FILSZ=n/En/Un

NOMSGDD=QUIT/ALL/CRITICAL/NONE

PARMDDN=ddname

RESET=YES/NO RESET/NORESET

SORTLIB=SYSTEM/PRIVATE

SZERO=YES/NO SZERO/NOSZERO

VLLONG=YES/NO VLLONG/NOVLLONG

VLSCMP=YES/NO VLSCMP/NOVLSCMP

VSAMEMT=YES/NO VSAMEMT/NVSAMEMT

VSAMIO=YES/NO VSAMIO/NOVSAMIO

ZDPRINT=YES/NO ZDPRINT/NZDPRINT

DFSORT Messages and Return Codes
You can determine, during installation or run-time, whether DFSORT writes
messages to the message data set, to the master console, or to both. You can also
direct an Extended Function Support program to write messages to the message
data set.

Messages written to the message data set can be either critical error messages,
informational error messages, or diagnostic messages, as determined during
installation or run-time.

Messages written to the master console can be either critical error messages or
informational error messages, as determined during installation.

See DFSORT Messages, Codes and Diagnosis Guide R14 for complete information
about DFSORT messages.

For successful completion, DFSORT passes back a return code of 0 or 4 to the
operating system or the invoking program.

For unsuccessful completion due to an unsupported operating system, DFSORT
passes back a return code of 24 to the operating system or the invoking program.

For unsuccessful completion with NOABEND in effect, DFSORT passes back a
return code of 16 or 20 to the operating system or the invoking program.

For unsuccessful completion with ABEND in effect, DFSORT issues a user abend
with the appropriate code as specified by ICEMAC option ABCODE (either the error
message number or a number between 1 and 99).

The meanings of the return codes that DFSORT passes back (in register 15) are:

Installation Defaults

22 DFSORT R14 Application Programming Guide

||

0 Successful completion. DFSORT completed successfully.

4 Successful completion. DFSORT completed successfully, and:

v OVFLO=RC4 was in effect and summary fields overflowed, or

v PAD=RC4 was in effect and the SORTOUT LRECL was larger than the
SORTIN/SORTINnn LRECL (LRECL padding), or

v TRUNC=RC4 was in effect and the SORTOUT LRECL was smaller than
the SORTIN/SORTINnn LRECL (LRECL truncation), or

v SPANINC=RC4 was in effect and one or more incomplete spanned
records was detected.

16 Unsuccessful completion. DFSORT detected an error that prevented it
from completing successfully.

20 Message data set missing. ICEMAC option NOMSGDD=QUIT was in
effect and neither a message data set DD statement nor a SYSOUT DD
statement was provided.

24 Unsupported operating system. This release of DFSORT does not
support this operating system.

Use Blockset Whenever Possible
Blockset is DFSORT’s most efficient technique. It supports many features not
supported by DFSORT’s less efficient Peerage/Vale and Conventional techniques
(see ICE189A in DFSORT Messages, Codes and Diagnosis Guide R14 for a list of
these features). DFSORT always selects Blockset for a copy application. DFSORT
selects Blockset for a sort or merge application unless something prevents it from
doing so (see ICE800I in DFSORT Messages, Codes and Diagnosis Guide R14 for
a list of reasons Blockset cannot be used).

Note: Blockset cannot be used to process BDAM data sets.

Message ICE143I indicates whether Blockset or a less efficient technique was
selected for a particular run. If Blockset was not selected for a sort or merge
application, check the reason code in message ICE800I, which indicates the reason
Blockset could not be used. If you did not get message ICE800I, add the following
DD statements to your application and rerun it:
//SORTDIAG DD DUMMY
//SYSOUT DD SYSOUT=*

If possible and appropriate, remove the obstacle that is causing Blockset not to be
selected.

DFSORT Messages and Return Codes

Chapter 1. Introducing DFSORT 23

||
|

24 DFSORT R14 Application Programming Guide

Chapter 2. Invoking DFSORT with Job Control Language

Using the JCL . 25
Using the JOB Statement . 27
Using the EXEC Statement . 27

Specifying EXEC Statement Cataloged Procedures 28
SORT Cataloged Procedure 28
SORTD Cataloged Procedure 29

Specifying EXEC/DFSPARM PARM Options 29
Aliases for PARM Options . 58

Using DD Statements . 59
Duplicate Ddnames . 61
Shared Tape Units . 61
System DD Statements . 62
Program DD Statements . 64

SORTLIB DD Statement 65
SYMNAMES DD and SYMNOUT DD Statements 66
SORTIN DD Statement . 66
SORTINnn DD Statement 68
SORTWKdd DD Statement 69
SORTOUT and OUTFIL DD Statements. 71
SORTCKPT DD Statement 73
SORTCNTL DD Statement 73
DFSPARM DD Statement 74
SORTDKdd DD Statement 76
SORTDIAG DD Statement 76
SORTSNAP DD Statement 76
Using DD Statements . 76

Using the JCL
Your operating system uses the job control language (JCL) you supply with your
DFSORT program control statements to:
v Identify you as an authorized user
v Allocate the necessary resources to run your job
v Run your job
v Return information to you about the results
v Terminate your job.

Unless you create your jobs with the interactive DFSORT Panels facility (see
DFSORT Panels Guide), you must supply JCL statements with every DFSORT job
you submit.

Required JCL includes a JOB statement, an EXEC statement, and several DD
statements. The statements you need and their exact form depend upon whether
you:

v Use an EXEC statement in the input job stream or a system macro instruction
within another program to invoke DFSORT

v Use EXEC statement cataloged procedures to invoke DFSORT

v Specify various DFSORT control statements or PARM options

v Want to use program exits to activate routines of your own

v Use dynamic link-editing

v Want to see diagnostic messages.

© Copyright IBM Corp. 1973, 2002 25

DFSORT Panels offers an alternative to coding JCL directly. When you use panels
to prepare a job to be run or saved in a data set, much of the required JCL can be
supplied automatically from the contents of the DFSORT User Profile. DFSORT
jobs you prepare for submission in foreground under TSO use CLIST processing
rather than JCL. See DFSORT Panels Guide for details on using DFSORT Panels.

The JCL statements and their functions are listed below. Details on coding the
individual statements are presented in subsequent sections.

JCL Statement Description

//JOBLIB DD Defines your program link library if it is not already
known to the system

//STEPLIB DD Same as //JOBLIB DD

//SORTLIB DD Defines the data set that contains special load
modules if it is not already known to the system

//SYSOUT DD1 Defines the message data set

//SYMNAMES DD Defines the SYMNAMES data set containing
statements to be used for symbol processing

//SYMNOUT DD Defines the data set in which SYMNAMES
statements and the symbol table are to be listed

//SORTIN DD1 Defines the input data set for a sort or copy

//SORTINnn DD1 Defines the input data sets for a merge

//SORTOUT DD1 Defines the SORTOUT output data set for a sort,
merge, or copy

//outfil DD Defines an OUTFIL output data set for a sort,
merge, or copy

//SORTWKdd DD1 Defines intermediate storage data sets for a sort

//DFSPARM DD1 Contains DFSORT PARM options and program
control statements

//SYSIN DD Contains DFSORT program control statements

//SORTCNTL DD1 Same as //SYSIN DD

//SORTDIAG DD Specifies that all messages and program control
statements be printed

//SORTCKPT DD Defines the data set for checkpoint records

//SYSUDUMP DD Defines the data set for output from a system
ABEND dump routine

//SYSMDUMP DD Same as //SYSUDUMP DD

//SYSABEND DD Same as //SYSUDUMP DD

//SORTSNAP DD Defines the snap dump data set dynamically
allocated by DFSORT

//ddname Defines the data set containing exit routines (as
specified in the MODS program control statement).

The following DD statements are only necessary for dynamic link-editing of exit
routines

Using the JCL

26 DFSORT R14 Application Programming Guide

//SYSPRINT DD
Defines the message data set for the linkage editor

//SYSUT1 DD
Defines the intermediate storage data set for the linkage editor

//SYSLIN DD
Defines the data set for control information for the linkage editor

//SYSLMOD DD
Defines the data set for output from the linkage editor

//SORTMODS DD
Defines the temporary partitioned data set for user exit routines from
SYSIN.

1 These are the default ddnames with which DFSORT was delivered.
SYSOUT and DFSPARM may have been changed during DFSORT
installation. You can change all of the indicated ddnames at run time. For
override information, see Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Using the JOB Statement
The JOB statement is the first JCL statement of your job. It must contain a valid job
name in the name field and the word JOB in the operation field. All parameters in
the operand field are optional, although your site may have made information such
as account number and the name of the programmer mandatory:
//jobname JOB accounting information, programmer’s name, etc.

Using the EXEC Statement
The EXEC statement is the first JCL statement of each job step or of each
procedure step in a cataloged procedure. It identifies DFSORT to the operating
system. You can also specify DFSORT options on the EXEC statement.

The format of the EXEC statement is:

If you use a cataloged procedure (discussed in detail below), specify PROC=SORT
or PROC=SORTD. You can omit PROC= and simply specify SORT or SORTD.
However, PROC= can remind you that a cataloged procedure is being used.

If you do not use a cataloged procedure, use PGM= either with the actual name of
the sort module (ICEMAN) or with one of its aliases: SORT, IERRCO00, or
IGHRCO00. Be sure that the alias has not been changed at your site.

//stepname EXEC PGM= SORT
ICEMAN

PROC= SORT
SORTD

SORT
SORTD

, PARM = OPTIONS '

, other parameters

,

Using the JCL

Chapter 2. Invoking DFSORT with Job Control Language 27

Specifying EXEC Statement Cataloged Procedures
A cataloged procedure is a set of JCL statements, including DD statements, that
has been assigned a name and placed in a partitioned data set called the
procedure library. Two cataloged procedures are supplied with the program: SORT
and SORTD. Specify them in the first parameter of the EXEC statement by
PROC=SORT, PROC=SORTD, or simply SORT or SORTD.

SORT Cataloged Procedure
You can use the supplied SORT cataloged procedure when you include user
routines that require link-editing. Using this procedure without using link-edited user
routines is inefficient because the SORT cataloged procedure allocates linkage
editor data sets whether or not you include user routines.

When you specify EXEC PROC=SORT or EXEC SORT, the following JCL
statements are generated:

Line Explanation

00 The stepname of the procedure is SORT. This EXEC statement initiates the
program, which is named ICEMAN.

10 The STEPLIB DD statement defines the data set containing the DFSORT
program modules. If DFSORT was installed as part of the normal system
link libraries, the STEPLIB DD statement is unnecessary. It is needed only if
DFSORT resides in a separate link library which is not part of the “link list.”
(Your installation’s system programmers can give you this information.) The
STEPLIB DD statement shown assumes that the data set name
represented by yyy is cataloged.

20 The SORTLIB DD statement defines a private data set containing the
modules needed for a sort using tape work files or a merge using the
Conventional technique. The data set is cataloged, and the data set name
represented by xxx was specified at installation time; it can be
SYS1.SORTLIB.

If the modules were installed in a system library and ICEMAC
SORTLIB=SYSTEM is used, the SORTLIB DD statement is unnecessary
and is ignored unless dynamic link of user exits is used.

30 Defines an output data set for system use (messages). It is directed to
system output class A.

40 Defines SYSPRINT as a dummy data set because linkage editor diagnostic
output is not required.

50 Defines a data set for linkage editor output. Any system direct access
device is acceptable for the output. Space for 20 records with an average
length of 3600 bytes is requested; this is the primary allocation. Space for
20 more records is requested if the primary space allocation is not
sufficient; this is the secondary allocation, which is requested each time

//SORT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//SORTLIB DD DSNAME=xxx,DISP=SHR 20
//SYSOUT DD SYSOUT=A 30
//SYSPRINT DD DUMMY 40
//SYSLMOD DD DSNAME=&GOSET,UNIT=SYSDA,SPACE=(3600,(20,20,1)) 50
//SYSLIN DD DSNAME=&LOADSET,UNIT=SYSDA,SPACE=(80,(10,10)) 60
//SYSUT1 DD DSNAME=&SYSUT1,SPACE=(1024,(60,20)), 70
// UNIT=(SYSDA,SEP=(SORTLIB,SYSLMOD,SYSLIN)) 80

Using The EXEC Statement

28 DFSORT R14 Application Programming Guide

primary space is exhausted. The last value is space for a directory, which is
required because SYSLMOD is a new partitioned data set.

60 The SYSLIN data set is used by the program for linkage editor control
statements. It is created on any system direct access device, and it has
space for 10 records with an average length of 80 bytes. If the primary
space allocation is exhausted, additional space is requested in blocks large
enough to contain 10 records. No directory space is necessary.

70/80 The SYSUT1 DD statement defines a work data set for the linkage editor.

SORTD Cataloged Procedure
You can use the supplied SORTD cataloged procedure when you do not include
user routines or when you include user routines that do not require link-editing.

When you specify EXEC PROC=SORTD or EXEC SORTD, the following JCL
statements are generated:

Line Explanation

00 The stepname of the SORTD procedure is SORT

10 The STEPLIB DD statement defines the data set containing the DFSORT
program modules. If DFSORT was installed as part of the normal system
link libraries, the STEPLIB DD statement is unnecessary. It is needed only if
DFSORT resides in a separate link library which is not part of the “link list.”
(Your installation’s system programmers can give you this information.) The
STEPLIB DD statement shown assumes that the data set name
represented by yyy is cataloged.

20 The SORTLIB DD statement defines a private data set that contains the
modules needed for a sort using tape work files or a merge that uses the
Conventional technique. The data set name of the program subroutine
library, represented by xxx, is specified at installation time; it can be
SYS1.SORTLIB.

If the modules were installed in a system library and ICEMAC
SORTLIB=SYSTEM is used, then the SORTLIB DD statement is
unnecessary and is ignored unless dynamic link edit of user exits is used.

30 Directs messages to system output class A

Specifying EXEC/DFSPARM PARM Options
When you invoke DFSORT with JCL, you can specify some DFSORT options on
the PARM parameter of the EXEC statement as illustrated on the following page.
These options include EFS, LIST, NOLIST, LISTX, NOLISTX, MSGPRT, and
MSGDDN, which are ignored if specified in an OPTION statement in SYSIN. Full
override and applicability details are listed in Appendix B, “Specification/Override of
DFSORT Options” on page 603.

If you use the DFSPARM DD statement instead, you can specify both EXEC PARM
options and DFSORT control statements in a single source data set that overrides
all other sources. See “DFSPARM DD Statement” on page 74.

//SORT EXEC PGM=ICEMAN 00
//STEPLIB DD DSNAME=yyy,DISP=SHR 10
//SORTLIB DD DSNAME=xxx,DISP=SHR 20
//SYSOUT DD SYSOUT=A 30

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 29

Details of aliases for PARM options are given under the description of individual
options. “Aliases for PARM Options” on page 58 summarizes the available aliases.

DFSORT accepts but does not process the following EXEC/DFSPARM PARM
options: BALANCE, BALN, BIAS=value, BMSG, CASCADE, CMP=value, CPU,
CRCX, DEBUG, DIAG, ELAP, EXCPVR=value, IO, INCOR=value, INCORE=value,
LRGSORT, L6=value, L7=value, NOCOMMAREA, NOINC, NOIOERR, OPT=value,
OSCL, PEER, POLY, and PRINT121.

Note: If DEBUG is specified as the first value in a DFSPARM statement, it will be
interpreted as a DEBUG control statement rather than as a DFSPARM
PARM option.

Using The EXEC Statement

30 DFSORT R14 Application Programming Guide

|
|
|

�� ,PARM=’ E

,

ABEND
NOABEND

ARESALL= n
nK
nM

AVGRLEN=n
BSAM

CINV
NOCINV

COBEXIT= COB1
COB2

DSPSIZE= MAX
n

DYNALLOC
= d

(d)
(,n)
(d,n)
OFF
(OFF)

DYNSPC=n
EFS= name

NONE
EQUALS
NOEQUALS

E15=COB
E35=COB
FILSZ= x

Ex
Ux

HIPRMAX= OPTIMAL
n
p%

LIST
NOLIST
LISTX
NOLISTX

LOCALE= name
CURRENT
NONE

MSGDDN=ddname
MSGPRT= ALL

CRITICAL
NONE

ODMAXBF= n
nK
nM

OUTREL
NOOUTREL

OVFLO= RC0
RC4
RC16

��

Figure 3. Syntax Diagram for EXEC PARM (Part 1 of 3)

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 31

PAD= RC0
RC4
RC16

RESALL= n
nK
nM

RESET
NORESET

SDB= LARGE
YES
INPUT
NO

SIZE= n
nK
nM
MAX
MAX-m
MAX-mK
MAX-mM

SKIPREC=z
SOLRF
NOSOLRF

SPANINC= RC0
RC4
RC16

STIMER
NOSTIMER

STOPAFT=n
SZERO
NOSZERO

TRUNC= RC0
RC4
RC16

VERIFY
NOVERIFY
VLLONG
NOVLLONG
VLSCMP
NOVLSCMP
VLSHRT
NOVLSHRT
VSAMEMT
NOVSAMENT
VSAMIO
NOVSAMIO

Figure 3. Syntax Diagram for EXEC PARM (Part 2 of 3)

Using The EXEC Statement

32 DFSORT R14 Application Programming Guide

ABEND or NOABEND

Temporarily overrides the ERET installation option, which specifies whether
DFSORT abends or terminates with a return code of 16 if your sort, copy, or
merge is unsuccessful.

ABEND
specifies that if your sort, copy, or merge is unsuccessful, DFSORT abends
with a user completion code equal to the appropriate message number or
with a user-defined number between 1 and 99, as set during installation
with the ICEMAC option ABCODE=n.

When DEBUG ABEND is in effect, a user abend code of zero may be
issued when a tape work data set sort or Conventional merge is
unsuccessful.

NOABEND
specifies that an unsuccessful sort, copy, or merge terminates with a return
code of 16.

Notes:

1. RC16=ABE and NORC16 can be used instead of ABEND and NOABEND,
respectively.

2. If DFSORT determines that a SmartBatch pipe data set is being used, it
automatically forces the ABEND option on, to ensure that an abend will be
generated if an error is detected. This allows for appropriate error
propagation by the system to other applications that may be accessing the
same SmartBatch pipe data set.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options”

ARESALL

WRKREL
NOWRKREL
WRKSEC
NOWRKSEC

Y2PAST= s
f

ZDPRINT
NZDPRINT

Figure 3. Syntax Diagram for EXEC PARM (Part 3 of 3)

�� ABEND
NOABEND

��

�� ARESALL= n
nK
nM

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 33

Temporarily overrides the ARESALL installation option, which specifies the
number of bytes to be reserved above 16MB virtual for system use. For more
information, see the discussion of the ARESALL option in “OPTION Control
Statement” on page 155.

n specifies that n bytes of storage are to be reserved.

Limit: 8 digits.

nK
specifies that n times 1024 bytes of storage are to be reserved.

Limit: 5 digits.

nM
specifies that n times 1048576 bytes of storage are to be reserved.

Limit: 2 digits.

Note: RESERVEX=value can be used instead of ARESALL=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

AVGRLEN

Specifies the average input record length in bytes for variable-length record sort
applications. For more information, see the discussion of the AVGRLEN option
in “OPTION Control Statement” on page 155.

n specifies the average input record length. The value for n must be between
4 and 32767 and must include the 4 byte record descriptor word (RDW).

Note: L5=n can be used instead of AVGRLEN=n.

Default: If AVGRLEN=n is not specified, DFSORT will use one-half of the
maximum record length as the average record length. See Appendix B,
“Specification/Override of DFSORT Options” on page 603 for full override
details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

BSAM

Temporarily bypasses the EXCP access method normally used for input and
output data sets. BSAM is ignored for VSAM input and output data sets. Note
that if Blockset is not selected and BSAM processing is used with concatenated
SORTIN input and both null and non-null data sets are specified, all null data
sets must precede all non-null data sets; otherwise, the results are
unpredictable.

�� AVGRLEN=n ��

�� BSAM ��

Using The EXEC Statement

34 DFSORT R14 Application Programming Guide

Note: This option can degrade performance.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

CINV or NOCINV

Temporarily overrides the CINV installation option, which specifies whether
DFSORT can use control interval access for VSAM data sets. For more
information, see the explanation of the CINV option in “OPTION Control
Statement” on page 155.

CINV
directs DFSORT to use control interval access when possible for VSAM
data sets.

NOCINV
directs DFSORT not to use control interval access.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

COBEXIT

Temporarily overrides the COBEXIT installation option, which specifies the
library for COBOL E15 and E35 routines.

COB1
specifies that COBOL E15 and E35 routines are run with the OS/VS
COBOL run-time library or, in some cases, with no COBOL run-time library.

COB2
specifies that COBOL E15 and E35 routines are run with either the VS
COBOL II run-time library or the Language Environment run-time library.

Note: See “COBOL User Exit Requirements” on page 345 for additional
information on the use of COBEXIT=COB2.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DSPSIZE

�� CINV
NOCINV

��

�� COBEXIT= COB1
COB2

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 35

Temporarily overrides the DSPSIZE installation option, which specifies the
maximum amount of data space to be used for dataspace sorting. For more
information, see the discussion of the DSPSIZE option in “OPTION Control
Statement” on page 155.

MAX
specifies that DFSORT dynamically determines the maximum amount of
data space that will be used for dataspace sorting. In this case, DFSORT
bases its data space usage on the size of the file being sorted and the
paging activity of the system.

n specifies the maximum amount, in megabytes, of data space to be used for
dataspace sorting. n must be a value between 0 and 9999. The actual
amount of data space used does not exceed n, but may be less depending
on the size of the file being sorted and the paging activity of the system.

If n is zero, dataspace sorting is not used.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DYNALLOC

Specifies that DFSORT dynamically allocates needed work space. You do not
need to calculate and use JCL to specify the amount of work space needed by
the program.

For more information, see the discussion of the DYNALLOC option in “OPTION
Control Statement” on page 155 and Appendix A, “Using Work Space” on
page 593

d specifies the device name. You can specify any IBM direct access storage
device or tape device supported by your operating system in the same way
you would specify it in the JCL UNIT parameter. You can also specify a
group name, such as DISK or SYSDA.

For best performance, specify an emulated 3390-9 device (such as a
RAMAC) or another high-speed IBM DASD device, and avoid specifying a
tape, virtual (VIO) or real 3390-9 device.

n specifies the maximum number of requested work data sets. If you specify
more than 255, a maximum of 255 data sets is used. If you specify 1 and
the Blockset technique is selected, a maximum of 2 data sets is used. If
you specify more than 32 and the Blockset technique is not selected, a
maximum of 32 data sets is used.

�� DSPSIZE= MAX
n

��

�� DYNALLOC
= d

(d)
(,n)
(d,n)

��

Using The EXEC Statement

36 DFSORT R14 Application Programming Guide

Note: For optimum allocation of resources such as virtual storage, avoid
specifying a large number of work data sets unnecessarily.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DYNALLOC=OFF

Directs DFSORT not to allocate intermediate workspace dynamically. It
overrides the ICEMAC installation option DYNAUTO=YES or the DYNALLOC
parameter (without OFF) specified at run-time. For more information, see the
discussion of the DYNALLOC option in “OPTION Control Statement” on
page 155.

OFF
directs DFSORT not to allocate intermediate workspace dynamically.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DYNSPC

Temporarily overrides the DYNSPC installation option, which specifies the total
default primary space allocation for all of the dynamically allocated work data
sets when the input file size is unknown. That is, when DFSORT cannot
determine the input file size for a sort application and the number of records is
not supplied by a FILSZ or SIZE value. For more information, see the
discussion of the DYNSPC option in “OPTION Control Statement” on page 155.

n specifies the total default primary space, in megabytes, to be allocated for
all dynamically allocated work data sets (n is not the primary space for each
data set). n must be a value between 1 and 65535.

Do not specify a value which exceeds the available DASD space, because
this causes dynamic allocation to fail for sort applications that use this
value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EFS

�� DYNALLOC
= (OFF)

OFF

��

�� DYNSPC=n ��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 37

|
|

|
|
|
|
|
|

||
|
|

|
|
|

|
|

|
|

Temporarily overrides the EFS installation option, which specifies whether
DFSORT passes control to an EFS program. See Chapter 8, “Using Extended
Function Support” on page 509 for more information on EFS.

name
specifies the name of the EFS program that will be called to interface with
DFSORT.

NONE
means no call will be made to the EFS program.

Note: If you use locale processing for SORT, MERGE, INCLUDE, or
OMITfields, you must not use an EFS program. DFSORT’s locale
processing may eliminate the need for an EFS program. See “OPTION
Control Statement” on page 155 for information related to locale
processing.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EQUALS or NOEQUALS

Temporarily overrides the EQUALS installation option, which specifies whether
the original sequence of records that collate identically for a sort or a merge
should be preserved from input to output. For more information, see the
discussion of the EQUALS and NOEQUALS options in “OPTION Control
Statement” on page 155.

EQUALS
specifies that the original sequence must be preserved.

NOEQUALS
specifies that the original sequence need not be preserved.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

E15=COB

Specifies that your E15 routine is written in COBOL and temporarily overrides
the MODS statement for E15. If you specify E15=COB but do not identify an
E15 module with a MODS statement, the E15=COB is ignored.

�� EFS= name
NONE

��

�� EQUALS
NOEQUALS

��

�� E15=COB ��

Using The EXEC Statement

38 DFSORT R14 Application Programming Guide

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

E35=COB

Specifies that your E35 routine is written in COBOL and temporarily overrides
the MODS statement for E35. If you specify E35=COB but do not identify an
E35 module with a MODS statement, the E35=COB is ignored.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

FILSZ

Specifies either the exact number of records to be sorted or merged, or an
estimate of the number of records to be sorted. This record count is used by
DFSORT for two purposes:

1. To check that the actual number of records sorted or merged is equal to the
exact number of records expected. FILSZ=x causes this check to be
performed and results in termination with message ICE047A if the check
fails.

2. To determine the input file size for a sort application. DFSORT performs
calculations based on the user supplied record count and other parameters
(such as AVGRLEN) to estimate the total number of bytes to be sorted. This
value is important for sort applications, since it is used for several internal
optimizations as well as for dynamic work data set allocation (see OPTION
DYNALLOC). If no input record count (or only an estimate) is supplied for
the sort application, DFSORT attempts to automatically compute the file size
to be used for the optimizations and allocations.

The type of FILSZ value specified (x, Ex, Ux, or none) controls the way
DFSORT performs the above two functions, and can have a significant effect on
performance and work data set allocation. See “Specify Input/Output Data Set
Characteristics Accurately” on page 544 and “Allocation of Work Data Sets” on
page 595 for more information on file size considerations.

x specifies the exact number of records to be sorted or merged. This value is
always used for both the record check and file size calculations. FILSZ=x
can be used to force DFSORT to perform file size calculations based on x,
and to cause DFSORT to terminate the sort or merge application if x is not
exact.

If the FSZEST=NO installation option is in effect and FILSZ=x is specified,
DFSORT terminates if the actual number of records is different from the

�� E35=COB ��

�� FILSZ= x
Ex
Ux

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 39

specified value (x), the actual number of records placed in the IN field of
message ICE047A (or message ICE054I) before termination. However, if
the FSZEST=YES installation option is in effect, DFSORT treats FILSZ=x
like FILSZ=Ex; it does not terminate when the actual number of records
does not equal x.

The specified value (x) must take into account the number of records in the
input data sets, records to be inserted or deleted by exit E15 or E32, and
records to be deleted by the INCLUDE/OMIT statement, SKIPREC, and
STOPAFT. x must be changed whenever the number of records to be
sorted or merged changes in any way.

FILSZ=0 causes Hipersorting, dataspace sorting, and dynamic allocation of
work space not to be used, and results in termination with the message
ICE047A unless the number of records sorted or merged is 0.

Limit: 28 digits (15 significant digits)

Ex
specifies an estimated number of records to be sorted. This value is not
used for the record check. It is used for file size calculations, but only if
DFSORT could not automatically compute the file size. In all other cases,
this value is ignored by DFSORT. See “Dynamic Allocation of Work Data
Sets” on page 596 for details on exactly when FILSZ=Ex is used or ignored
by DFSORT.

The specified value (x) should take into account the number of records in
the input data sets, records to be inserted or deleted by exit E15, and
records to be deleted by the INCLUDE/OMIT statement, SKIPREC, and
STOPAFT. x should be changed whenever the number of records to be
sorted changes significantly.

FILSZ=E0 will always be ignored.

Limit: 28 digits (15 significant digits)

Ux
specifies the number of records to be sorted. This value is not used for the
record check, but is always used for file size calculations. FILSZ=Ux can be
used to force DFSORT to perform file size calculations based on x, while
avoiding termination if x is not exact.

The FSZEST installation option has no effect on FILSZ=Ux processing.

The specified value (x) should take into account the number of records in
the input data sets, records to be inserted or deleted by exit E15, and
records to be deleted by the INCLUDE/OMIT statement, SKIPREC, and
STOPAFT. x should be changed whenever the number of records to be
sorted changes significantly.

FILSZ=U0 causes Hipersorting, dataspace sorting, and dynamic allocation
of work space not to be used, and can cause degraded performance or
termination with the message ICE046A, if the actual number of records to
be sorted is significantly larger than 0.

Limit: 28 digits (15 significant digits)

Using The EXEC Statement

40 DFSORT R14 Application Programming Guide

Table 3 summarizes the differences for the three FILSZ variations:

Table 3. FILSZ Variations Summary.

FILSZ=n is equivalent to FILSZ=En if installation option FSZEST=YES is specified.

FILSZ=n FILSZ=Un FILSZ=En

Number of records Exact Estimate Estimate

Applications Sort, merge Sort Sort

Terminate if wrong? Yes No No

Use for file size calculation? Yes Yes When DFSORT
cannot compute
file size

n includes records:

In input data set(s) Yes Yes Yes

Inserted/deleted by E15 Yes Yes Yes

Inserted by E32 Yes No No

Deleted by INCLUDE/OMIT
statement

Yes Yes Yes

Deleted by SKIPREC Yes Yes Yes

Deleted by STOPAFT Yes Yes Yes

Update n when number of records
changes:

In any way Significantly Significantly

Effects of n=0 Hipersorting and
DYNALLOC not
used

Hipersorting and
DYNALLOC not
used

None

Note: Using the FILSZ parameter to supply inaccurate information to DFSORT
can negatively affect DFSORT’s performance, and when work space is
dynamically allocated, can result in wasted DASD space or termination
with message ICE083A or ICE046A. Therefore, it is important to update
the record count value whenever the number of records to be sorted
changes significantly.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

HIPRMAX

Temporarily overrides the HIPRMAX installation option, which specifies the
maximum amount of Hiperspace to be committed for Hipersorting. For more
information, see the discussion of the HIPRMAX option in “OPTION Control
Statement” on page 155.

�� HIPRMAX= OPTIMAL
n
p%

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 41

OPTIMAL
specifies that DFSORT determines dynamically the maximum amount of
Hiperspace to be used for Hipersorting.

n specifies that DFSORT determines dynamically the maximum amount of
Hiperspace to be used for Hipersorting, subject to a limit of nMB. n must be
a value between 0 and 32767. If n is 0, Hipersorting is not used.

p%
specifies that DFSORT determines dynamically the maximum amount of
hiperspace to be used for Hipersorting, subject to a limit of p percent of the
configured expanded storage. In 64-bit real mode, HIPRMAX=p% specifies
a percentage of an appropriate portion of central storage. p must be a value
between 0 and 100. If p is 0, Hipersorting is not used. The value calculated
for p% is limited to 32767MB, and is rounded down to the nearest MB.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LIST or NOLIST

Temporarily overrides the LIST installation option, which specifies whether
DFSORT program control statements should be written to the message data
set. See DFSORT Messages, Codes and Diagnosis Guide R14 for full details
on use of the message data set.

LIST
specifies that all DFSORT control statements are printed on the message
data set.

NOLIST
specifies that DFSORT control statements are not printed.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LISTX or NOLISTX

Temporarily overrides the LISTX installation option, which specifies whether
DFSORT writes to the message data set the program control statements
returned by an EFS program. See DFSORT Messages, Codes and Diagnosis
Guide R14 for full details on use of the message data set.

LISTX
specifies that control statements returned by an EFS program are printed to
the message data set.

�� LIST
NOLIST

��

�� LISTX
NOLISTX

��

Using The EXEC Statement

42 DFSORT R14 Application Programming Guide

||
|
|

|
|
|
|
|
|
|

NOLISTX
specifies that control statements returned by an EFS program are not
printed to the message data set.

Notes:

1. If EFS=NONE is in effect after final override rules have been applied,
NOLISTX will be set in effect.

2. LISTX and NOLISTX can be used independently of LIST and NOLIST.

3. For more information on printing EFS control statements, see DFSORT
Messages, Codes and Diagnosis Guide R14.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LOCALE

Temporarily overrides the LOCALE installation option, which specifies whether
locale processing is to be used and, if so, designates the active locale. For
more information, see the discussion of the LOCALE option in “OPTION Control
Statement” on page 155.

name specifies that locale processing is to be used and designates the name
of the locale to be made active during DFSORT processing.

The locales are designated using a descriptive name. For example, to
set the active locale to represent the French language and the cultural
conventions of Canada, specify LOCALE=FR_CA. You can specify up
to 32 characters for the descriptive locale name. The locale names
themselves are not case-sensitive. See Using Locales for complete
locale naming conventions.

You can use IBM-supplied and user-defined locales.

The state of the active locale prior to DFSORT being entered will be
restored on DFSORT’s completion.

CURRENT
specifies that locale processing is to be used, and the current locale
active when DFSORT is entered will remain the active locale during
DFSORT processing.

NONE specifies that locale processing is not to be used. DFSORT will use the
binary encoding of the code page defined for your data for collating and
comparing.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� LOCALE= name
CURRENT
NONE

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 43

MSGDDN

Temporarily overrides the MSGDDN installation option, which specifies an
alternate ddname for the message data set. For more information, see the
discussion of the MSGDDN option in “OPTION Control Statement” on page 155.

The ddname can be any 1- through 8-character name, but must be unique
within the job step; do not use a name that is used by DFSORT (for example,
SORTIN). If the ddname specified is not available at run-time, SYSOUT is used
instead. For details on using the message data set, see DFSORT Messages,
Codes and Diagnosis Guide R14.

Note: MSGDD=ddname can be used instead of MSGDDN=ddname.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

MSGPRT

Temporarily overrides the MSGPRT installation option, which specifies the class
of messages to be written to the message data set. See DFSORT Messages,
Codes and Diagnosis Guide R14 for full details on use of the message data set.

ALL
specifies that all messages except diagnostic messages ICE800I to ICE999I
are printed on the message data set. Control statements are printed only if
LIST is in effect.

CRITICAL
specifies that only critical messages are printed on the message data set.
Control statements are printed only if LIST is in effect.

NONE
specifies that no messages or control statements are printed.

Note: The forms FLAG(I)|FLAG(U)|NOFLAG, and
MSG={NO|NOF|AB|AP|AC|CB|CC|CP|PC|SC|SP} are also accepted. The
following table lists the equivalent MSGPRT/MSGCON specifications for
these alternate forms:

�� MSGDDN=ddname ��

�� MSGPRT= ALL
CRITICAL
NONE

��

Using The EXEC Statement

44 DFSORT R14 Application Programming Guide

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

ODMAXBF

Temporarily overrides the ODMAXBF installation option, which specifies the
maximum buffer space DFSORT can use for each OUTFIL data set. For more
information, see the discussion of the ODMAXBF option in “OPTION Control
Statement” on page 155.

n specifies that a maximum of n bytes of buffer space is to be used for each
OUTFIL data set. If you specify less than 262144, 262144 is used. If you
specify more than 16777216, 16777216 is used.

Limit: 8 digits

nK
specifies that a maximum of n times 1024 bytes of buffer space is to be
used for each OUTFIL data set. If you specify less than 256K, 256K is
used. If you specify more than 16384K, 16384K is used.

Limit: 5 digits

nM
specifies that a maximum of n times 1048576 bytes of buffer space is to be
used for each OUTFIL data set. If you specify 0M, 256K is used. If you
specify more than 16M, 16M is used.

Option MSGPRT MSGCON

NO NONE NONE

NOF NONE NONE

AB ALL ALL

AP ALL CRITICAL

AC NONE ALL

CB CRITICAL CRITICAL

CC NONE CRITICAL

CP CRITICAL CRITICAL

PC ALL ALL

SC ALL CRITICAL

SP CRITICAL ALL

NOFLAG NONE CRITICAL

FLAG(I) ALL CRITICAL

FLAG(U) CRITICAL CRITICAL

Figure 4. Aliases for MSGPRT/MSGCON Options

�� ODMAXBF= n
nK
nM

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 45

Limit: 2 digits

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

OUTREL or NOOUTREL

Temporarily overrides the OUTREL installation option, which specifies whether
unused temporary output data set space is to be released.

OUTREL
specifies that unused temporary output data set space is released.

NOOUTREL
specifies that unused temporary output data set space is not released.

Note: RLSOUT and NORLSOUT can be used instead of OUTREL and
NOOUTREL, respectively.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

OVFLO

�� OVFLO= RC0
RC4
RC16

��

Temporarily overrides the OVFLO installation option, which specifies the action
to be taken by DFSORT when BI, FI, PD or ZD summary fields overflow. For
more information, see the discussion of the OVFLO option in “OPTION Control
Statement” on page 155.

RC0
specifies that DFSORT should issue message ICE152I (once), set a return
code of 0 and continue processing when summary fields overflow.

RC4
specifies that DFSORT should issue message ICE152I (once), set a return
code of 4 and continue processing when summary fields overflow.

RC16
specifies that DFSORT should issue message ICE195A, terminate and give
a return code of 16 when summary fields overflow.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

�� OUTREL
NOOUTREL

��

Using The EXEC Statement

46 DFSORT R14 Application Programming Guide

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

PAD

�� PAD= RC0
RC4
RC16

��

Temporarily overrides the PAD installation option, which specifies the action to
be taken by DFSORT when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL, for the cases where DFSORT allows LRECL
padding. For more information, see the discussion of the PAD option in
“OPTION Control Statement” on page 155.

RC0
specifies that DFSORT should issue message ICE171I (once), set a return
code of 0 and continue processing when the SORTOUT LRECL is larger
than the SORTIN/SORTINnn LRECL.

RC4
specifies that DFSORT should issue message ICE171I, set a return code of
4 and continue processing when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL.

RC16
specifies that DFSORT should issue message ICE196A, terminate and give
a return code of 16 when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

RESALL

Temporarily overrides the RESALL installation option, which specifies the
number of bytes to be reserved in a REGION for system use when
SIZE/MAINSIZE=MAX is in effect. For more information, see the discussion of
the RESALL option in “OPTION Control Statement” on page 155.

n specifies that n bytes of storage are to be reserved. If you specify less than
4096, 4096 is used.

Limit: 8 digits.

nK
specifies that n times 1024 bytes of storage are to be reserved. If you
specify less than 4K, 4K is used.

Limit: 5 digits.

�� RESALL= n
nK
nM

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 47

nM
specifies that n times 1048576 bytes of storage are to be reserved. If you
specify 0M, 4K is used.

Limit: 2 digits.

Note: RESERVE=value can be used instead of RESALL=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

RESET or NORESET

�� RESET
NORESET

��

Temporarily overrides the RESET installation option, which specifies whether
DFSORT should process a VSAM output data set defined with REUSE as a
NEW or MOD data set.

RESET
specifies that DFSORT processes a VSAM output data set defined with
REUSE as a NEW data set. The high-used RBA is reset to zero and the
output data set is effectively treated as an initially empty cluster.

NORESET
specifies that DFSORT processes a VSAM output data set defined with
REUSE as a MOD data set. The high-used RBA is not reset and the output
data set is effectively treated as an initially non-empty cluster.

Note: A VSAM output data set defined without REUSE is processed as a MOD
data set.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SDB

�� SDB= LARGE
YES
INPUT
NO

��

Temporarily overrides the SDB installation option, which specifies whether
DFSORT should use the system-determined optimum block size for output data
sets when the block size is specified as zero or defaulted to zero. For more
information, see the discussion of the SDB option in “OPTION Control
Statement” on page 155.

LARGE
specifies that DFSORT is to use the system-determined optimum block size
for an output data set when its block size is zero. With OS/390 Release 10

Using The EXEC Statement

48 DFSORT R14 Application Programming Guide

and above, SDB=LARGE allows DFSORT to select a block size greater
than 32760 bytes for a tape output data set, when appropriate.

YES
specifies that DFSORT is to use the system-determined optimum block size
for an output data set when its block size is zero, but is to limit the selected
block size to a maximum of 32760 bytes.

INPUT
specifies that DFSORT is to use the system-determined optimum block size
for an output data set when its block size is zero, but is to limit the selected
block size to a maximum of 32760 bytes if the input block size is less than
or equal to 32760 bytes.

NO
specifies that DFSORT is not to use the system-determined optimum block
size.

Note: SDB, SDB=ON, and SDB=SMALL can be used instead of SDB=YES.
NOSDB and SDB=OFF can be used instead of SDB=NO.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SIZE

Temporarily overrides the SIZE installation option, which specifies the amount of
main storage available to DFSORT. For more information, see the discussion of
the MAINSIZE option in “OPTION Control Statement” on page 155.

n specifies that n bytes of storage are to be allocated. If you specify more
than 2097152000, 2097152000 is used.

Limit: 10 digits.

nK
specifies that n times 1024 bytes of storage are to be allocated. If you
specify more than 2048000K, 2048000K is used.

Limit: 7 digits.

nM
specifies that n times 1048576 bytes of storage are to be allocated. If you
specify more than 2000M, 2000M is used.

Limit: 4 digits.

MAX
instructs DFSORT to calculate the amount of main storage available and

�� SIZE= n
nK
nM
MAX
MAX-m
MAX-mK
MAX-mM

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 49

allocates this maximum amount, up to the TMAXLIM or MAXLIM installation
value, as appropriate for the application.

If you specify less than 4K, 4K is used.

MAX-m
specifies the RESALL value (m) in bytes. MAX-m instructs DFSORT to
calculate the amount of storage available and allocate this amount up to the
MAX value minus the amount of storage reserved for system and
application use (RESALL).

If you specify less than 4096 for m, 4096 is used.

Limit for m: 8 digits.

MAX-mK
specifies the RESALL value (m times 1024) in KBs. MAX-mK instructs
DFSORT to calculate the amount of storage available and allocate this
amount up to the MAX value minus the amount of storage reserved for
system and application use (RESALL).

If you specify less than 4K for m, 4K is used.

Limit for m: 5 digits.

MAX-mM
specifies the RESALL value (m times 1048576) in s. MAX-mM instructs the
program to calculate the amount of storage available and allocate this
amount up to the MAX value minus the amount of storage reserved for
system and application use (RESALL).

If you specify 0M for m, 4K is used.

Limit for m: 2 digits.

Note: The forms SIZE(value), CORE=value, and CORE(value) can be used
instead of SIZE=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SKIPREC

Specifies the number of records (z) you want to skip (delete) before starting to
sort or copy the input data set. SKIPREC is typically used to bypass records not
processed from the previous DFSORT job. For more information, see the
discussion of the SKIPREC option in “OPTION Control Statement” on page 155.

z specifies the number of records to be skipped.

Limit: 28 digits (15 significant digits).

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� SKIPREC=z ��

Using The EXEC Statement

50 DFSORT R14 Application Programming Guide

|
|
|
|

SOLRF or NOSOLRF

�� SOLRF
NOSOLRF

��

Temporarily overrides the SOLRF installation option, which specifies whether
DFSORT should set the SORTOUT LRECL to the reformatted record length
when the SORTOUT LRECL is unknown. For more information, see the
discussion of the SOLRF and NOSOLRF options in “OPTION Control
Statement” on page 155.

SOLRF
specifies that DFSORT should use the reformatted record length for the
SORTOUT LRECL when the SORTOUT LRECL is not specified or
available.

NOSOLRF
specifies that DFSORT should not use the reformatted record length for the
SORTOUT LRECL.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SPANINC

�� SPANINC= RC0
RC4
RC16

��

Temporarily overrides the SPANINC installation option, which specifies the
action to be taken by DFSORT when one or more incomplete spanned records
are detected in a variable spanned input data set. For more information, see the
discussion of the SPANINC option in “OPTION Control Statement” on page 155.

RC0
specifies that DFSORT should issue message ICE197I (once), set a return
code of 0 and eliminate all incomplete spanned records it detects.

RC4
specifies that DFSORT should issue message ICE197I (once), set a return
code of 4 and eliminate all incomplete spanned records it detects.

RC16
specifies that DFSORT should issue message ICE204A, terminate and give
a return code of 16 when an incomplete spanned record is detected.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603

STIMER or NOSTIMER

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 51

Temporarily overrides the STIMER installation option, which specifies whether
DFSORT can use the STIMER macro.

STIMER
specifies that STIMER can be used. Processor-time data appears in SMF
records and ICETEXIT statistics.

NOSTIMER
specifies that STIMER cannot be used. Processor-time data does not
appear in SMF records or ICETEXIT statistics.

Note: If a user exit takes checkpoints, then STIMER must not be issued.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

STOPAFT

Specifies the maximum number of records you want accepted for sorting or
copying (that is, read from SORTIN or inserted by E15 and not deleted by
SKIPREC, E15, or an INCLUDE/OMIT statement). For more information, see
the discussion of the STOPAFT option in “OPTION Control Statement” on
page 155.

n specifies the maximum number of records to be accepted.

Limit: 28 digits (15 significant digits).

Note: If you specify (1) FILSZ=x in the EXEC PARM, or (2) SIZE=x or FILSZ=x
on the OPTION or SORT statement, and the number of records
accepted for processing does not equal x, DFSORT issues an error
message and terminates unless FSZEST=YES was specified at
installation time.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SZERO or NOSZERO

Temporarily overrides the SZERO installation option, which specifies whether
DFSORT should treat numeric -0 and +0 values as signed (that is, different) or
unsigned (that is, the same) for collation, comparisons, editing, conversions,

�� STIMER
NOSTIMER

��

�� STOPAFT=n ��

�� SZERO
NOSZERO

��

Using The EXEC Statement

52 DFSORT R14 Application Programming Guide

minimums and maximums. For more information, see the discussion of the
SZERO and NOSZERO options in “OPTION Control Statement” on page 155.

SZERO
specifies that DFSORT should treat numeric zero values as signed.

NOSZERO
specifies that DFSORT should treat numeric zero values as unsigned.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

TRUNC

�� TRUNC= RC0
RC4
RC16

��

Temporarily overrides the TRUNC installation option, which specifies the action
to be taken by DFSORT when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL, for the cases where DFSORT allows LRECL
truncation. For more information, see the discussion of the TRUNC option in
“OPTION Control Statement” on page 155.

RC0
specifies that DFSORT should issue message ICE171I, set a return code of
0 and continue processing when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL.

RC4
specifies that DFSORT should issue message ICE171I, set a return code of
4 and continue processing when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL.

RC16
specifies that DFSORT should issue message ICE196A, terminate and give
a return code of 16 when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VERIFY or NOVERIFY

�� VERIFY
NOVERIFY

��

Temporarily overrides the VERIFY installation option, which specifies whether
sequence checking of the final output records must be performed.

VERIFY
specifies that sequence checking is performed.

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 53

NOVERIFY
specifies that sequence checking is not performed.

Notes:

1. Using VERIFY can degrade performance.

2. SEQ=YES can be used instead of VERIFY. SEQ=NO can be used instead
of NOVERIFY.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VLLONG or NOVLLONG

Temporarily overrides the VLLONG installation option, which specifies whether
DFSORT is to truncate ″long″ variable-length output records. For more
information, see the discussion of the VLLONG and NOVLLONG options in
“OPTION Control Statement” on page 155.

VLLONG
specifies that DFSORT truncates long variable-length output records to the
LRECL of the SORTOUT or OUTFIL data set.

NOVLLONG
specifies that DFSORT terminates if a long variable-length output record is
found.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VLSCMP or NOVLSCMP

Temporarily overrides the VLSCMP installation option, which specifies whether
DFSORT is to pad ″short″ variable-length INCLUDE/OMIT compare fields with
binary zeroes. For more information, see the discussion of the VLSCMP and
NOVLSCMP options in “OPTION Control Statement” on page 155.

VLSCMP
specifies that short variable-length compare fields are padded with binary
zeros.

NOVLSCMP
specifies that short variable-length compare fields are not padded.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

�� VLLONG
NOVLLONG

��

�� VLSCMP
NOVLSCMP

��

Using The EXEC Statement

54 DFSORT R14 Application Programming Guide

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VLSHRT or NOVLSHRT

�� VLSHRT
NOVLSHRT

��

Temporarily overrides the VLSHRT installation option, which specifies whether
DFSORT is to continue processing if a ″short″ variable-length SORT/MERGE
control field, INCLUDE/OMIT compare field, or SUM summary field is found. For
more information, see the discussion of the VLSHRT and NOVLSHRT options
in “OPTION Control Statement” on page 155.

VLSHRT
specifies that DFSORT continues processing if a short control field or
compare field is found.

NOVLSHRT
specifies that DFSORT terminates if a short control field or compare field is
found.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VSAMEMT or NVSAMEMT

�� VSAMEMT
NVSAMEMT

��

Temporarily overrides the VSAMEMT installation option, which specifies whether
DFSORT should accept an empty VSAM input data set.

VSAMEMT
specifies that DFSORT accepts an empty VSAM input data set and
processes it as having zero records.

NVSAMEMT
specifies that DFSORT terminates if an empty VSAM input data set is
found.

Note: VSAMEMT=YES can be used instead of VSAMEMT. VSAMEMT=NO can
be used instead of NVSAMEMT.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603

VSAMIO or NOVSAMIO

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 55

|
|
|
|
|

�� VSAMIO
NOVSAMIO

��

Temporarily overrides the VSAMIO installation option, which specifies whether
DFSORT should allow a VSAM data set defined with REUSE to be sorted
in-place.

VSAMIO
specifies that DFSORT can use the same VSAM data set for input and
output when all of the following conditions are met:

v The application is a sort.

v RESET is in effect.

v The VSAM data set was defined with REUSE.

These conditions ensure that the VSAM data set is processed as NEW for
output and will contain the sorted input records; that is it will be sorted
in-place.

DFSORT terminates if the same VSAM data set is specified for input and
output, and any of the above conditions are not met.

NOVSAMIO
specifies that DFSORT terminates if the same VSAM data set is specified
for input and output.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

WRKREL or NOWRKREL

Temporarily overrides the WRKREL installation option, which specifies whether
unused temporary SORTWKdd data set space will be released.

WRKREL
specifies that unused space is released.

NOWRKREL
specifies that unused space is not released.

Notes:

1. If you have dedicated certain volumes for SORTWKdd data sets, and you
do not want unused temporary space to be released, you should specify
NOWRKREL.

2. If WRKREL is in effect, DFSORT releases space for the SORTWKdd data
sets just prior to termination. Space is released only for those SORTWKdd
data sets that were used for the sort application.

3. RELEASE=OFF and RLS=0 can be used instead of NOWRKREL.
RELEASE=ON and RLS=n (n greater than 0) can be used instead of
WRKREL.

�� WRKREL
NOWRKREL

��

Using The EXEC Statement

56 DFSORT R14 Application Programming Guide

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

WRKSEC or NOWRKSEC

Temporarily overrides the WRKSEC installation option, which specifies whether
DFSORT uses automatic secondary allocation for temporary JCL SORTWKdd
data sets.

WRKSEC
specifies that automatic secondary allocation for temporary JCL
SORTWKdd data sets is used and that 25 percent of the primary allocation
will be used as the secondary allocation.

NOWRKSEC
specifies that automatic secondary allocation for temporary JCL
SORTWKdd data sets is not used.

Note: SECOND=OFF and SEC=0 can be used instead of NOWRKSEC.
SECOND=ON and SEC=n (n greater than 0) can be used instead of
WRKSEC.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Y2PAST

Temporarily overrides the Y2PAST installation option, which specifies the sliding
(s) or fixed (f) century window. The century window is used with DFSORT’s Y2
formats to correctly interpret two-digit year data values as four-digit year data
values.

s specifies the number of years DFSORT is to subtract from the current year
to set the beginning of the sliding century window. Since the Y2PAST value
is subtracted from the current year, the century window slides as the current
year changes. For example, Y2PAST=81 would set a century window of
1915-2014 in 1996 and 1916-2015 in 1997. s must be a value between 0
and 100.

f specifies the beginning of the fixed century window. For example,
Y2PAST=1962 would set a century window of 1962-2061. f must be a value
between 1000 and 3000.

Note: CENTWIN=value can be used instead of Y2PAST=value.

�� WRKSEC
NOWRKSEC

��

�� Y2PAST= s
f

��

Using The EXEC Statement

Chapter 2. Invoking DFSORT with Job Control Language 57

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

ZDPRINT or NZDPRINT

Temporarily overrides the ZDPRINT installation option, which specifies whether
positive zoned-decimal (ZD) fields resulting from summing must be converted to
printable numbers. For more information, see the discussion of the ZDPRINT
and NZDPRINT options in “OPTION Control Statement” on page 155.

ZDPRINT
means convert positive ZD summation results to printable numbers.

NZDPRINT
means do not convert positive ZD summation results to printable numbers.

Note: ZDPRINT=YES can be used instead of ZDPRINT. ZDPRINT=NO can be
used instead of NZDPRINT.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Aliases for PARM Options
For compatibility reasons, the following EXEC/DFSPARM PARM options can be
specified by using the aliases listed below. See the indicated PARM options for
complete details.

Table 4. Aliases for PARM Options

Alias PARM Option

CENTWIN=value Y2PAST=value

CORE=value SIZE=value

FLAG(I) MSGPRT=ALL

FLAG(U) MSGPRT=CRITICAL

L5=value AVGRLEN=value

MSG=value MSGPRT=value

MSGDD=value MSGDDN=value

NOFLAG MSGPRT=NONE

NORC16 NOABEND

NORLSOUT NOOUTREL

NOSDB SDB=NO

RC16=ABE ABEND

RELEASE=ON WRKREL

�� ZDPRINT
NZDPRINT

��

Using The EXEC Statement

58 DFSORT R14 Application Programming Guide

Table 4. Aliases for PARM Options (continued)

Alias PARM Option

RELEASE=OFF NOWRKREL

RESERVE=value RESALL=value

RESERVEX=value ARESALL=value

RLS=n WRKREL

RLS=0 NOWRKREL

RLSOUT OUTREL

SDB SDB=YES

SDB=ON SDB=YES

SDB=OFF SDB=NO

SDB=SMALL SDB=YES

SEC=n WRKSEC

SEC=0 NOWRKSEC

SECOND=ON WRKSEC

SECOND=OFF NOWRKSEC

SEQ=YES VERIFY

SEQ=NO NOVERIFY

VSAMEMT=YES VSAMEMT

VSAMEMT=NO NVSAMEMT

ZDPRINT=YES ZDPRINT

ZDPRINT=NO NZDPRINT

Using DD Statements
A DFSORT job always requires DD statements after the EXEC statement. DD
statements fall into two categories:

v System DD statements (discussed in detail in “System DD Statements” on
page 62)

v Program DD statements (discussed in detail in “Program DD Statements” on
page 64).

System DD statements, and some program DD statements, are usually supplied
automatically when you use a cataloged procedure. Others you must always supply
yourself.

The DD statement parameters, the conditions under which they are required, and
the default values, are summarized in Table 5 on page 60. The subparameters of
the DCB parameter (a DD statement parameter) are described similarly in Table 6
on page 60.

Notes:

1. Performance is enhanced if the LRECL subparameter of the DCB is accurately
specified for variable-length records. The maximum input record length you can
specify for your particular configuration is given in “Data Set Notes and
Limitations” on page 12.

2. When using DFSORT applications, FREE=CLOSE cannot be used on any DD
statements except DFSPARM.

Aliases for PARM Options

Chapter 2. Invoking DFSORT with Job Control Language 59

Table 5. DD Statement Parameters Used by DFSORT

Parameter When Required Parameter Values Default Value

{AMP| BUFSP} When password-protected
VSAM data sets are used
and the password is
supplied through E18, E38,
or E39.

Minimum buffer pool value
given when creating the
data set.

None.

DCB Required when 7-track tape
is used; for input on tape
without standard labels; and
when the default values are
not applicable.

Specifies information used
to fill the data control block
(DCB) associated with the
data set.

(See separate
subparameters in Table 6.)

DISP When the default value is
not applicable.

Indicates the status and
disposition of the data set.

The system assumes
(NEW, DELETE).

DSNAME or DSN When the DD statement
defines a labeled input data
set (for example, SORTIN),
or when the data set being
created is to be kept or
cataloged (for example,
SORTOUT), or passed to
another step.

Specifies the fully qualified
or temporary name of the
data set.

The system assigns a
unique name.

LABEL When the default value is
not applicable.

Specifies information about
labeling and retention for
the data set.

The system assumes
standard labeling.

SPACE When the DD statement
defines a new data set on
direct access.

Specifies the amount of
space needed to contain
the data set.

None.

UNIT When the input data set is
neither cataloged nor
passed or when the data
set is being created.

Specifies (symbolically or
actually) the type and
quantity of I/O units
required by the data set.

None.

VOLUME or VOL When the input data set is
neither cataloged nor
passed, for multireel input
or when the output data set
is on direct access and is to
be kept or cataloged.

Specifies information used
to identify the volume or
volumes occupied by the
data set.

None.

Table 6. DCB Subparameters Used by DFSORT

Subparameter Condition When Required Subparameter Values Default Value

BUFOFF When processing data in
ISCII/ASCII format.

Specifies the length of the
buffer offset or specifies
that the buffer offset is the
block length indicator.

DEN When the data set is
located on a 7-track tape
unit.

Specifies the density at
which the tape was
recorded.

800 bpi

OPTCD When processing data in
ISCII/ASCII format.

Specifies that the tape
processed is in ISCII/ASCII
format.

Using DD Statements

60 DFSORT R14 Application Programming Guide

Table 6. DCB Subparameters Used by DFSORT (continued)

Subparameter Condition When Required Subparameter Values Default Value

TRTCH When the data set is
located on a tape device
with IDRC and system
IDRC is not used.

Specifies whether data set
is compacted.

System default option.

BLKSIZE 1, 2 When the DCB parameter
is required and the default
value is not suitable except
on SORTWKdd statements.

Specifies the maximum
length (in bytes) of the
physical records in the data
set.

v For old data sets, the
value in the data set
label.

v For new output data sets,
appropriate values based
on the input data set or
RECORD statement
values.

Unless SDB=NO is in
effect, Blockset uses the
system-determined
optimum block size when
the output data set block
size is zero.

Applications which
require a specific output
data set block size
should be changed to
specify that block size
EXPLICITY.

v No default if input on
unlabeled tape or BLP or
NSL specified.

LRECL 2, 3 Specifies the maximum
length (in bytes) of the
logical records in the data
set.

RECFM Specifies the format of the
records in the data set.

Duplicate Ddnames
If you specify a particular ddname (such as SORTIN) more than once within the
same step, DFSORT uses the first ddname and ignores subsequent duplicates.
Processing continues normally.

In addition, SORTIN0, SORTIN1...SORTIN9 can be specified instead of SORTIN00,
SORTIN01...SORTIN09, respectively. If you specify both SORTINn and SORTIN0n
in the same job step, DFSORT treats them as duplicates, and ignores each usage
after the first. For example, SORTIN2 and SORTIN02 are treated as duplicates and
only SORTIN2 is used.

Note: For a Conventional merge, SORTINn will not be recognized because of the
existing restriction which allows only SORTIN01, SORTIN02...SORTIN16.
Duplicates of these accepted ddnames will be ignored.

Duplicate OUTFIL ddnames are ignored at the OUTFIL statement level as explained
in “OUTFIL Statements Notes” on page 267.

Shared Tape Units
The following pairs of DFSORT data sets can be assigned to a single tape unit:

1. See “SORTIN DD Statement” on page 66 and “SORTINnn DD Statement” on page 68.

2. This is the only subparameter allowed for DD * data sets.

3. For padding and truncating fixed-length records, see “Data Set Notes and Limitations” on page 12.

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 61

v The SORTIN data set and the SORTWK01 data set (tape work data set sorts
only)

v The SORTIN data set and the SORTOUT data set or one OUTFIL data set (sort
applications only).

If you want to associate the SORTIN data set with SORTWK01, you can include the
parameter UNIT=AFF=SORTIN in the DD statement for SORTWK01. The AFF
subparameter causes the system to place the data set on the same unit as the
dataset with the ddname following the subparameter (SORTIN, in this case).

In the same way, you can associate the SORTIN data set with the SORTOUT data
set or an OUTFIL data set by including UNIT=AFF=SORTIN in the SORTOUT or
OUTFIL DD statement.

SORTINnn tape data sets must all be on different tape units because they are read
concurrently. SORTOUT and OUTFIL tape data sets must all be on different tape
units because they are written concurrently.

System DD Statements
If you choose not to use the SORT or SORTD cataloged procedures to invoke
DFSORT, you might need to supply system DD statements in your input job
stream(See also the following section for DD statements dedicated to DFSORT,
such as SORTIN). The DD statements contained in the cataloged procedure (or
provided by you) are:

//JOBLIB DD
Defines your program link library if it is not already known to the system.

//STEPLIB DD
Same as //JOBLIB DD.

//SYSIN DD
Contains DFSORT control statements, comment statements, blank
statements and remarks when DFSORT is invoked with JCL rather than by
another program. It can also contain user exit routines, in object deck
format, to be link-edited by DFSORT.

v If you use DFSPARM, then SYSIN is not necessary unless your job
requires link-editing.

v The SYSIN data set usually resides in the input stream; however, it can
be defined as a sequential data set or as a member of a partitioned data
set.

v The data set must be defined with a RECFM of F or FB. The LRECL can
be 80, or more (when valid). If the LRECL is greater than 80, DFSORT
will use the first 80 bytes of each record.

If user exit routines are in SYSIN, the LRECL must be 80.

v DFSORT supports concatenated SYSIN data sets to the extent that the
system supports “like” concatenated data sets for BSAM. Refer to z/OS
DFSMS: Using Data Sets for further information about “like”
concatenated data sets.

Note: The OPTION statement keywords EFS, LIST, NOLIST, LISTX,
NOLISTX, LOCALE, MSGPRT, MSGDDN, SMF, SORTDD, SORTIN,
and SORTOUT are used only when they are passed by an extended
parameter list or when in the DFSPARM data set. If they are

Using DD Statements

62 DFSORT R14 Application Programming Guide

specified on an OPTION statement read from the SYSIN or
SORTCNTL data set, the keyword is recognized, but the parameters
are ignored.

If you use the DFSPARM DD statement instead, you can specify both
EXEC PARM options and DFSORT control statements in a single source
data set that overrides all other sources. See “DFSPARM DD Statement” on
page 74.

If user exit routines are in SYSIN, make sure that:

v The LRECL of SYSIN is 80.

v The END statement is the last control statement.

v The user exit routines are arranged in numeric order (for example, E11
before E15).

v The user exit routines are supplied immediately after the END control
statement.

v Nothing follows the last object deck in SYSIN.

v A SORTMODS DD statement is included.

If DFSORT is program invoked, and you supply the DFSORT control
statements through the 24-bit or extended parameter list, SORTCNTL, or
DFSPARM, SYSIN remains the source of user exit routines placed in the
system input stream.

//SYSOUT DD
Identifies the DFSORT message data set. The default ddname is SYSOUT,
but you can specify an alternate ddname for the message data set using
the MSGDDN installation or run-time option. Always supply a DD statement
for the message data set if a catalogued procedure is not used. (If you are
invoking DFSORT from a COBOL program and are using the ddname
SYSOUT for the message data set, the use of EXHIBIT or DISPLAY in your
COBOL program can produce uncertain printing results.)

DFSORT uses RECFM=FBA, LRECL=121, and the specified BLKSIZE for
the message data set. If the BLKSIZE you specify is not a multiple of 121,
DFSORT uses BLKSIZE=121. If you do not specify the BLKSIZE, DFSORT
selects the block size as directed by the SDBMSG installation option (see
DFSORT Installation and Customization R14).

If you use a temporary or permanent message data set, it is best to specify
a disposition of MOD to ensure you see all messages and control
statements in the message data set.

//SYSUDUMP DD
Defines the data set for output from a system ABEND dump routine.

//SYSMDUMP DD
Same as //SYSUDUMP DD.

//SYSABEND DD
Same as //SYSUDUMP DD.

If you are using the supplied SORT cataloged procedure, the DD statements below
are automatically supplied. If you are not using the SORT cataloged procedure and
you are using the linkage editor, you must supply the following DD statements:

//SYSPRINT DD
Contains messages from the linkage editor.

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 63

//SYSUT1 DD
Defines the intermediate storage data set for the linkage editor.

//SYSLIN DD
Defines a data set for control information for the linkage editor.

//SYSLMOD DD
Defines a data set for output from the linkage editor.

Note: If you do not include user routines, or if you include user routines that do not
require link-editing, you can usethe supplied SORTD cataloged procedure. If
you include user routines that require link-editing, you can use the SORT
cataloged procedure.

Program DD Statements
Even if you use the SORT or SORTD cataloged procedure to invoke DFSORT, you
might need to supply additional dedicated DD statements. The following list
summarizes each of these statements, and a more detailed explanation of each one
follows.

//SORTLIB DD
Defines the data set that contains special load modules for DFSORT. Can
usually be omitted.

//SYMNAMES DD
Defines the SYMNAMES data set containing statements to be used for
symbol processing. Required only if symbol processing is to be performed.

//SYMNOUT DD
Defines the data set in which SYMNAMES statements and the symbol table
are to be listed. Optional if SYMNAMES DD is specified. Otherwise ignored.

//SORTIN DD
Defines the input data set for a sorting or copying application. Will not be
used for a merging application.

//SORTINnn DD
Defines the input data sets for a merging application. Will not be used for a
sorting or copying application.

//SORTWKdd DD
Defines intermediate storage data sets. Usually needed for a sorting
application unless dynamic allocation is requested. Will not be used for a
copying or merging application.

//SORTOUT DD
Defines the SORTOUT output data set for a sorting, merging, or copying
application.

//outfil DD
Defines an OUTFIL output data set for a sorting, merging, or copying
application.

//SORTCKPT DD
Defines the data set used to store the information that the system needs to
restart the sort from the last checkpoint. This is only needed if you are
using the checkpoint facility.

//SORTCNTL DD
Defines the data set from which additional or changed DFSORT control
statements can be read when DFSORT is program-invoked.

Using DD Statements

64 DFSORT R14 Application Programming Guide

//DFSPARM DD
Defines the data set from which both additional or changed DFSORT
program control statements and EXEC statement PARM options can be
read when DFSORT is directly invoked or program invoked.

//SORTDKdd DD
Defines the data set used for a VIO SORTWKdd allocation by DFSORT if it
is dynamically reallocated; SORTDKdd must never be specified in the job
stream.

//SORTDIAG DD
Specifies that all messages and control statements are printed. Used
primarily for diagnostics and debugging.

//SORTSNAP DD
Defines the snap dump data set dynamically allocated by DFSORT.
SORTSNAP must never be specified in the job stream.

//SORTMODS DD
Defines a temporary partitioned data set. This temporary data set must be
large enough to contain all your user exit routines that appear in SYSIN for
a given application. If none of your routines appear in SYSIN, this
statement is not required. If your routines are in libraries, you must include
DD statements defining the libraries.

DFSORT temporarily transfers the user exit routines in SYSIN to the data
set defined by this DD statement before they are link-edited for processing.

SORTLIB DD Statement
The SORTLIB DD statement can usually be omitted. This statement describes the
data set that contains special DFSORT load modules.

When Required: If ICEMAC option SORTLIB=PRIVATE is in effect or dynamic link
edit of user exits is specified:

v For sort applications using tape work data sets

v For merge applications for which Blockset cannot be used (see message
ICE800I).

The ICEMAC SORTLIB option determines whether DFSORT searches a system
library or private library for the load modules required by tape workdata set sorts
and Conventional merges.

Example 1 SORTLIB DD Statement:

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME
causes the system to search the catalog for a data set with the name
USORTLIB. When the data set is found, it is associated with the ddname
SORTLIB. The control program obtains the unit assignment and volume serial
number from the catalog and, if the volume is not already mounted, writes a
mounting message to the operator.

DISP
indicates that the data set existed before this job step, that it should be kept

//SORTLIB DD DSNAME=USORTLIB,DISP=SHR

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 65

after this job step, and that it can be used concurrently by several jobs (SHR).
None of the jobs should change the data set in any way.

For information on the parameters used in the SORTLIB DD statement, the
conditions under which they are required, and the default values assumed if a
parameter is not included, see Table 5 on page 60. The subparameters of the DCB
parameter are described in the same detail in Table 6 on page 60. For more
detailed information, see z/OS MVS JCL Reference and z/OS MVS JCL User’s
Guide

SYMNAMES DD and SYMNOUT DD Statements
See Chapter 7, “Using Symbols for Fields and Constants” on page 485 for details.

SORTIN DD Statement
The SORTIN DD statement describes the characteristicsof the data set in which the
records to be sorted or copied reside and also indicates its location.

When Required: A SORTIN DD statement is required for all sort or copy
applications, unless you provide an E15 user exit that supplies all input to DFSORT
and include a RECORD statement in the program control statements. The SORTIN
DD statement is ignored if your program invokes DFSORT and passes the address
of your E15 user exit in the parameter list.

Data Set Characteristics: DFSORT accepts empty and null non-VSAM data sets
for sorting and copying (be sure to supply DCB parameters). DFSORT also accepts
empty VSAM data sets for sorting and copying provided VSAMEMT is in effect. For
non-VSAM data sets, DFSORT examines the DS1LSTAR field in the format-1
DSCB to determine whether the data set is empty or null. If DS1LSTAR is zero,
DFSORT treats the data set as empty or null. If the data set is a null multivolume
data set and the DS1IND80 flag is off in the format-1 DSCB of the first volume of
the multivolume data set, DFSORT opens the data set for output to force an end of
file (EOF) mark before using the data set for input.

Note that a null data set is one that has been newly created, but never successfully
closed. Null data sets cannot be processed successfully for a tape work data set
sort. The “System Code” field in the data set label in the DASD Volume Table of
Contents (DSCB in the VTOC) indicates a data set created by the VSE operating
system if it contains the letters DOS or VSE within it. Such data sets are never
treated as null; however, they may be empty. DFSORT cannot process VSE DASD
data sets that do not have DOS or VSE within the System Code field.

See “Data Set Considerations” on page 11 for additional considerations.

The following rules apply to concatenated data sets:

v RECFM must be either all fixed-length or all variable-length for the data sets in
the concatenation.

v BLKSIZE can vary. However, if a tape data set has the largest block size and is
not first in the concatenation, you must specify BLKSIZE explicitly on its DD
statement in the following two situations:

– Blockset is selected and the tape data set has a block size greater than
32760 bytes, but the block size is not available from DFSMSrmm or
ICETPEX.

– Blockset is not selected.

Using DD Statements

66 DFSORT R14 Application Programming Guide

|
|
|

v With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary, but the first data set must have the
largest LRECL.

v If the data sets are on unlike devices, you cannot use the EXLST parameter at
user exit E18.

v If Blockset is not selected and BSAM is used, all null data sets must precede all
non-null data sets; otherwise, the results are unpredictable.

v DFSORT forces an EOF mark on all null data sets whose format-1 DSCB
DS1IND80 flag is off before using BSAM to process the null data sets.

v If you define a data set using the DUMMY parameter, do not concatenate other
data sets to it; the system ignores data sets concatenated to a DUMMY data set.

v VSAM data sets must not be concatenated (system restriction).

v Input cannot consist of both VSAM and non-VSAM data sets.

General Coding Notes:

v For a copy application, the SORTIN data set should not be the same as the
SORTOUT data set or any OUTFIL data set because this can cause lost or
incorrect data or unpredictable results.

v For a sort application, the SORTIN data set should not be the same as any
SORTWKdd data set because this can cause lost or incorrect data or
unpredictable results. The SORTIN data set can be the same as the SORTOUT
data set or an OUTFIL data set, but this situation can lead to the loss of the data
set if the sort application does not end successfully.

v FREE=CLOSE cannot be specified. User labels are not copied.

Example 2 SORTIN DD Statement:

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME
causes the system to search the catalog for a data set with the name INPUT.
When the data set is found, it is associated with the ddname SORTIN. The
control program obtains the unit assignment and volume serial number from the
catalog and, if the volume is not already mounted, writes a mounting message
to the operator.

DISP
indicates that the data set existed before this job step, that it should be kept
after this job step, and that it can be used concurrently by several jobs (SHR).
None of the jobs should change the data set in any way.

Example 3 Volume Parameter on SORTIN DD:

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate the
serial numbers of the tape reels. In this example, the input data set is on three reels
that have serial numbers 75836, 79661, and 72945.

//SORTIN DD DSNAME=INPUT,DISP=SHR

//SORTIN DD DSN=SORTIN,DISP=(OLD,KEEP),UNIT=3490,
// VOL=SER=(75836,79661,72945)

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 67

If a data set is not on a disk or on a standard-labeled tape, you must specify DCB
parameters in its DD statement.

SORTINnn DD Statement
The SORTINnn DD statements describe the characteristicsof the data sets in which
records to be merged reside and indicate the locations of these data sets.

When Required: SORTINnn DD statements are always needed for a merge,
unless the merge is invoked from another program and all input is supplied through
a routine at user exit E32.

Data Set Characteristics: Input data sets can be either non-VSAM or VSAM, but
not both. DFSORT accepts empty and null non-VSAM data sets for merging (be
sure to supply DCB parameters). DFSORT also accepts empty VSAM data sets for
merging provided VSAMEMT is in effect. For non-VSAM data sets, DFSORT
examines the DS1LSTAR field in the format-1 DSCB to determine whether the data
set is null or empty. If DS1LSTAR is zero, DFSORT treats the data set as null or
empty. A null data set is one that has been newly created but never successfully
closed. Null data sets cannot be processed successfully by the Conventional merge
technique.

RECFM must be the same for all input data sets.

BLKSIZE can vary, but for a Conventional merge, SORTIN01 must specify the
largest block size.

With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary.

Data sets can be multivolume but not concatenated. If a SORTINnn data set is
multivolume and null, DFSORT forces an EOF mark on the data set before use.

See “Data Set Notes and Limitations” on page 12 for additional considerations.

General Coding Notes:

v A SORTINnn data set should not be the same as the SORTOUT data set or any
OUTFIL data set because this can cause lost or incorrect data or unpredictable
results.

v You can merge up to 100 data sets with Blockset merge or up to 16 data sets
with Conventional merge. If Conventional merge is selected, check message
ICE800I for the reason Blockset could not be used and correct the indicated
condition, if possible.

– With Blockset merge: nn can be any integer from 00 (the initial zero is
optional) to 99, in any order. Blockset merge treats ddnames of the form
SORTINn and SORTIN0n as duplicates, and ignores any occurrences after
the first. For example, if you have :
//SORTIN4 DD . . .
//SORTIN04 DD . . .

the SORTIN04 DD will be ignored.

– With Conventional merge: nn can range from 01 to 16. The first number you
use must be 01 and the remainder must follow in numeric order. Numbers
cannot be skipped. Conventional merge cannot use ddnames of the form
SORTIN0-SORTIN9, SORTIN00 or SORTIN17-SORTIN99.

v FREE=CLOSE cannot be specified. User labels are not copied.

Using DD Statements

68 DFSORT R14 Application Programming Guide

Example 4 SORTIN01-03 DD Statements (Merge):

Example 5 SORTIN01-02 DD Statements (Merge):

SORTWKdd DD Statement
The SORTWKdd DD statements describe the characteristics of the data sets used
as intermediate storage areas for records to be sorted; they also indicate the
location of these data sets.

Up to 255 SORTWKdd DD statements can be specified. However, if you specify
more than 32 and the Blockset technique is not selected, only the first 32 are used.

When Required: One or more SORTWKdd statements are required for each sort
application (but not a merge or copy), unless:

v Input can be contained in main storage

v Dynamic work space allocation has been requested (DYNALLOC)

v Hipersorting or dataspace sorting is used.

For information on using work data sets, see Appendix A, “Using Work Space” on
page 593.

Diagnostic message ICE803I gives information on intermediate storage allocation
and use.

Devices: SORTWKdd data sets can be on DASD or on tape, but not both. DASD
types can be mixed.

Tape must be nine-track unless input is on seven-track tape, in which case work
tapes can (but need not) be seven-track.

General Coding Notes:

v Unless the input file is very large, two or three SORTWKdd data sets are usually
sufficient. Two or three large SORTWKdd data sets are preferable to several
small data sets. Placing each SORTWKdd data set on a separate device can
improve performance.

For optimum allocation of resources such as virtual storage, avoid specifying a
large number of work data sets unnecessarily.

v A SORTWKdd data set should not be the same as the SORTIN data set, the
SORTOUT data set, any OUTFIL data set, or any other SORTWKdd data set
because this can cause lost or incorrect data or unpredictable results.

//SORTIN01 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=OLD,
// LABEL=(,NL),UNIT=3590,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=32000)
//SORTIN02 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=OLD,
// LABEL=(,NL),UNIT=3590,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=32000)
//SORTIN03 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=OLD,
// LABEL=(,NL),UNIT=3590,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=32000)

//SORTIN01 DD DSNAME=INPUT1,VOLUME=SER=000101, *
// UNIT=3390,DISP=OLD *DCB PARAMETERS
//SORTIN02 DD DSNAME=INPUT2,VOLUME=SER=000201, *SUPPLIED FROM
// UNIT=3390,DISP=OLD *LABELS

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 69

v Cylinder allocation is preferable for performance reasons. Temporary SORTWKdd
data sets allocated in tracks or blocks (without ROUND) are readjusted to
cylinders by DFSORT.

v For DASD work data sets, any valid ddname of the form SORTWKdd or
SORTWKd can be used (for example, SORTWK01, SORTWKC3, SORTWK2,
SORTWK#5, SORTWKA, SORTWKXY and so on). The ddnames can be in any
order. SORTWKd and SORTWK0d are not treated as duplicate ddnames (for
example, SORTWK5 and SORTWK05 will both be used if specified, as will
SORTWKQ and SORTWK0Q). If you specify more than 255 ddnames and the
Blockset technique is selected, only the first 255 ddnames are used. If you
specify more than 32 ddnames and the Blockset technique is not selected, only
the first 32 ddnames are used.

v For tape work data sets, at least three SORTWKdd data sets must be specified.
The first three ddnames must be SORTWK01, SORTWK02 and SORTWK03.
Subsequent ddnames, if specified, must be in order from SORTWK04 through
SORTWK32, with no numbers skipped,

v FREE=CLOSE cannot be specified.

v Spool, dummy, pipe, and HFS data sets, and HFS files, must not be specified as
work data sets.

v Parameters relating to ISCII/ASCII data should not be included for tape work
data sets.

DASD Work Data Set Coding Notes:

v Data sets must be physical sequential; they cannot be partitioned or extended
format.

v The SPLIT cylinder parameter must not be specified.

v If no secondary allocation is requested for temporary SORTWKdd data sets,
automatic secondary allocation will be used unless NOWRKSEC is in effect.
(Secondary allocation is limited to 12 work data sets in the Peerage and Vale
sorting techniques only.)

v If the data set is allocated to VIO, there is no automatic secondary allocation.

v Secondary allocation can be requested for work data sets. If more work data sets
are defined, they are used with only the primary allocation. (Secondary allocation
is limited to 12 work data sets in the Peerage and Vale sorting techniques only.)

v DFSORT uses only the space on the first volume specified for a multivolume
data set. Space on the second and subsequent volumes is not used. Multivolume
SORTWKdd data sets are, therefore, treated as single-volume SORTWKdd data
sets.

v If primary space is fragmented, all but the first fragment are handled as
secondary space.

Virtual I/O: If a SORTWKdd data set is specified on a virtual device:

v With VIO=NO: DFSORT performs dynamic reallocation using the ddname
SORTDKdd on a real device with the same device type as the virtual device. If a
real device corresponding to the virtual device is not available in the system,
DFSORT terminates with an ICE083A message; see DFSORT Messages, Codes
and Diagnosis Guide R14 for more information about this error. Non-VIO
SORTWKdd data sets are also reallocated when VIO SORTWKdd data sets are
present.

v With VIO=YES: the virtual device is used; performance may be degraded.

The following is an example of a SORTWKdd DD statement using a DASD work
data set:

Using DD Statements

70 DFSORT R14 Application Programming Guide

|
|

Example 6 SORTWK01 DD Statement, DASD Work Data Set:

If you use the checkpoint/restart facility and need to make a deferred restart, you
must make the following additions to the above statement so that the sort work data
set is not lost:

Thus the same SORTWKdd DD statement for a deferred restart would be:

This following is an example of SORTWKdd DD statements using three tape
devices.

Example 7 SORTWK01-03 DD Statement, Tape Intermediate Storage:

If DFSORT terminates unsuccessfully and the above DD statements have been
specified, the intermediate storage data sets remain in the system until the step has
been successfully rerun or until the data sets have been deleted by some other
means.

These parameters specify unlabeled data sets on three 3480 tape units. Because
the DSNAME parameters are omitted, the system assigns unique names.

SORTOUT and OUTFIL DD Statements
The SORTOUT and OUTFIL DD statements describe the characteristics of the data
sets in which the processed records are to be placed and indicate their location.

The SORTOUT DD statement specifies the single non-OUTFIL output data set for a
sort, copy, or merge application. OUTFIL processing does not apply to SORTOUT.

The FNAMES and/or FILES parameters of one or more OUTFIL statements specify
the ddnames of the OUTFIL data sets for a sort, copy, or merge application. The
parameters specified for each OUTFIL statement define the OUTFIL processing to
be performed for the OUTFIL data sets associated with that statement. For specific
information about OUTFIL processing, see “OUTFIL Control Statements” on
page 204.

Although the ddname SORTOUT can actually be used for an OUTFIL data set, the
term “SORTOUT” will be used to denote the single non-OUTFIL output data set.

When Required: Each ddname specified in an OUTFIL statement requires a
corresponding DD statement for that OUTFIL data set.

If you do not specify OUTFIL statements, a SORTOUT DD statement is required
unless you provide an E35 user exit that disposes of all output. A SORTOUT DD
statement is ignored if your program invokes DFSORT and passes the address of
an E35 user exit in the parameter list.

//SORTWK01 DD SPACE=(CYL,(15,5)),UNIT=3390

DSNAME=name1,DISP=(NEW,DELETE,CATLG)

//SORTWK01 DD DSNAME=name1,UNIT=3390,SPACE=(CYL,(15,5)),
// DISP=(NEW,DELETE,CATLG)

//SORTWK01 DD UNIT=3480,LABEL=(,NL)
//SORTWK02 DD UNIT=3480,LABEL=(,NL)
//SORTWK03 DD UNIT=3480,LABEL=(,NL)

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 71

If you specify OUTFIL statements, you do not have to specify a SORTOUT DD
statement or an E35 user exit, although you can use either or both.

Data Set Characteristics: See “Data Set Considerations” on page 11 for
additional considerations.

Block size: Unless SDB=NO is in effect, Blockset uses the system-determined
optimum block size in most cases when the output data set block size is zero. See
the discussion of the SDB option in “OPTION Control Statement” on page 155 for
complete details about DFSORT’s use of system-determined block size.

For some jobs, the selection of a larger output data set block size can require an
increase in the amount of storage needed for successful DFSORT processing.

Applications which require a specific output data set block size should be changed
to specify that block size explicitly.

If SDB=NO is in effect, DFSORT selects an appropriate (though not necessarily
optimum) block size for the output data set based on the available attributes from
the output data set, the input data set, and the RECORD statement. The output
data set block size will not necessarily be the same as the input block size.

Reblockable Indicator: DFSORT sets the reblockable indicator in the output data
set label when:

Blockset is selected and

v DFSORT sets the system-determined optimum block size for the output data set
(see “Block size”) or

v Allocation sets the system-determined optimum block size for the output data set
before DFSORT gets control.

General Coding Notes:

v For a copy application, neither the SORTOUT data set nor any OUTFIL data set
should be the same as the SORTIN data set because this can cause lost or
incorrect data or unpredictable results.

v For a merge application, neither the SORTOUT data set nor any OUTFIL data
set should be the same as any SORTINnn data set because this can cause lost
or incorrect data or unpredictable results.

v For a sort application, the SORTOUT data set or an OUTFIL data set can be the
same as the SORTIN data set, but this situation can lead to the loss of the data
set if the sort application does not end successfully.

v An OUTFIL data set should not be the same as the SORTOUT data set or any
other OUTFIL data set because this can cause lost or incorrect data or
unpredictable results.

v Do not specify OPTCD=W for a full function IBM 3480 tape unit; it is overridden.
For a 3480 operating in 3420 compatibility mode (specified as 3400-9), the
OPTCD=W request is not overridden, but performance might be degraded.

v If no secondary allocation is requested for a temporary or new output data set,
automatic secondary allocation will be used unless NOOUTSEC is in effect.

v The RECFM, LRECL, and BLKSIZE in a tape label are used only for a tape
output data set with DISP=MOD, a DD volser present, and an AL, SL, or NSL
label, when appropriate.

v FREE=CLOSE cannot be specified.

SORTOUT and OUTFIL DD Statements

72 DFSORT R14 Application Programming Guide

v See the discussion of the SOLRF and NOSOLRF options in “OPTION Control
Statement” on page 155 for information related to the SORTOUT LRECL.

Example 8 SORTOUT DD Statement:

DISP
specifies the data set unknown to the operating system (NEW) and catalogs
(CATLG) it under the name C905460.OUTPT.

DSNAME
specifies that the data set is called C905460.OUTPT.

SPACE
requests five cylinders of storage for the data set.

UNIT
Indicates that the data set is on a 3390.

SORTCKPT DD Statement
The SORTCKPT data set can be allocated on any device that operateswith the
Basic Sequential Access Method (BSAM). Processing must be restarted only from
the last checkpoint taken.

Example 9 SORTCKPT DD Statement:

When you allocate the SORTCKPT data set, you must include at least one work
data set.

If the CKPT operand is specified on the OPTION or SORT control statement, more
intermediate storage could be required.

If you want to use the Checkpoint/Restart Facility, refer to “Checkpoint/Restart” on
page 647.

SORTCNTL DD Statement
The SORTCNTL data set can be used to supplyDFSORT control statements,
comment statements, blank statements, and remarks when DFSORT is invoked
from another program (written, for example, in COBOL or PL/I).

v The SORTCNTL data set usually resides in the input stream, but can be defined
as a sequential data set or as a member of a partitioned data set.

v The data set must be defined with RECFM of F or FB. The LRECL can be 80, or
more (when valid). If the LRECL is greater than 80, DFSORT will use the first 80
bytes of each record.

v DFSORT supports concatenated SORTCNTL data sets to the extent that the
system supports “like” concatenated data sets for BSAM. Refer to z/OS DFSMS:
Using Data Sets for further information about “like” concatenated data sets.

v When DFSORT is invoked from a PL/I program, the SORTCNTL or DFSPARM
data set must not be used to supply a new RECORD control statement.

//SORTOUT DD DSN=C905460.OUTPT,UNIT=3390,SPACE=(CYL,5),
// DISP=(NEW,CATLG)

//SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,
// DSP=(NEW,KEEP),UNIT=3480

SORTOUT and OUTFIL DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 73

Example 10 SORTCNTL DD Statement:

Notes:

1. The OPTION statement keywords EFS, LIST, NOLIST, LISTX, NOLISTX,
LOCALE, MSGPRT, MSGDDN, SMF, SORTDD, SORTIN, and SORTOUT are
used only when they are passed by an extended parameter list or when in the
DFSPARM data set. If they are specified on an OPTION statement read from
the SYSIN or SORTCNTL data set, the keyword is recognized, but the
parameters are ignored.

If your program invokes DFSORT more than once, you can direct DFSORT to
read different versions of the SORTCNTL data set at each call. See the
explanation of the SORTDD parameter in “OPTION Control Statement” on
page 155.

2. If you use the DFSPARM DD statement instead of the SORTCNTL DD
statement, you can specify both EXEC PARM options and DFSORT control
statements in a single source data set that overrides all other sources. See
“DFSPARM DD Statement”. For override rules, see Appendix B,
“Specification/Override of DFSORT Options” on page 603.

DFSPARM DD Statement
The DFSPARM DD statement can be used to supply DFSORT program control
statements and EXEC statement PARM options from a single DD source. Because
statements in the DFSPARM data set are read whether DFSORT is program
invoked or directly invoked, you can specify EXEC PARM options when invoking
DFSORT from another program (unlike SORTCNTL). DFSPARM accepts all
DFSORT program control statements and all EXEC statement PARM options
(including those ignored by SYSIN and SORTCNTL) and any equivalent options
specified on a DFSORT OPTION statement.

DFSPARM also accepts comment statements, blank statements, and remarks.

For examples of using DFSPARM when you call DFSORT from a program, see
“Overriding DFSORT Control Statements from Programs” on page 368.

Full override and applicability details are listed below and in Appendix B,
“Specification/Override of DFSORT Options” on page 603.

v If you use DFSPARM, SYSIN is not necessary unless your job requires
link-editing.

v The DFSPARM data set usually resides in the input stream, but it can be defined
as a sequential data set or as a member of a partitioned data set.

v The data set must be defined with RECFM of F or FB. The LRECL can be 80, or
more (when valid). If the LRECL is greater than 80, DFSORT will use the first 80
bytes of each record.

v DFSORT supports concatenated DFSPARM data sets to the extent that the
system supports “like” concatenated data sets for BSAM. Refer to z/OS DFSMS:
Using Data Sets for further information about “like” concatenated data sets.

v When DFSORT is invoked from a PL/I program, the SORTCNTL or DFSPARM
data set must not be used to supply a new RECORD control statement.

Note: The ddname DFSPARM is used throughout this book to refer to this data set
source for EXEC PARM options and DFSORT program control statements.

//SORTCNTL DD *
OPTION MAINSIZE=8M

SORTCNTL DD Statement

74 DFSORT R14 Application Programming Guide

When your system programmers installed DFSORT, they might have
changed this name to one more appropriate for your site with the PARMDDN
option of the ICEMAC installation macro. Verify the correct ddname before
attempting to use the features available with DFSPARM.

General Coding Notes: Coding of parameters in the DFSPARM DD statement
follows the same rules used for the JCL EXEC statement PARM options and the
program control statements specified in SYSIN or SORTCNTL. The following
exceptions apply:

v Labels are not allowed.

v PARM options and program control statements cannot be mixed on the same
line, but can be specified in any order on different lines.

v PARM options must be specified without the PARM= keyword and without quote
marks.

v Commas (or semicolons) are accepted, but not required, to continue PARM
options to another line.

v Leading blanks are not required for PARM options, but at least one leading blank
is required for program control statements.

FREE=CLOSE can be used for applicable DFSPARM data sets (for example, with
temporary and permanent sequential data sets, but not with DD * data sets).

When DFSORT is called from another program, FREE=CLOSE causes the
DFSPARM data set to be released when DFSORT returns to the caller. This allows
another DFSPARM data set to be used for a subsequent call.

For example, if a COBOL program contains three SORT verbs, the following would
cause the control statements in DP1 to be used for the first SORT verb, the control
statements in DP2 to be used for the second SORT verb, and the control
statements in DP3 to be used for the third SORT verb:

//DFSPARM DD DSN=DP1,DISP=SHR,FREE=CLOSE
//DFSPARM DD DSN=DP2,DISP=SHR,FREE=CLOSE
//DFSPARM DD DSN=DP3,DISP=SHR,FREE=CLOSE

Without FREE=CLOSE, DP1 would be used for all three SORT verbs.

Example 11 DFSPARM DD Statement:

In this example the DFSPARM DD data set passes a DFSORT SORT statement,
the ABEND and STOPAFT parameters equivalent to specifying
PARM='ABEND,STOPAFT=500' in a JCL EXEC statement, and a DFSORT
OPTION statement.

Notes:

1. SORT and OPTION are control statements. ABEND and STOPAFT=500 are
PARM options.

2. The PARM option STOPAFT=500 overrides the SORT control statement option
STOPAFT=300.

//DFSPARM DD *
SORT FIELDS=(1,2,CH,A),STOPAFT=300

ABEND
OPTION SORTIN=DATAIN
STOPAFT=500

DFSPARM DD Statement

Chapter 2. Invoking DFSORT with Job Control Language 75

Example 12 DFSPARM DD Statement:

In this example, the DFSPARM DD data set contains a SORT program control
statement, three PARM options on one line, and an OPTION program control
statement.

Note: Because PARM options override program control statements, DFSORT uses
SKIPREC=5 and ignores the other SKIPREC specifications.

For information on the parameters used in the DFSPARM DD statement, the
conditions under which they are required, and any default values assumed if a
parameter is omitted, see “Specifying EXEC/DFSPARM PARM Options” on page 29
and Chapter 3, “Using DFSORT Program Control Statements” on page 95.

SORTDKdd DD Statement
SORTWKdd data sets can be assigned to VIO. If the ICEMAC parameter VIO is
specified or defaults to NO, SORTWKdd data sets are deallocated and reallocated
by DFSORT using SORTDKdd ddnames. SORTDKdd ddnames are reserved for
use by DFSORT.

SORTDIAG DD Statement
The SORTDIAG DD statement specifies that all messages, including diagnostic
messages (ICE800I through ICE999I),and control statements are to be written to
the message data set. The statement can be used for all DFSORT techniques and
provides information on EXCP counts, intermediate storage allocation and use, and
so on. The SORTDIAG DD statement has no effect on console messages. The
statement is intended as a diagnostic tool.

When SORTDIAG is used, a SYSOUT DD statement or a ddname DD statement
(where ddname is the alternate message data set ddname specified during
installation or run-time) should be provided. If ICEMAC option NOMSGDD=QUIT is
in effect and neither an alternate message data set ddname statement nor a
SYSOUT ddname statement is provided, DFSORT terminates with a return code of
20.

Example 13 SORTDIAG DD Statement:

SORTSNAP DD Statement
The SORTSNAP DD statement defines the data set where the snap dumps
requested by the ESTAE recovery routine, or the snap dumps requested before or
after a call to an EFS program are printed. SORTSNAP is dynamically allocated by
DFSORT whenever it is required. The ddname, SORTSNAP, is reserved for
DFSORT.

Using DD Statements
A DFSORT job always requires DD statements after the EXEC statement.DD
statements fall into two categories:

v System DD statements (discussed in detail in “System DD Statements” on
page 79)

//DFSPARM DD *
SORT FIELDS=(5,2,CH,D),SKIPREC=10
STOPAFT=100,BSAM,SKIPREC=5
OPTION SORTIN=DATAIN,SKIPREC=20

//SORTDIAG DD DUMMY

DFSPARM DD Statement

76 DFSORT R14 Application Programming Guide

v Program DD statements (discussed in detail in “Program DD Statements” on
page 81).

System DD statements, and some program DD statements, are usually supplied
automatically when you use a cataloged procedure. Others you must always supply
yourself.

The DD statement parameters, the conditions under which they are required, and
the default values, are summarized in Table 7. The subparameters of the DCB
parameter (a DD statement parameter) are described similarly in Table 8 on
page 78.

Notes:

1. Performance is enhanced if the LRECL subparameter of the DCB is accurately
specified for variable-length records. The maximum input record length you can
specify for your particular configuration is given in “Data Set Notes and
Limitations” on page 12.

2. When using DFSORT applications, FREE=CLOSE cannot be used on any DD
statements.

Table 7. DD Statement Parameters Used by DFSORT

Parameter When Required Parameter Values Default Value

{AMP| BUFSP} When password-protected
VSAM data sets are used
and the password is
supplied through E18, E38,
or E39.

Minimum buffer pool value
given when creating the
data set.

None.

DCB Required when 7-track tape
is used; for input on tape
without standard labels; and
when the default values are
not applicable.

Specifies information used
to fill the data control block
(DCB) associated with the
data set.

(See separate
subparameters in Table 8
on page 78.)

DISP When the default value is
not applicable.

Indicates the status and
disposition of the data set.

The system assumes
(NEW, DELETE).

DSNAME or DSN When the DD statement
defines a labeled input data
set (for example, SORTIN),
or when the data set being
created is to be kept or
cataloged (for example,
SORTOUT), or passed to
another step.

Specifies the fully qualified
or temporary name of the
data set.

The system assigns a
unique name.

LABEL When the default value is
not applicable.

Specifies information about
labeling and retention for
the data set.

The system assumes
standard labeling.

SPACE When the DD statement
defines a new data set on
direct access.

Specifies the amount of
space needed to contain
the data set.

None.

UNIT When the input data set is
neither cataloged nor
passed or when the data
set is being created.

Specifies (symbolically or
actually) the type and
quantity of I/O units
required by the data set.

None.

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 77

Table 7. DD Statement Parameters Used by DFSORT (continued)

Parameter When Required Parameter Values Default Value

VOLUME or VOL When the input data set is
neither cataloged nor
passed, for multireel input
or when the output data set
is on direct access and is to
be kept or cataloged.

Specifies information used
to identify the volume or
volumes occupied by the
data set.

None.

Table 8. DCB Subparameters Used by DFSORT

Subparameter Condition When Required Subparameter Values Default Value

BUFOFF When processing data in
ISCII/ASCII format.

Specifies the length of the
buffer offset or specifies
that the buffer offset is the
block length indicator.

DEN When the data set is
located on a 7-track tape
unit.

Specifies the density at
which the tape was
recorded.

800 bpi

OPTCD When processing data in
ISCII/ASCII format.

Specifies that the tape
processed is in ISCII/ASCII
format.

TRTCH When the data set is
located on a 7-track tape
unit.

When the data set is
located on 3490 or 3480
with IDRC and system
IDRC is not used.

Specifies the technique
used to record 8-bit bytes
on a 7-track tape.

Specifies whether data set
is compacted.

Converter not used,
translator not used, odd
parity.

System default option.

BLKSIZE 4 5 When the DCB parameter
is required and the default
value is not suitable except
on SORTWKdd statements.

Specifies the maximum
length (in bytes) of the
physical records in the data
set.

v For old data sets, the
value in the data set
label.

v For new output data sets,
appropriate values based
on the input data set or
RECORD statement
values.

If SDB=YES is in effect,
Blockset uses the
system-determined
optimum block size when
the output data set block
size is zero.

Applications which
require a specific output
data set block size
should be changed to
specify that block size
explicitly.

v No default if input on
unlabeled tape or BLP or
NSL specified.

LRECL 5 3 Specifies the maximum
length (in bytes) of the
logical records in the data
set.

4. See “SORTIN DD Statement” on page 83 and “SORTINnn DD Statement” on page 85.

Using DD Statements

78 DFSORT R14 Application Programming Guide

Duplicate Ddnames: If you specify a particular ddname (such as SORTIN) more
than once within the same step, DFSORT uses the first ddname and ignores
subsequent duplicates.Processing continues normally.

In addition:

v SORTIN0, SORTIN1...SORTIN9 can be specified instead of SORTIN00,
SORTIN01...SORTIN09, respectively.If you specify both and SORTIN0x in the
same job step, DFSORT treats them as duplicates, and ignores each usage after
the first. For example, SORTIN2 and SORTIN02 are treated as duplicates and
only SORTIN2 is used.

Note: For a conventional merge, will not be recognized because of the existing
restriction which allows only SORTIN01, SORTIN02...SORTIN16.
Duplicates of these accepted ddnames will be ignored.

Duplicate OUTFIL ddnames are ignored at the OUTFIL statement level as explained
in “OUTFIL Statements Notes” on page 267.

Shared Tape Units: The following pairs of DFSORT data sets can be assigned to
a single tape unit:
v The SORTIN data set and the SORTWK01 data set (tape work data set sorts

only)
v The SORTIN data set and the SORTOUT data set or one OUTFIL data set (sort

applications only).

If you want to associate the SORTIN data set with SORTWK01, you can include the
parameter UNIT=AFF=SORTIN in the DD statement for SORTWK01. The AFF
subparameter causes the system to place the data set on the same unit as the
dataset with the ddname following the subparameter (SORTIN, in this case).

In the same way, you can associate the SORTIN data set with the SORTOUT data
set or an OUTFIL data set by including UNIT=AFF=SORTIN in the SORTOUT or
OUTFIL DD statement.

SORTINnn tape data sets must all be on different tape units because they are read
concurrently. SORTOUT and OUTFIL tape data sets must all be on different tape
units because they are written concurrently.

System DD Statements: If you choose not to use the SORT or SORTD cataloged
procedures to invoke DFSORT, you might need to supply system DD statements in
your input job stream(See also the following section for DD statements dedicated to
DFSORT, such as SORTIN). The DD statements contained in the cataloged
procedure (or provided by you) are:

//JOBLIB DD
Defines your program link library if it is not already known to the system.

//STEPLIB DD
Same as //JOBLIB DD.

//SYSIN DD
Contains DFSORT control statements, comment statements, blank

5. This is the only subparameter allowed for DD * data sets.

6. For padding and truncating fixed-length records, see “Data Set Notes and Limitations” on page 12.

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 79

statements and remarks when DFSORT is invoked with JCL rather than by
another program. It can also contain user exit routines, in object deck
format, to be link-edited by DFSORT.

v If you use DFSPARM, then SYSIN is not necessary unless your job
requires link-editing.

v The SYSIN data set usually resides in the input stream; however, it can
be defined as a sequential data set or as a member of a partitioned data
set.

v The data set must be defined with RECFM=F or FB and LRECL=80.

v DFSORT supports concatenated SYSIN data sets to the extent that the
system supports “like” concatenated data sets for BSAM. Refer to z/OS
DFSMS: Using Data Sets for further information about “like”
concatenated data sets.

Note: The OPTION statement keywords EFS, LIST, NOLIST, LISTX,
NOLISTX, LOCALE, MSGPRT, MSGDDN, SMF, SORTDD, SORTIN,
and SORTOUT are used only when they are passed by an extended
parameter list or when in the DFSPARM data set. If they are
specified on an OPTION statement read from the SYSIN or
SORTCNTL data set, the keyword is recognized, but the parameters
are ignored.

If you use the DFSPARM DD statement instead, you can specify both
EXEC PARM options and DFSORT control statements in a single source
data set that overrides all other sources. See “DFSPARM DD Statement” on
page 92 .

If user exit routines are in SYSIN, make sure that:

v The END statement is the last control statement.

v The user exit routines are arranged in numeric order (for example, E11
before E15).

v The user exit routines are supplied immediately after the END control
statement.

v Nothing follows the last object deck in SYSIN.

v A SORTMODS DD statement is included.

If DFSORT is program invoked, and you supply the DFSORT control
statements through the 24-bit or extended parameter list, SORTCNTL, or
DFSPARM, SYSIN remains the source of user exit routines placed in the
system input stream.

//SYSOUT DD
Identifies the system output data set for messages. Always use this
statement if a cataloged procedure is not used. If you are invoking
DFSORT from another program, you can specify an alternate ddname for
the message data set. (If you are invoking DFSORT from a COBOL
program and are using no ddname other than SYSOUT, the use of EXHIBIT
or DISPLAY in your COBOL program can produce uncertain printing
results.) Before printing DFSORT messages, a skip to a new page is
performed. DFSORT uses RECFM=FBA, LRECL=121, and the specified
BLKSIZE for the data set attributes. If the BLKSIZE you specify is not a
multiple of 121, DFSORT uses BLKSIZE=121. If you do not specify the
BLKSIZE, DFSORT selects the block size as directed by the SDBMSG
installation option (see DFSORT Installation and Customization R14).

Using DD Statements

80 DFSORT R14 Application Programming Guide

//SYSUDUMP DD
Defines the data set for output from a system ABEND dump routine.

//SYSMDUMP DD
Same as //SYSUDUMP DD.

//SYSABEND DD
Same as //SYSUDUMP DD.

If you are using the supplied SORT cataloged procedure, the DD statements below
are automatically supplied.If you are not using the SORT cataloged procedure and
you are using the linkage editor, you must supply the following DD statements:

//SYSPRINT DD
Contains messages from the linkage editor.

//SYSUT1 DD
Defines the intermediate storage data set for the linkage editor.

//SYSLIN DD
Defines a data set for control information for the linkage editor.

//SYSLMOD DD
Defines a data set for output from the linkage editor.

Note: If you do not include user routines, or if you include user routines that do not
require link-editing, you can usethe supplied SORTD cataloged procedure. If
you include user routines that require link-editing, you can use the SORT
cataloged procedure.

Program DD Statements: Even if you use the SORT or SORTD cataloged
procedure to invoke DFSORT, you might need to supply additional dedicated DD
statements.The following list summarizes each of these statements, and a more
detailed explanation of each one follows.

//SORTLIB DD
Defines the data set that contains special load modules for DFSORT. Can
usually be omitted.

//SORTIN DD
Defines the input data set for a sorting or copying application. Will not be
used for a merging application.

//SORTINnn DD
Defines the input data sets for a merging application. Will not be used for a
sorting or copying application.

//SORTWKdd DD
Defines intermediate storage data sets. Usually needed for a sorting
application unless dynamic allocation is requested. Will not be used for a
copying or merging application.

//SORTOUT DD
Defines the SORTOUT output data set for a sorting, merging, or copying
application.

//outfil DD
Defines an OUTFIL output data set for a sorting, merging, or copying
application.

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 81

//SORTCKPT DD
Defines the data set used to store the information that the system needs to
restart the sort from the last checkpoint. This is only needed if you are
using the checkpoint facility.

//SORTCNTL DD
Defines the data set from which additional or changed DFSORT control
statements can be read when DFSORT is program-invoked. Refer to the
SYSIN DD statement for valid data set attributes.

//DFSPARM DD
Defines the data set from which both additional or changed DFSORT
program control statements and EXEC statement PARM options can be
read when DFSORT is directly invoked or program invoked. Refer to the
SYSIN DD statement for valid data set attributes.

//SORTDKdd DD
Defines the data set used for a VIO SORTWKdd allocation by DFSORT if it
is dynamically reallocated; SORTDKdd must never be specified in the job
stream.

//SORTDIAG DD
Specifies that all messages and control statements are printed. Used
primarily for diagnostics and debugging.

//SORTSNAP DD
Defines the snap dump data set dynamically allocated by DFSORT.
SORTSNAP must never be specified in the job stream.

//SORTMODS DD
Defines a temporary partitioned data set. This temporary data set must be
large enough to contain all your user exit routines that appear in SYSIN for
a given application. If none of your routines appear in SYSIN, this
statement is not required. If your routines are in libraries, you must include
DD statements defining the libraries.

DFSORT temporarily transfers the user exit routines in SYSIN to the data
set defined by this DD statement before they are link-edited for processing.

SORTLIB DD Statement: The SORTLIB DD statement can usually be omitted.This
statement describes the data set that contains special DFSORT load modules.

When Required: If ICEMAC option SORTLIB=PRIVATE is in effect or dynamic link
edit of user exits is specified:

v For sort applications using tape work data sets

v For merge applications for which Blockset cannot be used (see message
ICE800I).

The ICEMAC SORTLIB option determines whether DFSORT searches a system
library or private library for the load modules required by tape workdata set sorts
and Conventional merges.

Example 1 SORTLIB DD Statement:

This example shows DD statement parameters that define a previously cataloged
input data set:

//SORTLIB DD DSNAME=USORTLIB,DISP=SHR

Using DD Statements

82 DFSORT R14 Application Programming Guide

DSNAME
causes the system to search the catalog for a data set with the name
USORTLIB. When the data set is found, it is associated with the ddname
SORTLIB. The control program obtains the unit assignment and volume serial
number from the catalog and, if the volume is not already mounted, writes a
mounting message to the operator.

DISP
indicates that the data set existed before this job step, that it should be kept
after this job step, and that it can be used concurrently by several jobs (SHR).
None of the jobs should change the data set in any way.

For information on the parameters used in the SORTLIB DD statement, the
conditions under which they are required, and the default values assumed if a
parameter is not included, see Table 7 on page 77. The subparameters of the DCB
parameter are described in the same detail in Table 8 on page 78. For more
detailed information, see z/OS MVS JCL Reference and z/OS MVS JCL User’s
Guide.

SORTIN DD Statement: The SORTIN DD statement describes the characteristics
of the data set in which the records to be sorted or copied reside and also indicates
its location.

When Required A SORTIN DD statement is required for all sort or copy
applications, unless you provide an E15 user exit that supplies all input to DFSORT
and include a RECORD statement in the program control statements. The SORTIN
DD statement is ignored if your program invokes DFSORT and passes the address
of your E15 user exit in the parameter list.

Data Set Characteristics DFSORT accepts empty and null non-VSAM data sets for
sorting and copying (be sure to supply DCB parameters). DFSORT also accepts
empty permanent VSAM data sets for sorting or copying. For non-VSAM data sets,
DFSORT examines the DS1LSTAR field in the format-1 DSCB to determine
whether the data set is empty or null. If DS1LSTAR is zero, DFSORT treats the
data set as empty or null. If the data set is a null multivolume data set and the
DS1IND80 flag is off in the format-1 DSCB of the first volume of the multivolume
data set, DFSORT opens the data set for output to force an end of file (EOF) mark
before using the data set for input.

Note that a null data set is one that has been newly created, but never successfully
closed. Null data sets cannot be processed successfully for a tape work data set
sort. The “System Code” field in the data set label in the DASD Volume Table of
Contents (DSCB in the VTOC) indicates a data set created by the VSE operating
system if it contains the letters DOS or VSE within it. Such data sets are never
treated as null; however, they may be empty. DFSORT cannot process VSE DASD
data sets that do not have DOS or VSE within the System Code field.

See “Data Set Considerations” on page 11 for additional considerations.

The following rules apply to concatenated data sets:

v RECFM must be either all fixed-length or all variable-length for the data sets in
the concatenation.

v BLKSIZE can vary, with two exceptions:

– When all three of the following conditions apply:
(1) The Blockset technique is not selected,

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 83

(2) The largest block size of the data sets in the concatenation is for a
tape data set, and
(3) That tape data set is not the first data set in the concatenation,

then the block size for that tape data set must be explicitly specified using the
BLKSIZE parameter.

– For a tape work data set sort, the first data set in the concatenation must
have the largest block size.

v With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary, but the first data set in a concatenation
must specify the largest record length.

v If the data sets are on unlike devices, you cannot use the EXLST parameter at
user exit E18.

v If Blockset is not selected and BSAM is used, all null data sets must precede all
non-null data sets; otherwise, the results are unpredictable.

v DFSORT forces an EOF mark on all null data sets whose format-1 DSCB
DS1IND80 flag is off before using BSAM to process the null data sets.

v If you define a data set using the DUMMY parameter, do not concatenate other
data sets to it; the system ignores data sets concatenated to a DUMMY data set.

v If VSAM data sets are concatenated, the system only processes the first data
set.

v Input cannot consist of both VSAM and non-VSAM data sets.

General Coding Notes

v For a copy application, the SORTIN data set should not be the same as the
SORTOUT data set or any OUTFIL data set because this can cause lost or
incorrect data or unpredictable results.

v For a sort application, the SORTIN data set should not be the same as any
SORTWKdd data set because this can cause lost or incorrect data or
unpredictable results. The SORTIN data set can be the same as the SORTOUT
data set or an OUTFIL data set, but this situation can lead to the loss of the data
set if the sort application does not end successfully.

v FREE=CLOSE cannot be specified. User labels are not copied.

Example 2 SORTIN DD Statement

This example shows DD statement parameters that define a previously cataloged
input data set:

DSNAME
causes the system to search the catalog for a data set with the name INPUT.
When the data set is found, it is associated with the ddname SORTIN. The
control program obtains the unit assignment and volume serial number from the
catalog and, if the volume is not already mounted, writes a mounting message
to the operator.

DISP
indicates that the data set existed before this job step, that it should be kept
after this job step, and that it can be used concurrently by several jobs (SHR).
None of the jobs should change the data set in any way.

Example 3 Volume Parameter on SORTIN DD

//SORTIN DD DSNAME=INPUT,DISP=SHR

Using DD Statements

84 DFSORT R14 Application Programming Guide

If the input data set is contained on more than one reel of magnetic tape, the
VOLUME parameter must be included on the SORTIN DD statement to indicate the
serial numbers of the tape reels. In this example, the input data set is on three reels
that have serial numbers 75836, 79661, and 72945.

If a data set is not on a disk or on a standard-labeled tape, you must specify DCB
parameters in its DD statement.

SORTINnn DD Statement: The SORTINnn DD statements describe the
characteristicsof the data sets in which records to be merged reside and indicate
the locations of these data sets.

When Required SORTINnn DD statements are always needed for a merge, unless
the merge is invoked from another program and all input is supplied through a
routine at user exit E32.

Data Set Characteristics Input data sets can be either non-VSAM or VSAM, but not
both. Empty and null non-VSAM data sets are accepted. An empty VSAM data set
causes a VSAM open error (code 160), and DFSORT terminates. For non-VSAM
data sets, DFSORT examines the DS1LSTAR field in the format-1 DSCB to
determine whether the data set is null or empty. If DS1LSTAR is zero, DFSORT
treats the data set as null or empty. A null data set is one that has been newly
created but never successfully closed. Null data sets cannot be processed
successfully by the Conventional merge technique.

RECFM must be the same for all input data sets.

BLKSIZE can vary, but for a Conventional merge, SORTIN01 must specify the
largest block size.

With fixed-length records, LRECL must be the same for all data sets. With
variable-length records, LRECL can vary.

Data sets can be multivolume but not concatenated. If a SORTINnn data set is
multivolume and null, DFSORT forces an EOF mark on the data set before use.

See “Data Set Notes and Limitations” on page 12 for additional considerations.

General Coding Notes

v A SORTINnn data set should not be the same as the SORTOUT data set or any
OUTFIL data set because this can cause lost or incorrect data or unpredictable
results.

v You can merge up to 16 data sets. (Blockset might allow more, depending on
available storage.)

v If Blockset merge is used, nn can be any integer from 00 (the initial zero is
optional) to 99, in any order. Blockset merge treats ddnames of the form and
SORTIN0x as duplicates, and ignores any occurrences after the first. For
example, if DFSORT reads a DD statement as SORTIN4 DD... and subsequently
reads another as SORTIN04 DD..., the latter DD statement is ignored.

//SORTIN DD DSN=SORTIN,DISP=(OLD,KEEP),UNIT=3490,
// VOL=SER=(75836,79661,72945)

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 85

v If Conventional merge is used, nn can range from 01 to 16. The first number you
use must be 01, and the remainder must follow in numeric order. No numbers
can be skipped. Remember that Conventional merge ignores ddnames in the
form “”.

v FREE=CLOSE cannot be specified. User labels are not copied.

Example 4 SORTIN01-03 DD Statements (Merge)

Example 5 SORTIN01-02 DD Statements (Merge)

SORTWKdd DD Statement: The SORTWKdd DD statements describe the
characteristicsof the data sets used as intermediate storage areas for records to be
sorted; they also indicate the location of these data sets.

Up to 255 SORTWKdd DD statements can be specified. However, if you specify
more than 32 and the Blockset technique is not selected, only the first 32 are used.

When Required One or more SORTWKdd statements are required for each sort
application (but not a merge or copy), unless:

v Input can be contained in main storage

v Dynamic work space allocation has been requested (DYNALLOC)

v Hipersorting or dataspace sorting is used.

For information on using work data sets, see Appendix A, “Using Work Space” on
page 593.

Diagnostic message ICE803I gives information on intermediate storage allocation
and use.

Devices SORTWKdd data sets can be on DASD or on tape, but not both. DASD
types can be mixed.

Tape must be nine-track unless input is on seven-track tape, in which case work
tapes can (but need not) be seven-track.

General Coding Notes

v Unless the input file is very large, two or three SORTWKdd data sets are usually
sufficient. Two or three large SORTWKdd data sets are preferable to several
small data sets. Placing each SORTWKdd data set on a separate device can
improve performance.

For optimum allocation of resources such as virtual storage, avoid specifying a
large number of work data sets unnecessarily.

//SORTIN01 DD DSNAME=MERGE1,VOLUME=SER=000111,DISP=OLD,
// LABEL=(,NL),UNIT=3400-3,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
//SORTIN02 DD DSNAME=MERGE2,VOLUME=SER=000121,DISP=OLD,
// LABEL=(,NL),UNIT=3400-3,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)
//SORTIN03 DD DSNAME=MERGE3,VOLUME=SER=000131,DISP=OLD,
// LABEL=(,NL),UNIT=3400-3,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=240)

//SORTIN01 DD DSNAME=INPUT1,VOLUME=SER=000101, *
// UNIT=3390,DISP=OLD *DCB PARAMETERS
//SORTIN02 DD DSNAME=INPUT2,VOLUME=SER=000201, *SUPPLIED FROM
// UNIT=3390,DISP=OLD *LABELS

Using DD Statements

86 DFSORT R14 Application Programming Guide

v A SORTWKdd data set should not be the same as the SORTIN data set, the
SORTOUT data set, any OUTFIL data set, or any other SORTWKdd data set
because this can cause lost or incorrect data or unpredictable results.

v Cylinder allocation is preferable for performance reasons. Temporary SORTWKdd
data sets allocated in tracks or blocks (without ROUND) are readjusted to
cylinders by DFSORT.

v For DASD work data sets, any valid ddname of the form SORTWKdd or
SORTWKd can be used (for example, SORTWK01, SORTWKC3, SORTWK2,
SORTWK#5, SORTWKA, SORTWKXY and so on). The ddnames can be in any
order. SORTWLd and SORTWK0d are not traated as duplicate ddnames (for
example, SORTWK5 and SORTWK05 will both be used if specified, as will
SORTWKQ and SORTWK0Q). If you specify more than 255 ddnames and the
Blockset technique is selected, only the first 255 ddnames are used. If you
specify more than 32 ddnames and the Blockset technique is not selected, only
the first 32 ddnames are used.

v For tape work data sets, at least three SORTWKdd data sets must be specified.
The first three ddnames must be SORTWK01, SORTWK02 and SORTWK03.
Subsequent ddnames, if specified, must be in order from SORTWK04 through
SORTWK32, with no numbers skipped,

v FREE=CLOSE cannot be specified.

v DD DUMMY must not be used.

v Parameters relating to ISCII/ASCII data should not be included for tape work
data sets.

DASD Work Data Set Coding Notes

v Data sets must be sequential, not partitioned.

v The SPLIT cylinder parameter must not be specified.

v If no secondary allocation is requested for temporary SORTWKdd data sets,
automatic secondary allocation will be used unless NOWRKSEC is in effect.
(Secondary allocation is limited to 12 work data sets in the Peerage and Vale
sorting techniques only.)

v If the data set is allocated to VIO, there is no automatic secondary allocation.

v Secondary allocation can be requested for work data sets. If more work data sets
are defined, they are used with only the primary allocation. (Secondary allocation
is limited to 12 work data sets in the Peerage and Vale sorting techniques only.)

v DFSORT uses only the space on the first volume specified for a multivolume
data set. Space on the second and subsequent volumes is not used. Multivolume
SORTWKdd data sets are, therefore, treated as single-volume SORTWKdd data
sets.

v If primary space is fragmented, all but the first fragment are handled as
secondary space.

Virtual I/O If a SORTWKdd data set is specified on a virtual device:

v With VIO=NO: DFSORT performs dynamic reallocation using the ddname
SORTDKdd on a real device with the same device type as the virtual device. If a
real device corresponding to the virtual device is not available in the system,
DFSORT terminates with an ICE083A message; see DFSORT Messages, Codes
and Diagnosis Guide R14 for more information about this error. Non-VIO
SORTWKdd data sets are also reallocated when VIO SORTWKdd data sets are
present.

v With VIO=YES: the virtual device is used; performance may be degraded.

Using DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 87

The following is an example of a SORTWKdd DD statement using a DASD work
data set:

Example 6 SORTWK01 DD Statement, DASD Work Data Set

If you use the checkpoint/restart facility and need to make a deferred restart, you
must make the following additions to the above statement so that the sort work data
set is not lost:

Thus the same SORTWKdd DD statement for a deferred restart would be:

The following is an example of SORTWKdd DD statements using three tape
devices.

Example 7 SORTWK01-03 DD Statement,Tape Intermediate Storage

If DFSORT terminates unsuccessfully and the above DD statements have been
specified, the intermediate storage data sets remain in the system until the step has
been successfully rerun or until the data sets have been deleted by some other
means.

These parameters specify unlabeled data sets on three 3400 series tape units.
Because the DSNAME parameters are omitted, the system assigns unique names.

SORTOUT and OUTFIL DD Statements: The SORTOUT and OUTFIL DD
statements describe the characteristicsof the data sets in which the processed
records are to be placed and indicate their location.

The SORTOUT DD statement specifies the single non-OUTFIL output data set for a
sort, copy, or merge application. OUTFIL processing does not apply to SORTOUT.

The FNAMES and/or FILES parameters of one or more OUTFIL statements specify
the ddnames of the OUTFIL data sets for a sort, copy, or merge application. The
parameters specified for each OUTFIL statement define the OUTFIL processing to
be performed for the OUTFIL data sets associated with that statement. For specific
information about OUTFIL processing, see “OUTFIL Control Statements” on
page 204.

Although the ddname SORTOUT can actually be used for an OUTFIL data set, the
term “SORTOUT” will be used to denote the single non-OUTFIL output data set.

When Required Each ddname specified in an OUTFIL statement requires a
corresponding DD statement for that OUTFIL data set.

//SORTWK01 DD SPACE=(CYL,(15,5)),UNIT=3390

DSNAME=name1,DISP=(NEW,DELETE,CATLG)

//SORTWK01 DD DSNAME=name1,UNIT=3390,SPACE=(CYL,(15,5)),
// DISP=(NEW,DELETE,CATLG)

//SORTWK01 DD UNIT=3400-3,LABEL=(,NL)
//SORTWK02 DD UNIT=3400-3,LABEL=(,NL)
//SORTWK03 DD UNIT=3400-3,LABEL=(,NL)

Using DD Statements

88 DFSORT R14 Application Programming Guide

If you do not specify OUTFIL statements, a SORTOUT DD statement is required
unless you provide an E35 user exit that disposes of all output. A SORTOUT DD
statement is ignored if your program invokes DFSORT and passes the address of
an E35 user exit in the parameter list.

If you specify OUTFIL statements, you do not have to specify a SORTOUT DD
statement or an E35 user exit, although you can use either or both.

Data Set Characteristics See “Data Set Considerations” on page 11 for additional
considerations.

Block size If SDB=YES is in effect, Blockset uses the system-determined optimum
block size in most cases when the output data set block size is zero. (See DFSORT
Installation and Customization R14 for a full list of restrictions on the use of SDB.)
System-determined block size applies to both SMS-managed and
non-SMS-managed data sets and results in the most efficient use of space for the
device on which the output data set resides.

v For DASD output data sets, the optimum block size for the output device used is
selected based on the RECFM and LRECL attributes for the output data set. If
these output data set attributes are not available from the JFCB or format 1
DSCB, DFSORT will determine them from the SORTIN attributes or the
RECORD statement as usual and base the system-determined output data set
block size on these derived values.

v For tape output data sets, system-determined block size is used only for data
sets with a label type other than AL. The optimum block size is selected based
on the RECFM and LRECL attributes for the output data set as shown in Table 9
below. If these output data set attributes are not available from the JFCB or from
the tape label (only for DISP=MOD with AL, SL, or NSL label, when appropriate),
DFSORT will determine them from the SORTIN attributes or the RECORD
statement as usual and base the system-determined output data set block size
on these derived values.

Table 9. System-Determined Block Sizes for Tape Output Data Sets

RECFM BLKSIZE is set to:

F or FS LRECL

FB or FBS Highest possible multiple of LRECL that is
less than or equal to 32760

V, D, VS, or DS LRECL + 4

VB, DB, VBS, or DBS 32760

For some jobs, the selection of a larger output data set block size when
system-determined block size is used can require an increase in the amount of
storage needed for successful DFSORT processing.

Applications which require a specific output data set block size should be changed
to specify that block size explicitly. Alternatively, ICEMAC option SDB=NO can be
selected to eliminate the use of system-determined block size for all DFSORT
applications.

If SDB=YES is not in effect, DFSORT selects an appropriate (though not
necessarily optimum) block size for the output data set based on the available

SORTOUT and OUTFIL DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 89

attributes from the output data set, SORTIN, and the RECORD statement. The
output data set block size will not necessarily be the same as the SORTIN block
size.

Reblockable Indicator DFSORT sets the reblockable indicator in the output data set
label when:

Blockset is selected and

v DFSORT sets the system-determined optimum block size for the output data set
or

v Allocation sets the system-determined optimum block size for the output data set
before DFSORT gets control.

General Coding Notes

v For a copy application, neither the SORTOUT data set nor any OUTFIL data set
should be the same as the SORTIN data set because this can cause lost or
incorrect data or unpredictable results.

v For a merge application, neither the SORTOUT data set nor any OUTFIL data
set should be the same as any SORTINnn data set because this can cause lost
or incorrect data or unpredictable results.

v For a sort application, the SORTOUT data set or an OUTFIL data set can be the
same as the SORTIN data set, but this situation can lead to the loss of the data
set if the sort application does not end successfully.

v An OUTFIL data set should not be the same as the SORTOUT data set or any
other OUTFIL data set because this can cause lost or incorrect data or
unpredictable results.

v If RETPD or LABEL=RETPD is specified in the SORTOUT or OUTFIL DD
statement for a standard labeled tape, the DCB parameters must also be
specified. If the DCB parameters are not specified, the tape data set might be
opened twice.

v Do not specify OPTCD=W for a full function IBM 3480 tape unit; it is overridden.
For a 3480 operating in 3420 compatibility mode (specified as 3400-9), the
OPTCD=W request is not overridden, but performance might be degraded.

v If no secondary allocation is requested for a temporary or new output data set,
automatic secondary allocation will be used unless NOOUTSEC is in effect.

v The RECFM, LRECL, and BLKSIZE in a tape label are used only for a tape
output data set with DISP=MOD, a DD volser present, and an AL, SL, or NSL
label, when appropriate.

v FREE=CLOSE cannot be specified.

Example 8 SORTOUT DD Statement

DISP
specifies the data set unknown to the operating system (NEW) and catalogs
(CATLG) it under the name C905460.OUTPT.

DSNAME
specifies that the data set is called C905460.OUTPT.

SPACE
requests five cylinders of storage for the data set.

//SORTOUT DD DSN=C905460.OUTPT,UNIT=3390,SPACE=(CYL,5),
// DISP=(NEW,CATLG)

SORTOUT and OUTFIL DD Statements

90 DFSORT R14 Application Programming Guide

UNIT
Indicates that the data set is on a 3390.

SORTCKPT DD Statement: The SORTCKPT data set can be allocated on any
device that operateswith the Basic Sequential Access Method (BSAM). Processing
must be restarted only from the last checkpoint taken.

Example 9 SORTCKPT DD Statement

When you allocate the SORTCKPT data set, you must include at least one work
data set.

If the CKPT operand is specified on the OPTION or SORT control statement, more
intermediate storage could be required.

If you want to use the Checkpoint/Restart Facility, refer to “Checkpoint/Restart” on
page 647.

SORTCNTL DD Statement: The SORTCNTL data set can be used to
supplyDFSORT control statements, comment statements, blank statements, and
remarks when DFSORT is invoked from another program (written, for example, in
COBOL or PL/I).

v The SORTCNTL data set usually resides in the input stream, but can be defined
as a sequential data set or as a member of a partitioned data set.

v The data set must be defined with RECFM=F or FB and LRECL=80.

v DFSORT supports concatenated SORTCNTL data sets to the extent that the
system supports “like” concatenated data sets for BSAM. Refer to z/OS DFSMS:
Using Data Sets for further information about “like” concatenated data sets.

v When DFSORT is invoked from a PL/I program, the SORTCNTL or DFSPARM
data set must not be used to supply a new RECORD control statement.

Example 10 SORTCNTL DD Statement

Notes:

1. The OPTION statement keywords EFS, LIST, NOLIST, LISTX, NOLISTX,
LOCALE, MSGPRT, MSGDDN, SMF, SORTDD, SORTIN, and SORTOUT are
used only when they are passed by an extended parameter list or when in the
DFSPARM data set. If they are specified on an OPTION statement read from
the SYSIN or SORTCNTL data set, the keyword is recognized, but the
parameters are ignored.

If your program invokes DFSORT more than once, you can direct DFSORT to
read different versions of the SORTCNTL data set at each call. See the
explanation of the SORTDD parameter in “OPTION Control Statement” on
page 155.

2. If you use the DFSPARM DD statement instead of the SORTCNTL DD
statement, you can specify both EXEC PARM options and DFSORT control
statements in a single source data set that overrides all other sources. See
“DFSPARM DD Statement” on page 92. For override rules, see Appendix B,
“Specification/Override of DFSORT Options” on page 603.

//SORTCKPT DD DSNAME=CHECK,VOLUME=SER=000123,
// DSP=(NEW,KEEP),UNIT=3400-3

//SORTCNTL DD *

SORTOUT and OUTFIL DD Statements

Chapter 2. Invoking DFSORT with Job Control Language 91

DFSPARM DD Statement: The DFSPARM DD statement can be used to supply
DFSORT program control statements and EXEC statement PARM optionsfrom a
single DD source. Because statements in the DFSPARM data set are read whether
DFSORT is program invoked or directly invoked, you can specify EXEC PARM
options when invoking DFSORT from another program (unlike SORTCNTL).
DFSPARM accepts all DFSORT program control statements and all EXEC
statement PARM options (including those ignored by SYSIN and SORTCNTL) and
any equivalent options specified on a DFSORT OPTION statement.

DFSPARM also accepts comment statements, blank statements, and remarks.

Full override and applicability details are listed below and in Appendix B,
“Specification/Override of DFSORT Options” on page 603.

v If you use DFSPARM, SYSIN is not necessary unless your job requires
link-editing.

v The DFSPARM data set usually resides in the input stream, but it can be defined
as a sequential data set or as a member of a partitioned data set.

v The data set must be defined with RECFM=F or FB and LRECL=80.

v DFSORT supports concatenated DFSPARM data sets to the extent that the
system supports “like” concatenated data sets for BSAM. Refer to z/OS DFSMS:
Using Data Sets for further information about “like” concatenated data sets.

v When DFSORT is invoked from a PL/I program, the SORTCNTL or DFSPARM
data set must not be used to supply a new RECORD control statement.

Note: The ddname DFSPARM is used throughout this book to refer to this data set
source for EXEC PARM options and DFSORT program control statements.
When your system programmers installed DFSORT, they might have
changed this name to one more appropriate for your site with the PARMDDN
option of the ICEMAC installation macro. Verify the correct ddname before
attempting to use the features available with DFSPARM.

General Coding Notes Coding of parameters in the DFSPARM DD statement
follows the same rules used for the JCL EXEC statement PARM options and the
program control statements specified in SYSIN or SORTCNTL. The following
exceptions apply:

v Labels are not allowed.

v PARM options and program control statements cannot be mixed on the same
line, but can be specified in any order on different lines.

v PARM options must be specified without the PARM= keyword and without quote
marks.

v Commas (or semicolons) are accepted, but not required, to continue PARM
options to another line.

v Leading blanks are not required for PARM options, but at least one leading blank
is required for program control statements.

FREE=CLOSE can be used for applicable DFSPARM data sets (for example, with
temporary and permanent sequential data sets, but not with DD * data sets).

When DFSORT is called from another program, FREE=CLOSE causes the
DFSPARM data set to be released when DFSORT returns to the caller. This allows
another DFSPARM data set to be used for a subsequent call.

DFSPARM DD Statement

92 DFSORT R14 Application Programming Guide

For example, if a COBOL program contains three SORT verbs, the following would
cause the control statements in DP1 to be used for the first SORT verb, the control
statements in DP2 to be used for the second SORT verb, and the control
statements in DP3 to be used for the third SORT verb:

//DFSPARM DD DSN=DP1,DISP=SHR,FREE=CLOSE
//DFSPARM DD DSN=DP2,DISP=SHR,FREE=CLOSE
//DFSPARM DD DSN=DP3,DISP=SHR,FREE=CLOSE

Without FREE=CLOSE, DP1 would be used for all three SORT verbs.

Example 11 DFSPARM DD Statement:

In this example the DFSPARM DD data set passes a DFSORT SORT statement,
the ABEND and STOPAFT parameters equivalent to specifying
PARM='ABEND,STOPAFT=500' in a JCL EXEC statement, and a DFSORT
OPTION statement.

Notes:

1. SORT and OPTION are control statements. ABEND and STOPAFT=500 are
PARM options.

2. The PARM option STOPAFT=500 overrides the SORT control statement option
STOPAFT=300.

Example 12 DFSPARM DD Statement

In this example, the DFSPARM DD data set contains a SORT program control
statement, three PARM options on one line, and an OPTION program control
statement.

Note: Because PARM options override program control statements, DFSORT uses
SKIPREC=5 and ignores the other SKIPREC specifications.

For information on the parameters used in the DFSPARM DD statement, the
conditions under which they are required, and any default values assumed if a
parameter is omitted, see “Specifying EXEC/DFSPARM PARM Options” on page 29
and Chapter 3, “Using DFSORT Program Control Statements” on page 95.

SORTDKdd DD Statement: SORTWKdd data sets can be assigned to VIO. If the
ICEMAC parameter VIO is specified or defaults to NOVIO SORTWKdd data sets
are deallocated and reallocated by DFSORT using SORTDKdd. SORTDKdd
ddnames are reserved for use by DFSORT.

SORTDIAG DD Statement: The SORTDIAG DD statement specifies that all
messages, including diagnostic messages (ICE800I through ICE999I),and control
statements are to be written to the message data set. The statement can be used

//DFSPARM DD *
SORT FIELDS=(1,2,CH,A),STOPAFT=300

ABEND
OPTION SORTIN=DATAIN
STOPAFT=500

//DFSPARM DD *
SORT FIELDS=(5,2,CH,D),SKIPREC=10
STOPAFT=100,BSAM,SKIPREC=5
OPTION SORTIN=DATAIN,SKIPREC=20

DFSPARM DD Statement

Chapter 2. Invoking DFSORT with Job Control Language 93

for all DFSORT techniques and provides information on EXCP counts, intermediate
storage allocation and use, and so on. The SORTDIAG DD statement has no effect
on console messages. The statement is intended as a diagnostic tool.

When SORTDIAG is used, a SYSOUT DD statement or a ddname DD statement
(where ddname is the alternate message data set ddname specified during
installation or run-time) should be provided. If ICEMAC option NOMSGDD=QUIT is
in effect and neither an alternate message data set ddname statement nor a
SYSOUT ddname statement is provided, DFSORT terminates with a return code of
20.

Example 13 SORTDIAG DD Statement

SORTSNAP DD Statement: The SORTSNAP DD statement defines the data set
wherethe snap dumps requested by the ESTAE recovery routine, or the snap
dumps requested before or after a call to an EFS program are printed. SORTSNAP
is dynamically allocated by DFSORT whenever it is required. The ddname,
SORTSNAP, is reserved for DFSORT.

//SORTDIAG DD DUMMY

SORTDIAG DD Statement

94 DFSORT R14 Application Programming Guide

Chapter 3. Using DFSORT Program Control Statements

Using Program Control Statements 97
Control Statement Summary . 98

Describing the Primary Task 98
Including or Omitting Records 98
Reformatting and Editing Records 98
Producing Multiple Output and Reports and Converting Records 99
Invoking Additional Functions and Options 99
Using Symbols . 99

General Coding Rules . 100
Continuation Lines . 101
Inserting Comment Statements 102
Coding Restrictions . 102

EFS Restrictions When an EFS Program Is in Effect 102
Using Control Statements from Other IBM Programs 103

ALTSEQ Control Statement . 103
Altering EBCDIC Collating Sequence—Examples 104

Example 1 . 104
Example 2 . 104
Example 3 . 104
Example 4 . 104
Example 5 . 105

DEBUG Control Statement . 105
Specifying Diagnostic Options—Examples 110

Example 1 . 110
Example 2 . 110

END Control Statement . 110
Discontinue Reading Control Statements—Examples 110

Example 1 . 110
Example 2 . 111

INCLUDE Control Statement 111
Relational Condition . 113
Comparisons . 114

Relational Condition Format. 114
Padding and Truncation 119
Cultural Environment Considerations 119

Including Records in the Output Data Set—Comparison Examples 119
Example 1 . 119
Example 2 . 120
Example 3 . 120
Example 4 . 120
Example 5 . 121

Substring Comparison Tests 121
Relational Condition Format. 121

Including Records in the Output Data Set—Substring Comparison Example 122
Example . 122

Bit Logic Tests . 122
Method 1: Bit Operator Tests 123

Relational Condition Format. 123
Fields . 124
Mask . 124

Padding and Truncation . 124
Including Records in the Output Data Set—Bit Operator Test Examples 124

Example 1 . 124

© Copyright IBM Corp. 1973, 2002 95

||

||

Example 2 . 125
Example 3 . 125

Method 2: Bit Comparison Tests 125
Relational Condition Format. 125
Fields . 126
Bit Constant . 126
Padding and Truncation 126

Including Records in the Output Data Set—Bit Comparison Test Examples 127
Example 1 . 127
Example 2 . 127
Example 3 . 127

Date Comparisons . 128
Relational Condition Format. 128

Including Records in the Output Data Set—Date Comparisons 130
Example 1 . 130
Example 2 . 130

INCLUDE/OMIT Statement Notes 130
INREC Control Statement . 131

INREC Statement Notes . 140
Reformatting Records Before Processing — Examples. 141

Example 1 . 141
Example 2 . 142
Example 3 . 142
Example 4 . 143
Example 5 . 144

MERGE Control Statement . 145
Specifying a MERGE or COPY—Examples 147

Example 1 . 147
Example 2 . 148
Example 3 . 148
Example 4 . 148

MODS Control Statement . 148
Identifying User Exit Routines—Examples 151

Example 1 . 151
Example 2 . 151

OMIT Control Statement . 151
Omitting Records from the Output Data Set—Example 154

Example . 154
OPTION Control Statement . 155

Aliases for OPTION Statement Options 199
Specifying DFSORT Options or COPY—Examples 200

Example 1 . 200
Example 2 . 201
Example 3 . 201
Example 4 . 202
Example 5 . 202
Example 6 . 202
Example 7 . 202
Example 8 . 203
Example 9 . 203

OUTFIL Control Statements. 204
OUTFIL Statements Notes 267
OUTFIL Features—Examples 270

Example 1 . 270
Example 2 . 270
Example 3 . 271

Using DFSORT Program Control Statements

96 DFSORT R14 Application Programming Guide

||
||

Example 4 . 274
Example 5 . 277
Example 6 . 278
Example 7 . 278
Example 8 . 278
Example 9 . 279
Example 10 . 280
Example 11. 280
Example 12 . 281
Example 13 . 281
Example 14 . 282
Example 15 . 283
Example 16 . 283
Example 17 . 284

OUTREC Control Statement 285
OUTREC Statement Notes 292
Reformatting the Output Record—Examples 293

Example 1 . 293
Example 2 . 293
Example 3 . 294
Example 4 . 294
Example 5 . 294
Example 6 . 295
Example 7 . 295

RECORD Control Statement 296
Describing the Record Format and Length—Examples 299

Example 1 . 299
Example 2 . 300

SORT Control Statement . 300
SORT/MERGE Statement Notes 308
Specifying a SORT or COPY—Examples 308

Example 1 . 308
Example 2 . 308
Example 3 . 309
Example 4 . 309
Example 5 . 309
Example 6 . 309

SUM Control Statement . 310
SUM Statement Notes. 312
Adding Summary Fields—Examples 313

Example 1 . 313
Example 2 . 313
Example 3 . 314
Example 4 . 314

Using Program Control Statements
Program control statements direct DFSORT in processing your records. Some
program control statements are required while others are optional. You use the
control statements to:

v Indicate whether a sort, merge, or copy is performed.

v Describe the control fields to be used.

v Indicate program exits for transferring control to your own routines.

v Describe DFSORT functions you want to have invoked.

v Describe input and output files.

Using DFSORT Program Control Statements

Chapter 3. Using DFSORT Program Control Statements 97

||
||
||
||
||

||

v Indicate various options you want to use during processing.

You can supply program control statements to DFSORT from:

v A SYSIN data set

v A SORTCNTL data set

v A DFSPARM data set

v A 24-Bit parameter list

v An extended parameter list

See Appendix B, “Specification/Override of DFSORT Options” on page 603 for an
explanation of when to use each source.

DFSORT Panels offers you an alternative to coding program control statements
directly. When you use panels to prepare a job to be run or saved in a data set, you
can create the necessary statements in correct syntax by entering information and
commands online. See DFSORT Panels Guide for details.

This chapter begins with a summary of DFSORT program control statements and
coding rules. A detailed description of each statement follows.

Control Statement Summary

Describing the Primary Task
The only required program control statement in a DFSORT application is a SORT,
MERGE, or OPTION statement that specifies whether you want to sort, merge, or
copy records. (Copying can be specified on any of the three statements.)

SORT Describes control fields if you are coding a sort application, or specifies a
copy application. Indicates whether you want ascending or descending
order for the sort.

MERGE
Describes control fields if you are coding a merge application, or specifies a
copy application. Indicates whether you want ascending or descending
order for the merge.

OPTION
Overrides installation defaults (such as EQUALS, CHALT, and CHECK) and
supplies optional information (such as DYNALLOC and SKIPREC). Can
specify a copy application.

Including or Omitting Records
You can specify whether certain records are included in the output data sets or
omitted from them.

INCLUDE
Specifies that only records whose fields meet certain criteria are included.

OMIT Specifies that any records whose fields meet certain criteria are deleted.

OUTFIL
Specifies the records to be included or omitted in multiple output data sets.

Reformatting and Editing Records
You can modify individual records by deleting and reordering fields and inserting
blanks, zeros, or constants.

Using Program Control Statements

98 DFSORT R14 Application Programming Guide

INREC
Specifies how records are reformatted before they are sorted, copied, or
merged.

OUTREC
Specifies how records are reformatted after they are sorted, copied, or
merged.

OUTFIL
Specifies how records are reformatted in multiple output data sets.

Producing Multiple Output and Reports and Converting Records
You can produce multiple output data sets and reports, convert variable-length
records to fixed-length records, and convert fixed-length records to variable-length
records..

OUTFIL
Specifies the output data sets and which records are to appear in each.
Specifies how records are to be converted from variable-length to
fixed-length or from fixed-length to variable-length.

Invoking Additional Functions and Options
You can use the remaining control statements to perform a variety of tasks.

ALTSEQ
Specifies changes to the ALTSEQ translation table to be used for SORT,
MERGE, INCLUDE or OMIT fields with format AQ, and for INREC,
OUTREC, and OUTFIL OUTREC fields with TRAN=ALTSEQ.

DEBUG
Specifies various diagnostic options.

END Causes DFSORT to discontinue reading SYSIN, SORTCNTL, or
DFSPARM.

MODS Specifies use of one or more user exit routines in a DFSORT application.
See Chapter 4, “Using Your Own User Exit Routines” on page 315 for
information about user exit routines.

RECORD
Can be used to supply length and type information.

SUM Specifies that numeric summary fields in records with equal control fields
are summed in one record and that the other records are deleted.

Using Symbols
You can define and use a symbol for any field or constant in the following DFSORT
control statements: INCLUDE, INREC, MERGE, OMIT, OUTFIL, OUTREC, SORT
and SUM. This makes it easy to create and reuse collections of symbols (that is,
mappings) representing information associated with various record layouts. See
Chapter 7, “Using Symbols for Fields and Constants” on page 485 for complete
details.

Control Statement Summary

Chapter 3. Using DFSORT Program Control Statements 99

|

|
|
|

|
|
|
|

|
|
|
|

General Coding Rules
See “Inserting Comment Statements” on page 102 for an explanation of how to use
comment statements, blank statements, and remarks. DFSORT program control
statements and EXEC PARM options can also be specified together in a
user-defined DD data set. See “DFSPARM DD Statement” on page 74 for special
coding conventions that apply to this DD source.

All other DFSORT control statements have the same general format, shown in
Figure 5. The illustrated format does not apply to control statements you supply in a
parameter list. See Chapter 5, “Invoking DFSORT from a Program” on page 367 for
information on the special rules that apply.

The control statements are free-form; that is, the operation definer,operand(s), and
comment field can appear anywhere in a statement, provided they appear in the
proper order and are separated by one or more blank characters. Column 1 of each
control statement must be blank, unless the first field is a label.

v Label Field

If present, the label must begin in column 1, and must conform to the operating
system requirements for statement labels.

v Operation Field

This field can appear anywhere between column 2 and column 71 of the first
line. It contains a word (for example, SORT or MERGE) that identifies the
statement type to the program. In the example below, the operation definer,
SORT, is in the operation field of the sample control statement.

v Operand Field

The operand field is composed of one or more operands separated by commas
or semicolons. This field must follow the operation field, and be separated from it
by at least one blank. No blanks are allowed within the parameters, but a blank
is required at the end of all parameters. If the statement occupies more than one
line, the operand must begin on the first line. Each operand has an operand
definer, or parameter (a group of characters that identifies the operand type to
DFSORT). A value or values can be associated with a parameter. The three
possible operand formats are:

– parameter

– parameter=value

– parameter=(value1,value2...,valuen).

The following example illustrates each of these formats.

Column 1 must be blank
unless a label is present

(Label) Operation Operand (Remarks)

(Continuation column)

(Sequence or
Identification)

72 73 80

Figure 5. Control Statement Format

SORT EQUALS,FORMAT=CH,FIELDS=(10,30,A)

General Coding Rules

100 DFSORT R14 Application Programming Guide

v Remark Field

This field can contain any information. It is not required, but if it is present, it
must be separated from the last operand field by at least one blank.

v Continuation Column (72)

Any character other than a blank in this column indicates that the present
statement is continued on the next line. However, as long as the last character of
the operand field on a line is a comma or semicolon followed by a blank, the
program assumes that the next line is a continuation line. The nonblank
character in column 72 is required only when a remark field is to be continued or
when an operand is broken at column 71.

v Columns 73 through 80

This field can be used for any purpose.

Continuation Lines
The format of the DFSORT continuation line is shown in Figure 6.

The continuation column and columns 73 through 80 of a continuation line have the
same purpose as they do on the first line of a control statement. Column 1 must be
blank.

A continuation line is treated as a logical extension of the preceding line. Either an
operand or a remark field can begin on one line and continue on the next. The
following rules apply and are demonstrated in the example.

v If a remark field is broken or is to be started on a new line, column 72 must
contain a nonblank character. The continuation can begin in any column from 2
through 71.

v If an operand field is broken after a comma or a semicolon, the continuation
column (72) can be left blank, and the continuation can begin in any column from
2 through 71. If the comma or semicolon is in column 71 and column 72 contains
a nonblank character, the continuation must begin in column 16.

v If an operand field is not broken after a comma or semicolon, the operand field
must be broken at column 71. Column 72 must contain a nonblank character.
The continuation must begin in column 16.

Column 1 must
be blank

(Continuation column)

Optional use

72 73 80

16

Continued operand or remarks

Figure 6. Continuation Line Format

General Coding Rules

Chapter 3. Using DFSORT Program Control Statements 101

Inserting Comment Statements
v Specify comment statements by coding an asterisk (*) in column 1. A comment

statement is printed along with other DFSORT program control statements but is
not otherwise processed.

v A statement with blanks in columns 1 through 71 is treated as a comment
statement.

v Comment statements are allowed only in the DFSPARM, SYSIN, and
SORTCNTL data sets.

Coding Restrictions
The following rules apply to control statement preparation:

v Labels, operation definers, and operands must be in uppercase EBCDIC.

v Column 1 of each control statement can be used only for a label or for a
comment statement that begins with an asterisk in column 1.

v Labels must begin in column 1 and conform to operating system requirements for
statement labels.

v The entire operation definer must be contained on the first line of a control
statement.

v The first operand must begin on the first line of a control statement. The last
operand in a statement must be followed by at least one blank.

v Blanks are not allowed in operands. Anything following a blank is considered part
of the remark field.

v In general, values can contain no more than eight alphanumeric characters.
Values that specify record counts (such as those for SKIPREC, STOPAFT, and
FILSZ) can contain up to 28 digits, the last 15 of which are allowed to be
significant (non-zero) digits. Values specified for LOCALE can contain up to 32
alphanumeric characters.

v Commas, semicolons, and blanks can be used only as delimiters. They can be
used in values only if the values are constants.

v Each type of program control statement can appear only once within a single
source (for example, the SYSIN data set).

EFS Restrictions When an EFS Program Is in Effect
In addition to the items above, the following restrictions apply to control statement
preparation for an EFS program.

v Non-DFSORT operation definers can be up to 8 bytes long.

v An operation definer with no operands is allowed only if:

– It is supplied through SYSIN, SORTCNTL, or DFSPARM.

– It is the only operation definer on a line; column 72 must contain a blank.

SORT FIELDS=(5,8,A,20,2,D),
FORMAT=CH

OPTION SKIPREC=2,LIST, SKIP 2 RECORDS LIST CONTROL STATEMENTS
DYNALLOC USE DYNAMIC ALLOCATION

INCLUDE COND=(1,10,CH,EQ,C'STOCKHOLM', AND 21,8,ZD,GT,+500,OR,31,4,CH,N*
E, C'HERR')

1 16 72

Figure 7. Examples of Valid Continuation Lines:

General Coding Rules

102 DFSORT R14 Application Programming Guide

Using Control Statements from Other IBM Programs
The INPFIL control statement,which is used by other IBM sort programs, is
accepted but not processed. However, control statement errors can result from
continuation of an INPFIL statement. The information contained in the INPFIL
statement for other IBM sort programs is supplied to DFSORT with DD statements.

Because DFSORT uses the OPTION control statement, OPTION control statements
in any job streams from other IBM sort programs cause DFSORT to terminate
unless the parameters from the other program conform to the DFSORT OPTION
control statement parameters.

ALTSEQ Control Statement

The ALTSEQ control statement can be used to change the alternate translation
table (ALTSEQ table). Any modifications you specify are applied to the standard
EBCDIC translation table. The modified ALTSEQ table overrides the installation
default ALTSEQ table (the shipped default is the EBCDIC translation table).

The ALTSEQ table can be used in two ways as follows:

v To apply an alternate collating sequence for SORT, MERGE, INCLUDE or OMIT
fields with format AQ (or format CH with CHALT in effect). In this case, the
ALTSEQ table is used to change only the order in which data is collated, not the
data itself. If you specify AQ (or CH with CHALT) without specifying an ALTSEQ
control statement, DFSORT uses the installation default ALTSEQ table.

For example, if you want to specify that the character $ (X’5B’) is to collate at
position X’EA’, after uppercase Z (X’E9’), you should specify:

ALTSEQ CODE=(5BEA)

v To convert characters for INREC, OUTREC, or OUTFIL OUTREC fields with
TRAN=ALTSEQ. In this case, the ALTSEQ table is used to change the actual
data. If you specify TRAN=ALTSEQ without specifying an ALTSEQ control
statement, DFSORT uses the installation default ALTSEQ table.

For example, if you want to change the character $ (X’5B’) to the character *
(X’5C’), you should specify:

ALTSEQ CODE=(5B5C)

CODE

Specifies the original and modified EBCDIC collating positions.

ff specifies, in hexadecimal, the character whose position is to be
changed in the ALTSEQ table.

tt specifies, in hexadecimal, the new position the character is to occupy in
the ALTSEQ table.

The order in which the parameters are specified is not important.

�� ALTSEQ CODE=(E

,

fftt) ��

�� CODE=(E

,

fftt) ��

General Coding Rules

Chapter 3. Using DFSORT Program Control Statements 103

|
|
|
|

|

|
|
|
|
|

|
|

|

|
|
|
|

|
|

|

||
|

||
|

Notes:

1. If CHALT is in effect, control fields with format CH are collated using the
ALTSEQ table, in addition to those with format AQ.

2. If you use locale processing for SORT, MERGE, INCLUDE, or OMIT fields,
you must not use CHALT. If you need alternate sequence processing for a
particular field, use format AQ.

3. Using ALTSEQ can degrade performance.

Default: Usually the installation option. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Altering EBCDIC Collating Sequence—Examples

Example 1

SORT FIELDS=(18,20,AQ,A)
ALTSEQ CODE=(5BEA)

The character $ (X'5B') is to collate at position X'EA', that is, after uppercase Z
(X'E9').

Example 2

MERGE FIELDS=(25,7,A,1,10,D),FORMAT=CH
OPTION CHALT
ALTSEQ CODE=(F0B0,F1B1,F2B2,F3B3,F4B4,F5B5,F6B6,

F7B7,F8B8,F9B9)

The numerals 0 through 9 are to collate before uppercase letters (but after
lowercase letters).

Example 3

SORT FIELDS=(55,8,AQ,A)
ALTSEQ CODE=(C1F1,C2F2)

The uppercase A (X'C1') is to collate at the same position as the numeral 1 (X'F1')
and the uppercase B (X'C2') is to collate at the same position as the numeral 2
(X'F2').

Note that this ALTSEQ statement does NOT cause collating of A before or after 1,
or of B before or after 2.

Example 4

SORT FIELDS=(55,8,AQ,A)
ALTSEQ CODE=(81C1,82C2,83C3,84C4,85C5,86C6,87C7,

88C8,89C9,91D1,92D2,93D3,94D4,95D5,96D6,
97D7,98D8,99D9,A2E2,A3E3,A4E4,A5E5,A6E6,
A7E7,A8E8,A9E9)

ALTSEQ Control Statement

104 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

Each lowercase letter is to collate at the same position as the corresponding
uppercase letter. For example, the lowercase a (X'81') is to collate at the same
position as the uppercase A (X'C1'). This results in case-insensitive collating.

Example 5

OPTION COPY
ALTSEQ CODE=(0040)
OUTREC FIELDS=(1,80,TRAN=ALTSEQ)

Each binary zero (X’00’) is changed to a space (X’40’).

DEBUG Control Statement

The DEBUG control statement is not intended for regular use; only ABEND,
NOABEND, and BSAM are of general interest. For a tape work sort or a
Conventional merge, only the ABEND or NOABEND parameters of the DEBUG
statement are used. For more information about problem diagnosis, see DFSORT
Messages, Codes and Diagnosis Guide R14.

ABEND or NOABEND

Temporarily overrides the ERET installation option, which specifies whether
DFSORT abends or terminates with a return code of 16, if your sort, copy, or
merge is unsuccessful.

ABEND
Specifies that if your sort, copy, or merge is unsuccessful, DFSORT abends
with a user completion code equal to the appropriate message number or
with a user-defined number between 1 and 99, as set during installation
with the ICEMAC option ABCODE=n.

�� DEBUG E

E

E

,

ABEND
NOABEND

ABSTP
BSAM

CFW
NOCFW

CTRx=n
,

EFSDPAFT=(n)
,

EFSDPBFR=(n)
EQUCOUNT

ESTAE
NOESTAE

NOASSIST

��

�� ABEND
NOABEND

��

ALTSEQ Control Statement

Chapter 3. Using DFSORT Program Control Statements 105

|
|
|
|
|

|

When DEBUG ABEND is in effect, a user abend code of zero might be
issued when a tape work data set sort or Conventional merge is
unsuccessful.

NOABEND
Specifies that an unsuccessful sort, copy, or merge terminates with a return
code of 16.

Note: If DFSORT determines that a SmartBatch pipe data set is being used, it
automatically forces the ABEND option on, to ensure that an abend will
be generated if an error is detected. This allows for appropriate error
propagation by the system to other applications that may be accessing
the same SmartBatch pipe data set.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

ABSTP

Prevents loss of needed information in a dump when Blockset terminates. This
option overrides ERET, ABEND, and NOABEND. If the DFSORT application is
unsuccessful, an abend is forced with a completion code equal to the
appropriate message number, or with the user ABEND code set during
installation with the ICEMAC option ABCODE=MSG or ABCODE=n. The
message is not written if NOESTAE is in effect.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

BSAM

Temporarily bypasses the EXCP access method for input and output data sets.
BSAM is ignored for VSAM input and output data sets. Note that if Blockset is
not selected and BSAM processing is used with concatenated SORTIN input,
and both null and non-null data sets are specified, all null data sets must
precede all non-null data sets; otherwise, the results are unpredictable.

Note: This option can degrade performance.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

CFW or NOCFW

�� BSAM ��

�� CFW
NOCFW

��

DEBUG Control Statement

106 DFSORT R14 Application Programming Guide

Temporarily overrides the CFW installation option, which specifies whether
DFSORT can use cache fast write when processing SORTWKdd data sets that
reside on devices connected to cached 3990 control units.

CFW
Specifies that DFSORT can use cache fast write when processing
SORTWKdd data sets.

NOCFW
Specifies that DFSORT cannot use cache fast write.

Note: The NOCFW option can degrade performance.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

CTRx

Keeps a count of the input and output records, and abends with code 0C1
when the count reaches n. The numbers that can be assigned to x are:

2 Counts the input records being moved from the input buffer (not used
for a copy).

3 Counts the output records being moved to the output buffer (not used
for a copy or merge).

4 Counts the input records inserted by E15 (not used for Blockset).

5 Counts the output records deleted by E35 (not used for Blockset).

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EFSDPAFT

Initiates a SNAP dump after a Major Call to an EFS program. Any combination
of the numbers can be specified.

The numbers have the following meanings:

2 Takes the SNAP dump after Major Call 2 to the EFS program.

3 Takes the SNAP dump after Major Call 3 to the EFS program.

4 Takes the SNAP dump after Major Call 4 to the EFS program.

5 Takes the SNAP dump after Major Call 5 to the EFS program.

�� CTRx=n ��

�� EFSDPAFT=(E

,

n) ��

DEBUG Control Statement

Chapter 3. Using DFSORT Program Control Statements 107

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EFSDPBFR

Initiates a SNAP dump before a Major Call to an EFS program. Any
combination of the numbers can be specified.

The numbers have the following meanings:

2 Takes the SNAP dump before Major Call 2 to the EFS program.

3 Takes the SNAP dump before Major Call 3 to the EFS program.

4 Takes the SNAP dump before Major Call 4 to the EFS program.

5 Takes the SNAP dump before Major Call 5 to the EFS program.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EQUCOUNT

Determines the number of records having equal keys (that is, duplicate keys)
which have been sorted by the Blockset technique (printed in message
ICE184I). For variable-length records, EQUCOUNT can only be used with either
Hiperspace (when Hipersorting is used) or work data sets.

Notes:

1. Using EQUCOUNT can degrade performance.

2. ICETOOL’s UNIQUE and OCCUR operators provide unique and non-unique
key reporting capabilities that may be more useful for your application than
EQUCOUNT.

3. If VLSHRT is in effect, EQUCOUNT will not be used.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

ESTAE or NOESTAE

�� EFSDPBFR=(E

,

n) ��

�� EQUCOUNT ��

DEBUG Control Statement

108 DFSORT R14 Application Programming Guide

|

Temporarily overrides the ESTAE installation option, which determines whether
DFSORT should delete its ESTAE recovery routine early or use it for the entire
run.

DFSORT normally establishes an ESTAE recovery routine at the beginning of a
run. If an abend occurs and the ESTAE option is in effect, the system passes
control to the recovery routine. The routine terminates the run after attempting
to:

v Print additional abend information

v Continue a sort, merge, or copy application after successful SORTOUT
output

v Call the EFS program at Major Calls 4 and 5 for cleanup and housekeeping

v Write an SMF record

v Call the ICETEXIT termination exit.

If an abend occurs and the ESTAE option is not in effect, these functions might
not be performed.

ESTAE
specifies that DFSORT can use its ESTAE recovery routine for the entire
run.

NOESTAE
specifies that DFSORT is to delete its ESTAE recovery routine at a point
early in its processing. If DFSORT terminates or abends before this point is
reached, it will not delete its ESTAE recovery routine; that is, NOESTAE will
not be in effect.

Note: See Appendix E, “DFSORT Abend Processing” on page 647 for more
information on the DFSORT ESTAE recovery routine.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options”.

NOASSIST

DFSORT uses System/370-XA Sorting Instructions when possible. If you do not
want to use these instructions, you can temporarily bypass them by specifying
this parameter.

Note: This option can degrade performance.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

�� ESTAE
NOESTAE

��

�� NOASSIST ��

DEBUG Control Statement

Chapter 3. Using DFSORT Program Control Statements 109

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Specifying Diagnostic Options—Examples

Example 1

SORT FIELDS=(1,4,CH,A)
DEBUG EQUCOUNT

If the input records contain the following keys:
KEYA, KEYA, KEYB, KEYB, KEYC, KEYD, KEYD, KEYE

the following message will be issued:
ICE184I THE NUMBER OF RECORDS SORTED WITH EQUAL KEYS IS 3

The three equal keys are KEYA, KEYB, and KEYD.

Note: ICETOOL’s UNIQUE and OCCUR operators provide full equal key reporting
capabilities and should be used instead of EQUCOUNT.

Example 2

SORT FIELDS=(12,2,BI,D)
DEBUG BSAM,ABEND

Directs DFSORT to use the BSAM access method for the SORTIN and SORTOUT
data sets and to abend if the sort application is unsuccessful.

END Control Statement

The END control statement allows DFSORT to discontinue reading SYSIN,
DFSPARM, or SORTCNTL before end of file (EOF).

When you link-edit user exit routines dynamically, the END statement marks the
end of the DFSORT control statements and the beginning of exit routine object
decks in SYSIN.

Discontinue Reading Control Statements—Examples

Example 1

//SYSIN DD *
SORT FIELDS=(1,6,A,28,5,D),FORMAT=CH
RECORD TYPE=V,LENGTH=(200,,,,80)
END
OPTION DYNALLOC

Because the OPTION statement appears after the END statement, it is not read.

�� END ��

DEBUG Control Statement

110 DFSORT R14 Application Programming Guide

Example 2

//SYSIN DD *
SORT FIELDS=(5,8,CH,A)
MODS E15=(E15,1024,SYSIN,T)
END

�object deck for E15 user exit here�

The END statement precedes the E15 user exit routine object deck in SYSIN.

INCLUDE Control Statement

Use an INCLUDE statement if you want only certain records to appear in the output
data set. The INCLUDE statement selects the records you want to include.

You can specify either an INCLUDE statement or an OMIT statement in the same
DFSORT run, but not both.

The way in which DFSORT processes short INCLUDE/OMIT compare fields
depends on the settings for VLSCMP/NOVLSCMP and VLSHRT/NOVLSHRT. A
short field is one where the variable-length record is too short to contain the entire
field, that is, the field extends beyond the record. For details about including or
omitting short records, see the discussion of the VLSCMP and NOVLSCMP options
in “OPTION Control Statement” on page 155.

A logical expression is one or more relational conditions logically combined, based
on fields in the input record, and can be represented at a high level as follows:

If the logical expression is true for a given record, the record is included in the
output data set.

Four types of relational conditions can be used as follows:

1. Comparisons:

Compare two compare fields or a compare field and a decimal, hexadecimal,
character or current date constant.

For example, you can compare the first 6 bytes of each record with its last 6
bytes, and include only those records in which those fields are identical. Or you
can compare a field with today’s date, and include only those records for future
events.

See “Comparisons” on page 114 for information about comparisons.

�� INCLUDE COND= (logical expression)
FORMAT=f

ALL
(ALL)
NONE
(NONE)

��

�� relational condition1

E

.

, AND ,relational condition2
OR

��

END Control Statement

Chapter 3. Using DFSORT Program Control Statements 111

|
|

|
|
|
|

2. Substring Comparison Tests:

Search for a constant within a field value or a field value within a constant.

For example, you can search the value in a 6-byte field for the character
constant C'OK', and include only those records for which C'OK' is found
somewhere in the field. Or you can search the character constant
C'J69,L92,J82' for the value in a 3-byte field, and include only those records for
which C'J69', C'L92', or C'J82' appears in the field.

See “Substring Comparison Tests” on page 121 for information about substring
comparison tests.

3. Bit Logic Tests:

Test the state (on or off) of selected bits in a binary field using a bit or
hexadecimal mask or a bit constant.

For example, you can include only those records which have bits 0 and 2 on in
a 1-byte field. Or you can include only those records which have bits 3 and 12
on and bits 6 and 8 off in a 2-byte field.

See “Bit Logic Tests” on page 122 for information about bit logic tests.

4. Date Comparisons:

Compare a two-digit year date field to a two-digit year date constant, the current
two-digit year date or another two-digit year date field, using the century window
in effect.

For example, you can include only those records for which a Z'yymm' date field
is between January 1996 and March 2005. Or you can include only those
records for which a P'dddyy' field is less than another P'dddyy' field.

See “Date Comparisons” on page 128 for information about date comparisons.

By nesting relational conditions within parentheses, you can create logical
expressions of higher complexity.

Although comparisons, substring comparison tests, bit logic tests, and date
comparisons are explained separately below for clarity, they can be combined to
form logical expressions.

The INCLUDE control statement differs from the INCLUDE parameter of the
OUTFIL statement in the following ways:

v The INCLUDE statement applies to all input records; the INCLUDE parameter
applies only to the OUTFIL input records for its OUTFIL group.

v FORMAT=f can be specified with the INCLUDE statement but not with the
INCLUDE parameter.

v D2 format can be specified with the INCLUDE statement but not with the
INCLUDE parameter.

See “OUTFIL Control Statements” on page 204 for more details on the OUTFIL
INCLUDE parameter.

COND

�� COND= (logical expression)
ALL
(ALL)
NONE
(NONE)

��

INCLUDE Control Statement

112 DFSORT R14 Application Programming Guide

|
|
|

logical expression
specifies one or more relational conditions logically combined, based on
fields in the input record. If the logical expression is true for a given
record, the record is included in the output data sets.

ALL or (ALL)
specifies that all of the input records are to be included in the output
data sets.

NONE or (NONE)
specifies that none of the input records are to be included in the output
data sets.

Default: ALL. See Appendix B, “Specification/Override of DFSORT Options” on
page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

FORMAT

FORMAT=f can be used only when all the input fields in the entire logical
expression have the same format. The permissible field formats for
comparisons are shown in Table 10 on page 114. SS (substring) is the only
permissible field format for substring comparison tests. BI (unsigned binary) is
the only permissible field format for bit logic tests. The Y2x formats are the only
permissible field formats for date comparisons.

Default: None. Must be specified if not included in the COND=(logical
expression) parameter. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Note: If format values are specified in both FORMAT and COND, DFSORT issues
an informational message, uses the format values from COND (f must be
specified for each compare field), and does not use the format values from
FORMAT.

Relational Condition
The relational condition specifies that a comparison or bit logic test be performed.
Relational conditions can be logically combined, with AND or OR, to form a logical
expression. If they are combined, the following rules apply:

v AND statements are evaluated before OR statements unless parentheses are
used to change the order of evaluation; expressions inside parentheses are
always evaluated first. (Nesting of parentheses is limited only by the amount of
storage available.)

v The symbols & (AND) and | (OR) can be used instead of the words.

�� FORMAT=f ��

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 113

Comparisons

Relational Condition Format
Two formats for the relational condition can be used:

Or, if the FORMAT=f operand is used:

Comparison operators are as follows:
EQ Equal to
NE Not equal to
GT Greater than
GE Greater than or equal to
LT Less than
LE Less than or equal to.

Fields:

p1,m1,f1: These variables specify a field in the input record to be compared either
to another field in the input record or to a constant.

v p1 specifies the first byte of the compare field relative to the beginning of the
input record.7 The first data byte of a fixed-length record (FLR) has relative
position 1. The first data byte of a variable-length (VLR) record has relative
position 5 (because the first 4 bytes contain the record descriptor word). All
compare fields must start on a byte boundary, and no compare field can extend
beyond byte 32752.

v m1 specifies the length of the compare field. Acceptable lengths for different
formats are in Table 10.

v f1 specifies the format of the data in the compare field. Permissible formats are
given in Table 10.

If all the compare fields contain the same type of data, this value can be omitted,
in which case you must use the FORMAT=f operand.

Table 10. Compare Field Formats and Lengths

Format Code Length Description

CH 1 to 256 bytes Character 8

AQ 1 to 256 bytes Character with alternate
collating sequence

7. If your E15 user exit routine formats the record, p1 must refer to the record as reformatted by the exit.

�� (p1,m1,f1, EQ
NE
GT
GE
LT
LE

, p2,m2,f2
constant

) ��

�� (p1,m1, EQ
NE
GT
GE
LT
LE

, p2,m2
constant

), ��

INCLUDE Control Statement

114 DFSORT R14 Application Programming Guide

|
|
|

Table 10. Compare Field Formats and Lengths (continued)

Format Code Length Description

ZD 1 to 256 bytes Signed zoned decimal

PD 1 to 255 bytes Signed packed decimal

FI 1 to 256 bytes Signed fixed-point

BI 1 to 256 bytes Unsigned binary

AC 1 to 256 bytes ISCII/ASCII character

CSF or FS 1 to 16 bytes Signed numeric with optional
leading floating sign

CSL or LS 2 to 256 bytes Signed numeric with leading
separate sign

CST or TS 2 to 256 bytes Signed numeric with trailing
separate sign

CLO or OL 1 to 256 bytes Signed numeric with leading
overpunch sign

CTO or OT 1 to 256 bytes Signed numeric with trailing
overpunch sign

ASL 2 to 256 bytes Signed ISCII/ASCII numeric
with leading separate sign

AST 2 to 256 bytes Signed ISCII/ASCII numeric
with trailing separate sign

D2 1 to 256 bytes User-defined data type
(requires an EFS program)

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

p2,m2,f2: These variables specify another field in the input record with which the
p1,m1,f1 field will be compared. Permissible comparisons between compare fields
with different formats are shown in Table 11.

AC, ASL, and AST formats sequence EBCDIC data using the ISCII/ASCII collating
sequence.

Table 11. Permissible Field-to-Field Comparisons for INCLUDE/OMIT

Field
Format

BI CH ZD PD FI AC ASL AST CSF
or
FS

CSL
or
LS

CST
or
TS

CLO
or
OL

CTO
or
OT

AQ D2

BI X X

CH X X

ZD X X

PD X X

FI X

AC X

ASL X X

AST X X

8. If CHALT is in effect, CH is treated as AQ.

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 115

Table 11. Permissible Field-to-Field Comparisons for INCLUDE/OMIT (continued)

Field
Format

BI CH ZD PD FI AC ASL AST CSF
or
FS

CSL
or
LS

CST
or
TS

CLO
or
OL

CTO
or
OT

AQ D2

CSF or FS X X X

CSL or LS X X X

CST or TS X X X

CLO or OL X X

CTO or OT X X

AQ X

D2 X

Note: D2 field formats are user-defined.

Constants: A constant can be a decimal number (n, +n, −n), character string
(C'xx...x'), or hexadecimal string (X'yy...yy'). The current date can also be used as a
decimal number (DATE1P, DATE2P, DATE3P) or character string (DATE1,
DATE1(c), DATE2, DATE2(c), DATE3, DATE3(c)). The different constants are
explained in detail below. Permissible comparisons between compare fields and
constants are shown in Table 12.

Table 12. Permissible Field-to-Constant Comparisons for INCLUDE/OMIT.

Field Format Self-Defining Term

Decimal Number Character String Hexadecimal String

BI X X X

CH X X

ZD X

PD X

FI X

AC X X

ASL X

AST X

CSF or FS X

CSL or LS X

CST or TS X

CLO or OL X

CTO or OT X

AQ X X

D2 X X X

Note: D2 field formats are user-defined.

Decimal Number Format: The format for coding a decimal constant is:

When an FI field is compared with a decimal constant, n or + n cannot be larger
than +2147483647 and − n cannot be smaller than −2147483648.

[±]n

INCLUDE Control Statement

116 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

||||

|
|

When a BI field is compared with a decimal constant, n or + n cannot be larger than
+4294967295 nor smaller than + 0. A BI field cannot be compared to a negative
number (−n). A BI field cannot be compared to −0 even if NOSZERO is in effect.

Examples of valid and invalid decimal constants are:

Current Date as Decimal Number: DATE1P, DATE2P, or DATE3P can be used to
generate a decimal number for the date of the run. Table 13 shows the decimal
number generated for each current date operand along with an example. yyyy
represents the year, mm represents the month (01–12), dd represents the date
(01–31) and ddd represents the day of the year (001–366).

Table 13. Current Date Operand Decimal Numbers

Operand Constant April 19, 2001

DATE1P +yyyymmdd +20010419

DATE2P +yyyymm +200104

DATE3P +yyyyddd +2001109

Character String Format: The format for coding a character string constant is:

The value x may be any EBCDIC character (the EBCDIC character string is
translated appropriately for comparison to an AC or AQ field). You can specify up to
256 characters.

If you want to include a single apostrophe in the character string, you must specify
it as two single apostrophes. Thus:
Required: O'NEILL Specify: C'O''NEILL'

Examples of valid and invalid character string constants are shown below:

Double-byte data may be used in a character string for INCLUDE/OMIT
comparisons. The start of double-byte data is delimited by the shift-out (SO) control

Valid Invalid Explanation

15 ++15 Too many sign characters

+15 15+ Sign in wrong place

−15 1.5 Contains invalid character

18000000 1,500 Contains invalid character

Figure 8. Valid and Invalid Decimal Constants

C'xx...x'

Valid Invalid Explanation

C'JDCO' C''''' Apostrophes not paired

C'$@#' 'ABCDEF' C identifier missing

C'+0.193' C'ABCDEF Apostrophe missing

C'Frank''s' C'Frank's' Two single apostrophes needed for one

Figure 9. Valid and Invalid Character String Constants

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 117

|
|
|

|
|
|
|
|

||

|||

|||

|||

|||

character (X’0E’), and the end by the shift-in (SI) control character (X’0F’). SO and
SI control characters are part of the character string and must be paired with zero
or an even number of intervening bytes. Nested shift codes are not allowed. All
characters between SO and SI must be valid double-byte characters. No single-byte
meaning is drawn from the double-byte data.

Examples of valid and invalid character string constants containing double-byte
characters are shown below using:

< to represent SO
> to represent SI
Dn to represent a double-byte character

Current Date as Character String: DATE1, DATE1(c), DATE2, DATE2(c), DATE3
and DATE3(c) can be used to generate a character string for the date of the run.
Table 14 shows the character string generated for each current date operand along
with an example using (/) for (c) where relevant. yyyy represents the year, mm
represents the month (01–12), dd represents the day (01–31), ddd represents the
day of the year (001–366), and c can be any character except a blank.

Table 14. Current Date Operand Character Strings

Operand Constant April 19, 2001

DATE1 C'yyyymmdd' C'20010419'

DATE1(c) C'yyyycmmcdd' C'2001/04/19'

DATE2 C'yyyymm' C'200104'

DATE2(c) C'yyyycmm' C'2001/04'

DATE3 C'yyyyddd' C'2001109'

DATE3(c) C'yyyycddd' C'2001/109'

Hexadecimal String Format: The format for coding a hexadecimal string constant
is:

The value yy represents any pair of hexadecimal digits. You can specify up to 256
pairs of hexadecimal digits.

Examples of valid and invalid hexadecimal constants are shown in the following
table.

Valid Invalid Explanation

C'Q<D1D2>T' C'Q<R>S' Single-byte data within SO/SI

C'<D1D2D3>' C'D1D2D3' Missing SO/SI; treated as single-byte
data

C'Q<D1>R<D2>' C'Q<D1<D2>>' Nested SO/SI

Figure 10. Valid and Invalid Strings with Double-Byte Data

X'yy...yy'

INCLUDE Control Statement

118 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

||

|||

|||

|||

|||

|||

|||

|||

Padding and Truncation
In a field-to-field comparison, the shorter compare field is padded appropriately. In a
field-to-constant comparison, the constant is padded or truncated to the length of
the compare field.

Character and hexadecimal strings are truncated and padded on the right.

The padding characters are:

v X'40' For a character string

v X'00' For a hexadecimal string.

Decimal constants are padded and truncated on the left. Padding is done with zeros
in the proper format.

Cultural Environment Considerations
DFSORT’s collating behavior can be modified according to your cultural
environment. The cultural environment is established by selecting the active locale.
The active locale’s collating rules affect INCLUDE and OMIT processing as follows:

v DFSORT includes or omits records for output according to the collating rules
defined in the active locale. This provides inclusion or omission for single- or
multi-byte character data, based on defined collating rules which retain the
cultural and local characteristics of a language.

If locale processing is to be used, the active locale will only be used to process
character (CH) compare fields and character and hexadecimal constants compared
to character (CH) compare fields.

For more information on locale processing, see “Cultural Environment
Considerations” on page 6 or LOCALE in “OPTION Control Statement” on
page 155.

Including Records in the Output Data Set—Comparison Examples

Example 1

INCLUDE COND=(5,8,GT,13,8,|,105,4,LE,1000),FORMAT=CSF

This example illustrates how to only include records in which:

v The floating sign number in bytes 5 through 12 is greater than the floating sign
number in bytes 13 through 20

OR

v The floating sign number in bytes 105 through 108 is less than or equal to 1000.

Note that all three compare fields have the same format.

Valid Invalid Explanation

X'ABCD' X'ABGD' Invalid hexadecimal digit

X'BF3C' X'BF3' Incomplete pair of digits

X'AF050505' 'AF050505' Missing X identifier

X'BF3C' 'BF3C'X X identifier in wrong place

Figure 11. Valid and Invalid Hexadecimal Constants

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 119

Example 2

INCLUDE COND=(1,10,CH,EQ,C’STOCKHOLM’,
AND,21,8,ZD,GT,+50000,
OR,31,4,CH,NE,C’HERR’)

This example illustrates how to only include records in which:

v The first 10 bytes contain STOCKHOLM (this nine-character string was padded
on the right with a blank) AND the zoned-decimal number in bytes 21 through 28
is greater than 50 000

OR

v Bytes 31 through 34 do not contain HERR.

Note that the AND is evaluated before the OR. (“Omitting Records from the Output
Data Set—Example” on page 154 illustrates how parentheses can be used to
change the order of evaluation.) Also note that ending a line with a comma or
semicolon followed by a blank indicates that the parameters continue on the next
line, starting in any position from columns 2 through 71.

Example 3

INCLUDE COND=((5,1,CH,EQ,8,1,CH),&,
((20,1,CH,EQ,C’A’,&,30,1,FI,GT,10),|,
(20,1,CH,EQ,C’B’,&,30,1,FI,LT,100),|,
(20,1,CH,NE,C’A’,&,20,1,CH,NE,C’B’)))

This example illustrates how to only include records in which:

v Byte 5 equals byte 8

AND

v One of the following is true:

– Byte 20 equals 'A' and byte 30 is greater than 10

– Byte 20 equals 'B' and byte 30 is less than 100

– Byte 20 is not equal to 'A' or 'B'.

Example 4

INCLUDE COND=(7,2,CH,EQ,C’T1’,OR,
(1,2,BI,GE,X’001A’,AND,20,2,CH,EQ,25,2,CH))

This example shows the effects of VLSCMP/NOVLSCMP and VLSHRT/NOVLSHRT
on INCLUDE processing when short records are present.

Consider the records shown in Figure 12 on page 121:

v If VLSCMP is in effect, the first record is included because bytes 7-8 are equal to
C’T1’, even though the comparison of bytes 20-21 to 25-26 involves short fields.
The second record is included or omitted based on the comparison of bytes
20-21 to bytes 25-26.

v If NOVLSCMP and VLSHRT are in effect, the first record is omitted because the
comparison of bytes 20-21 to 25-26 involves short fields. The second record is
included or omitted based on the comparison of bytes 20-21 to bytes 25-26.

INCLUDE Control Statement

120 DFSORT R14 Application Programming Guide

v If NOVLSCMP and NOVLSHRT are in effect, the first record causes message
ICE015A or ICE218A to be issued because the comparison of bytes 20-21 to
bytes 25-26 involves short fields.

Example 5

INCLUDE COND=(21,8,ZD,GT,DATE1P)

This example illustrates how to include records in which a zoned-decimal date of
the form Z'yyyymmdd' in bytes 21-28 is greater than today’s date. DATE1P
generates a decimal number for the current date in the form +yyyymmdd.

Substring Comparison Tests
Two types of substring comparison tests are offered, as follows:

1. Find a constant within a field value. For example, you can search the value in a
6-byte field for the character constant C'OK'. If the field value is, for example,
C'**OK**' or C'****OK', the relational condition is true; if the field value is
C'**ERR*', the relational condition is false.

2. Find a field value within a constant. For example, you can search the character
constant C'J69,L92,J82' for the value in a 3-byte field. If the field value is C'J69',
C'L92', or C'J82', the relational condition is true; if the field value is C'X24', the
relational condition is false. Note that the comma is used within the constant to
separate the valid 3-character values; any character that will not appear in the
field value can be used as a separator in the constant.

Relational Condition Format
Two formats for the relational condition can be used:

Or, if the FORMAT=SS operand is used:

Note: FORMAT=SS can precede COND but cannot follow it.

RDW

RDW

compare
field A

compare
field B

compare
field C

compare
field D

T1

T2

7

7

10

20 25

Figure 12. Sample Records

�� (p1,m1,SS, EQ
NE

, constant) ��

�� (p1,m1, EQ
NE

, constant) ��

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 121

|

|
|
|

|
|
|

Substring comparison operators are as follows:
EQ Equal to
NE Not equal to

Fields:

p1,m1: These variables specify the character field in the input record for the
substring test.

v p1 specifies the first byte of the character input field for the substring test,
relative to the beginning of the input record.9 The first data byte of a fixed-length
record (FLR) has relative position 1. The first data byte of a variable-length (VLR)
record has relative position 5 (because the first 4 bytes contain the record
descriptor word). All fields to be tested must start on a byte boundary and must
not extend beyond byte 32752.

v m1 specifies the length of the field to be tested. The length can be 1 to 256
bytes.

Constant: The constant can be a character string or a hexadecimal string. See
“Character String Format” on page 117 and “Hexadecimal String Format” on
page 118 for details.

If m1 is greater than the length of the constant, the field value will be searched for
the constant and the condition will be true if a match is found when the EQ
comparison operator is specified or if a match is not found when the NE
comparison operator is specified.

If m1 is smaller than the length of the constant, the constant will be searched for
the field value and the condition will be true if a match is found when the EQ
comparison operator is specified or if a match is not found when the NE
comparison operator is specified.

Including Records in the Output Data Set—Substring Comparison
Example

Example

INCLUDE FORMAT=SS,COND=(11,6,EQ,C’OK’,OR,21,3,EQ,C’J69,L92,J82’)

This example illustrates how to include only records in which:

v OK is found somewhere within bytes 11 through 16

OR

v Bytes 21 through 23 contain J69, L92 or J82.

Bit Logic Tests
Two methods for bit logic testing are offered as follows:

v Bit operator with hexadecimal or bit mask

v Bit comparison tests

While any bit logic test can be specified using either of the two methods, each of
them offers unique advantages not found with the other.

9. If your E15 user exit routine formats the record, p1 must refer to the record as reformatted by the exit.

INCLUDE Control Statement

122 DFSORT R14 Application Programming Guide

|
|

The ability to specify selected bits in a field, by either of the two methods, can
greatly reduce the number of INCLUDE conditions that must be specified to achieve
a given result, because the need to account for unspecified bits is eliminated.

Method 1: Bit Operator Tests
This method of bit logic testing allows you to test whether selected bits in a binary
field are all on, all off, in a mixed on-off state, or in selected combinations of these
states. While this method allows you to test many different possible bit
combinations with a single operation, similar to the Test Under Mask (TM) machine
instruction, it is less suited to determine if a field contains exactly one particular
combination of on and off bits than Method 2 described below.

Relational Condition Format
Two formats for the relational condition can be used:

Or, if the FORMAT=BI operand is used:

Bit operators describe the input field to mask relationship to be tested as follows:
ALL or BO

All mask bits are on in the input field
SOME or BM

Some, but not all mask bits are on in the input field
NONE or BZ

No mask bits are on in the input field
NOTALL or BNO

Some or no mask bits are on in the input field
NOTSOME or BNM

All or no mask bits are on in the input field
NOTNONE or BNZ

All or some mask bits are on in the input field

�� (p1,m1,BI, ALL
SOME
NONE
NOTALL
NOTSOME
NOTNONE
BO
BM
BZ
BNO
BNM
BNZ

, mask) ��

�� (p1,m1, ALL
SOME
NONE
NOTALL
NOTSOME
NOTNONE
BO
BM
BZ
BNO
BNM
BNZ

, mask) ��

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 123

The first set of operators (ALL, SOME, and so on) are intended for those who like
meaningful mnemonics. The second set of operators (BO, BM, and so on) are
intended for those familiar with the conditions associated with the Test Under Mask
(TM) instruction.

Fields

p1,m1: These variables specify the binary field in the input record to be tested
against the mask.

v p1 specifies the first byte of the binary input field to be tested against the mask,
relative to the beginning of the input record.10 The first data byte of a fixed-length
record (FLR) has relative position 1. The first data byte of a variable-length (VLR)
record has relative position 5 (because the first 4 bytes contain the record
descriptor word). All fields to be tested must start on a byte boundary and must
not extend beyond byte 32752.

v m1 specifies the length of the field to be tested. The length can be 1 to 256
bytes.

Mask
A hexadecimal string or bit string that indicates the bits in the field selected for
testing. If a mask bit is on (1), the corresponding bit in the field is tested. If a mask
bit is off (0), the corresponding bit in the field is ignored.

Hexadecimal String Format: The format for coding a hexadecimal string mask is:

The value yy represents any pair of hexadecimal digits that constitute a byte (8
bits). Each bit must be 1 (test bit) or 0 (ignore bit). You can specify up to 256 pairs
of hexadecimal digits.

Bit String Format: The format for coding a bit string mask is:

The value bbbbbbbb represents 8 bits that constitute a byte. Each bit must be 1
(test bit) or 0 (ignore bit). You can specify up to 256 groups of 8 bits. The total
number of bits in the mask must be a multiple of 8. A bit mask string can only be
used with a bit operator.

Padding and Truncation
The hexadecimal or bit mask is truncated or padded on the right to the byte length
of the binary field. The padding character is X’00’ (all bits off and thus not tested).

Including Records in the Output Data Set—Bit Operator Test Examples

Example 1

INCLUDE COND=(27,1,CH,EQ,C’D’,AND,18,1,BI,ALL,B’10000000’)

This example illustrates how to only include records in which:

v Byte 27 contains D

10. If your E15 user exit routine formats the record, p1 must refer to the record as reformatted by the exit.

X'yy...yy'

B'bbbbbbbb...bbbbbbbb'

INCLUDE Control Statement

124 DFSORT R14 Application Programming Guide

|
|

AND

v Byte 18 has bit 0 on.

Example 2

INCLUDE COND=(11,1,BI,BM,X’85’)

This example illustrates how to only include records in which byte 11 has some, but
not all of bits 0, 5 and 7 on. Results for selected field values are shown below:

Table 15. Bit Comparison Example 2: Results for Selected Field Values

11,1,BI Value 11,1,BI Result Action

X’85’ False Omit Record

X’C1’ True Include Record

X’84’ True Include Record

X’00’ False Omit Record

Example 3

INCLUDE COND=(11,2,ALL,B’0001001000110100’,
OR,21,1,NONE,B’01001100’),FORMAT=BI

This example illustrates how to only include records in which:

v Bytes 11 through 12 have all of bits 3, 6, 10, 11 and 13 on

OR

v Byte 21 has none of bits 1, 4, or 5 on.

Results for selected field values are shown below:

Table 16. Bit Comparison Example 3: Results for Selected Field Values

11,2,BI Value 11,2,BI Result 21,1,BI Value 21,1,BI Result Action

X’1234’ True X’4C’ False Include Record

X’02C4’ False X’81’ True Include Record

X’0204’ False X’40’ False Omit Record

X’F334’ True X’00’ True Include Record

X’1238’ False X’4F’ False Omit Record

Method 2: Bit Comparison Tests
This method of bit logic testing allows you to test whether selected bits in a binary
field are either in an exact pattern of on and off bits, or not in that exact pattern.
Unlike Method 1 described above, only “equal” and “unequal” comparisons are
allowed; however, this method has the advantage of being able to test for a precise
combination of on and off bits.

Relational Condition Format
Two formats for the relational condition can be used:

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 125

Or, if the FORMAT=BI operand is used:

Bit comparison operators are as follows:
EQ Equal to
NE Not equal to

Fields

p1,m1: These variables specify the binary field in the input record to be compared
to the bit constant.

v p1 specifies the first byte of the binary input field to be compared to the bit
constant, relative to the beginning of the input record.11 The first data byte of a
fixed-length record (FLR) has relative position 1. The first data byte of a
variable-length (VLR) record has relative position 5 (because the first 4 bytes
contain the record descriptor word). All fields to be tested must start on a byte
boundary and must not extend beyond byte 32752.

v m1 specifies the length of the field to be tested. The length can be 1 to 256
bytes.

Bit Constant
A bit string constant that specifies the pattern to which the binary field is compared.
If a bit in the constant is 1 or 0, the corresponding bit in the field is compared to 1
or 0, respectively. If a bit in the constant is . (period), the corresponding bit in the
field is ignored.

Bit String Format: The format for coding a bit string constant is:

The value bbbbbbbb represents 8 bits that constitute a byte. Each bit must be 1
(test bit for 1), 0 (test bit for 0) or . (ignore bit). You can specify up to 256 groups of
8 bits. The total number of bits in the mask must be a multiple of 8. A bit constant
can only be used for bit comparison tests (BI format and EQ or NE operator).

Padding and Truncation
The bit constant is truncated or padded on the right to the byte length of the binary
field. The padding character is B’00000000’ (all bits equal to 0). Note that the
padded bytes are compared to the excess bytes in the binary field; you can ensure
that this does not cause unwanted results by shortening the field length to eliminate
the padding characters, or by increasing the length of the bit constant to specify the
exact test pattern you want.

11. If your E15 user exit routine formats the record, p1 must refer to the record as reformatted by the exit.

�� (p1,m1,BI, EQ
NE

, constant) ��

�� (p1,m1, EQ
NE

, constant) ��

B'bbbbbbbb...bbbbbbbb'

INCLUDE Control Statement

126 DFSORT R14 Application Programming Guide

|
|

Including Records in the Output Data Set—Bit Comparison Test
Examples

Example 1

INCLUDE COND=(27,1,CH,EQ,C’D’,AND,18,1,BI,EQ,B’1.......’)

This example illustrates how to only include records in which:

v Byte 27 contains D

AND

v Byte 18 is equal to the specified pattern of bit 0 on.

Example 2

INCLUDE COND=(11,1,BI,NE,B’10...1.1’)

This example illustrates how to only include records in which byte 11 is not equal to
the specified pattern of bit 0 on, bit 1 off, bit 5 on and bit 7 on. Results for selected
field values are shown below:

Table 17. Bit Comparison Example 2: Results for Selected Field Values

11,1,BI Value 11,1,BI Result Action

X’85’ False Omit Record

X’C1’ True Include Record

X’84’ True Include Record

X’97’ False Omit Record

Example 3

INCLUDE COND=(11,2,EQ,B’..01....0......1’,
OR,21,1,EQ,B’01......’),FORMAT=BI

This example illustrates how to only include records in which:

v Bytes 11 through 12 are equal to the specified pattern of bit 2 off, bit 3 on, bit 8
off and bit 15 on

OR

v Byte 21 is equal to the specified pattern of bit 0 off and bit 1 on.

Results for selected field values are shown below:

Table 18. Bit Comparison Example 3: Results for Selected Field Values

11,2,BI Value 11,2,BI Result 21,1,BI Value 21,1,BI Result Action

X’1221’ True X’C0’ False Include Record

X’02C4’ False X’41’ True Include Record

X’1234’ False X’00’ False Omit Record

X’5F7F’ True X’7F’ True Include Record

X’FFFF’ False X’2F’ False Omit Record

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 127

Date Comparisons
You can use DFSORT’s Y2 formats in conjunction with the century window in effect,
as follows:

v Use the full date formats (Y2T, Y2U, Y2V, Y2W, Y2X and Y2Y) to compare a
two-digit year date field to a two-digit year date constant (Y constant) or to
another two-digit year date field.

v Use the year formats (Y2C, Y2Z, Y2S, Y2P, Y2D and Y2B) to compare a
two-digit year field to a two-digit year constant (Y constant) or to another two-digit
year field.

For example, you can include only those records for which a Z'yymm' date field is
between January 1996 and March 2005. Or you can include only those records for
which a P'dddyy' field is less than another P'dddyy' field.

The ordering of dates and special indicators used for comparisons with Y2 fields
and Y constants is the same as the ascending orders for sorting and merging Y2
fields (see “SORT Control Statement” on page 300 for details).

Relational Condition Format
Two formats for the relational condition can be used:

Or, if the FORMAT=Y2x operand is used:

Comparison operators are as follows:
EQ Equal to
NE Not equal to
GT Greater than
GE Greater than or equal to
LT Less than
LE Less than or equal to.

Fields:

p1,m1,Y2x: These variables specify a two-digit year date field in the input record
to be compared either to another two-digit year date field in the input record or to a
two-digit year date constant.

v p1 specifies the first byte of the date field relative to the beginning of the input
record.12 The first data byte of a fixed-length record (FLR) has relative

12. If your E15 user exit routine formats the record, p1 must refer to the record as reformatted by the exit.

�� (p1,m1,Y2x, EQ
NE
GT
GE
LT
LE

, p2,m2,Y2x
constant

) ��

�� (p1,m1, EQ
NE
GT
GE
LT
LE

, p2,m2
constant

) ��

INCLUDE Control Statement

128 DFSORT R14 Application Programming Guide

position 1. The first data byte of a variable-length (VLR) record has relative
position 5 (because the first 4 bytes contain the record descriptor word). All date
fields must start on a byte boundary, and no date field can extend beyond byte
32752.

v m1 specifies the length of the date field. Appendix C, “Data Format Descriptions”
on page 633 describes the length and format for each type of date field.

v Y2x specifies the Y2 format. Appendix C, “Data Format Descriptions” on
page 633 describes the length (m) and format (Y2x) for each type of date field.

If the same Y2 format is used for all date fields, Y2x can be omitted, in which
case you must use the FORMAT=Y2x operand.

p2,m2,Y2x: These variables specify another two-digit year date field in the input
record with which the p1,m1,Y2x field will be compared.

Constant: A two-digit year date constant in the form Y'string' with which the
p1,m1,Y2x field will be compared.

Comparisons: A date field can be compared to a date constant or another date
field with the same number of non-year (x) digits. Table 19 shows the type of
field-to-field and field-to-constant comparisons you can use. The fields shown for
any type of date (for example, yyx and xyy) can be compared to any other fields
shown for that type of date or to the Y constant shown for that type of date.

Table 19. Permissible Comparisons for Dates

Type of Date Fields (m,f) Y Constant

yyx and xyy 3,Y2T
3,Y2W

2,Y2U
2,Y2X

Y'yyx'

yyxx and xxyy 4,Y2T
4,Y2W

3,Y2V
3,Y2Y

Y'yyxx'
Y'DATE2'

yyxxx and xxxyy 5,Y2T
5,Y2W

3,Y2U
3,Y2X

Y'yyxxx'
Y'DATE3'

yyxxxx and xxxxyy 6,Y2T
6,Y2W

4,Y2V
4,Y2Y

Y'yyxxxx'
Y'DATE1'

yy 2,Y2C
2,Y2S
1,Y2D

2,Y2Z
2,Y2P
1,Y2B

Y'yy'

Y'DATE1' generates a Y constant for the current date in the form Y'yymmdd'.
Y'DATE2' generates a Y constant for the current date in the form Y'yymm'.
Y'DATE3' generates a Y constant for the current date in the form Y'yyddd'.

You must use the same number of digits in a Y constant as the type of date;
leading zeros must be specified (for example, for Y'yymm', use Y'0001' for January
2000 and Y'0101' for January 2001).

You can also use Y constants for special indicators as follows:

v Y'0...0' (CH/ZD/PD zeros) and Y'9...9' (CH/ZD/PD nines) can be used with Y2T,
Y2U, Y2V, Y2W, Y2X and Y2Y dates. You must use the same number of digits
as the type of date (for example, Y'000' for yyq or qyy, Y'0000' for yymm or
mmyy, and so forth).

v Y'LOW' (BI zeros), Y'BLANKS' (blanks) and Y'HIGH' (BI ones) can be used with
Y2T, Y2W and Y2S dates.

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 129

|
|
|

|
|

|
|

|
|

|
|
|

Including Records in the Output Data Set—Date Comparisons

Example 1

INCLUDE FORMAT=Y2T,
COND=(3,4,GE,Y’9901’,AND,

3,4,LE,Y’0312’,OR,
3,4,LE,Y’0000’)

This example illustrates how to only include records in which:

v A C'yymm' date field in bytes 3 through 6 is between January 1999 and
December 2003

OR

v Bytes 3 through 6 contain CH zeros (C'0000'), ZD zeros (Z'0000') or BI zeros
(X'00000000').

Note that the century window in effect will be used to interpret the Y'9901' and
Y'0312' date constants, as well as real dates in the C'yymm' date field. However,
the century window will not be used to interpret the Y'0000' special indicator
constant or special indicators in the C'yymm' date field.

Example 2

INCLUDE COND=(2,3,Y2X,LT,36,5,Y2T)

This example illustrates how to only include records in which a P'dddyy' date field in
bytes 2 through 4 is less than a Z'yyddd' date field in bytes 36 through 40.

Note that the century window in effect will be used to interpret real dates in the
P'dddyy' and Z'yyddd' date fields. However, the century window will not be used to
interpret special indicators in the P'dddyy' and Z'yyddd' date fields.

INCLUDE/OMIT Statement Notes
v Floating point compare fields cannot be referenced in INCLUDE or OMIT

statements.

v Any selection can be performed with either an INCLUDE or an OMIT statement.
INCLUDE and OMIT are mutually exclusive.

v If several relational conditions are joined with a combination of AND and OR
logical operators, the AND statement is evaluated first. The order of evaluation
can be changed by using parentheses inside the COND expression.

v If any changes are made to record formats by user exits E15 or E32, the
INCLUDE or OMIT statement must apply to the newest formats.

v DFSORT issues a message and terminates if an INCLUDE or OMIT statement is
specified for a tape work data set sort or conventional merge application.

v If SZERO is in effect, -0 compares as less than +0 when numeric fields and
constants are used. If NOSZERO is in effect, -0 compares as equal to +0 when
numeric fields and constants are used.

Table 20 on page 131 shows how DFSORT reacts to the result of a relational
condition comparison, depending on whether the statement is INCLUDE or OMIT
and whether the relational condition is followed by an AND or an OR logical
operator.

INCLUDE Control Statement

130 DFSORT R14 Application Programming Guide

When writing complex statements, the table in Table 20 helps you get the result that
you want.

Table 20. Logic Table for INCLUDE/OMIT.

Statement

Relational Condition Program action if next logical operator is:

Compare AND OR

OMIT True Check next compare,
or if last compare
OMIT record.

OMIT record

OMIT False INCLUDE record Check next compare,
or if last compare,
INCLUDE record.

INCLUDE True Check next compare,
or if last compare,
INCLUDE record.

INCLUDE record

INCLUDE False OMIT record Check compare, or if
last compare, OMIT
record.

INREC Control Statement

The INREC control statement allows you to reformat the input records before they
are processed; that is, to define which parts of the input record are to be included in
the reformatted input record, in what order they are to appear, and how they are to
be aligned.

You do this by defining one or more fields from the input record. The reformatted
input record consists of only those fields, in the order in which you have specified
them, and aligned on the boundaries or in the columns you have indicated.

�� INREC FIELDS= (E

,

s
c: p,m

,a
p
p,m,HEX
p,HEX
p,m,TRAN=LTOU
p,TRAN=LTOU
p,m,TRAN=UTOL
p,TRAN=UTOL
p,m,TRAN=ALTSEQ
p,TRAN=ALTSEQ
p,m,Y2x
p,m,Y2x(c)
p,m,Y2xP
p,m,f

,edit
p,m,f,to
p,m,Y2x,edit
p,m,Y2x,to
p,m,lookup
seqnum

) ��

INCLUDE Control Statement

Chapter 3. Using DFSORT Program Control Statements 131

The INREC control statement also provides for:

v Insertion of blanks, zeros, strings, current date, current time and sequence
numbers before, between, and after the input fields in the reformatted records.

v Sophisticated conversion capabilities, such as hexadecimal display, conversion of
EBCDIC letters from lowercase to uppercase or uppercase to lowercase,
conversion of characters using the ALTSEQ translation table, and conversion of
numeric values from one format to another.

v Sophisticated editing capabilities, such as control of the way numeric fields are
presented with respect to length, leading or suppressed zeros, thousands
separators, decimal points, leading and trailing positive and negative signs, and
so on.

Twenty-seven pre-defined editing masks are available for commonly used
numeric editing patterns, encompassing many of the numeric notations used
throughout the world. In addition, a virtually unlimited number of numeric editing
patterns are available via user-defined editing masks.

v Transformation of SMF date and time values to more usable forms.

v Transformation of various forms of two-digit year dates to various forms of
four-digit year dates using a specified fixed or sliding century window.

v Selection of a character or hexadecimal string from a lookup table, based on a
character, hexadecimal, or bit string as input (that is, lookup and change).

For information concerning the interaction of INREC and OUTREC, see “INREC
Statement Notes” on page 140.

FIELDS

Specifies the order and alignment of the separation fields (blanks, zeros,
strings, current date and current time), unedited and edited input fields and
sequence numbers in the reformatted input records.

c: Specifies the position (column) for a separation field, input field or sequence

�� FIELDS= (E

,

s
c: p,m

,a
p
p,m,HEX
p,HEX
p,m,TRAN=LTOU
p,TRAN=LTOU
p,m,TRAN=UTOL
p,TRAN=UTOL
p,m,TRAN=ALTSEQ
p,TRAN=ALTSEQ
p,m,Y2x
p,m,Y2x(c)
p,m,Y2xP
p,m,f

,edit
p,m,f,to
p,m,Y2x,edit
p,m,Y2x,to
p,m,lookup
seqnum

) ��

INREC Control Statement

132 DFSORT R14 Application Programming Guide

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

number, relative to the start of the reformatted input record. Unused space
preceding the specified column is padded with EBCDIC blanks. The
following rules apply:

v c must be a number between 1 and 32752.

v c: must be followed by an input field or a separation field.

v c must not overlap the previous input field or separation field in the
reformatted input record.

v for variable-length records, c: must not be specified before the first input
field (the record descriptor word) nor after the variable part of the input
record.

v The colon (:) is treated like the comma (,) or semicolon (;) for
continuation to another line.

Both valid and invalid examples are shown in Table 21.

Table 21. Examples of Valid and Invalid Column Alignment

Validity Specified Result

Valid 33:C'State ' Columns 1-32 — blank
Columns 33-38 — 'State '

Valid 20:5,4,30:10,8 Columns 1-19 — blank
Columns 20-23 — input field (5,4)
Columns 24-29 — blank
Columns 30-37 — input field (10,8)

Invalid 0:5,4 Column value cannot be zero.

Invalid :25Z Column value must be specified.

Invalid 32753:21,8 Invalid — column value must be less
than 32753.

Invalid 5:10:2,5 Column values cannot be adjacent.

Invalid 20,10,6:C'AB' Column value overlaps previous field.

s Specifies that a separation field (blanks, zeros, character string,
hexadecimal string, current date or current time) is to appear in the
reformatted input record. It can be specified before or after any input field.
Consecutive separation fields can be specified. For variable-length records,
separation fields must not be specified before the first input field (the record
descriptor word), or after the variable part of the input record. Permissible
values are nX, nZ, nC'xx...x', nX'yy...yy', DATE1, DATE1(c), DATE1P,
DATE2, DATE2(c), DATE2P, DATE3, DATE3(c), DATE3P, TIME1, TIME1(c),
TIME1P, TIME2, TIME2(c), TIME2P, TIME3 and TIME3P.

nX Blank separation. n bytes of EBCDIC blanks (X'40') are to appear in
the reformatted input records. n can range from 1 to 4095. If n is
omitted, 1 is used.

Examples of valid and invalid blank separation are shown in
Table 22.

Table 22. Examples of Valid and Invalid Blank Separation

Validity Specified Result

Valid X or 1X 1 blank

Valid 4095X 4095 blanks

INREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 133

|
|
|
|
|
|
|
|
|

Table 22. Examples of Valid and Invalid Blank Separation (continued)

Validity Specified Result

Invalid 5000X Too many repetitions. Use two adjacent separation
fields instead (2500X,2500X, for example)

Invalid 0X 0 is not allowed.

nZ Binary zero separation. n bytes of binary zeros (X'00') are to appear
in the reformatted input records. n can range from 1 to 4095. If n is
omitted, 1 is used.

Examples of valid and invalid binary zero separation are shown in
Table 23.

Table 23. Examples of Valid and Invalid Binary Zero Separation

Validity Specified Result

Valid Z or 1Z 1 binary zero

Valid 4095Z 4095 binary zeros

Invalid 4450Z Too many repetitions. Use two adjacent separation
fields instead (4000Z,450Z for example).

Invalid 0Z 0 is not allowed.

nC'xx...x'
Character string separation. n repetitions of the character string
constant (C'xx...x') are to appear in the reformatted input records. n
can range from 1 to 4095. If n is omitted, 1 is used. x can be any
EBCDIC character. You can specify from 1 to 256 characters.

If you want to include a single apostrophe in the character string,
you must specify it as two single apostrophes:
Required: O'NEILL Specify: C'O''NEILL’

Examples of valid and invalid character string separation are shown
in Table 24.

Table 24. Examples of Valid and Invalid Character String Separation

Validity Specified Result Length

Valid C'John Doe' John Doe 8

Valid C'JOHN DOE' JOHN DOE 8

Valid C'$@#' $@# 3

Valid C'+0.193' +0.193 6

Valid 4000C' ' 8000 blanks 8000

Valid 20C'**FILLER**' **FILLER** repeated 20 times 200

Valid C'Frank''s' Frank’s 7

Invalid C''''' Apostrophes not paired n/a

Invalid 'ABCDEF' C identifier missing n/a

Invalid C'ABCDE Apostrophe missing n/a

Invalid 4450C'1' Too many repetitions. Use two
adjacent separation fields instead
(4000C'1',450C'1', for example).

n/a

Invalid 0C'ABC' 0 is not allowed n/a

INREC Control Statement

134 DFSORT R14 Application Programming Guide

Table 24. Examples of Valid and Invalid Character String Separation (continued)

Validity Specified Result Length

Invalid C'' No characters specified n/a

Invalid C'Frank's' Two single apostrophes needed for
one

n/a

nX'yy...yy'
Hexadecimal string separation. n repetitions of the hexadecimal
string constant (X'yy...yy') are to appear in the reformatted input
records. n can range from 1 to 4095. If n is omitted, 1 is used.

The value yy represents any pair of hexadecimal digits. You can
specify from 1 to 256 pairs of hexadecimal digits. Examples of valid
and invalid hexadecimal string separation are shown in Table 25.

Table 25. Examples of Valid and Invalid Hexadecimal String Separation

Validity Specified Result Length

Valid X'FF' FF 1

Valid X'BF3C' BF3C 2

Valid 3X'00000F' 00000F00000F00000F 9

Valid 4000X'FFFF' FF repeated 8000 times 8000

Invalid X'ABGD' G is not a hexadecimal digit n/a

Invalid X'F1F' Incomplete pair of digits n/a

Invalid 'BF3C' X identifier missing n/a

Invalid 'F2F1'X X in wrong place n/a

Invalid 8000X'01' Too many repetitions. Use two
adjacent separation fields instead
(4000X'01',4000X'01', for example).

n/a

Invalid 0X'23AB' 0 is not allowed n/a

Invalid X'' No hexadecimal digits specified n/a

DATEn, DATEN(c), DATEnP
Constant for current date. The date of the run is to appear in the
reformatted input records. Table 26 shows the constant generated for each
separation field you can specify along with its length and an example using
(/) for (c) where relevant. yyyy represents the year, mm represents the
month (01-12), dd represents the day (01-31), ddd represents the day of
the year (001-366), and c can be any character except a blank.

Table 26. Current date constants

Separation
Field

Constant Length
(bytes)

April 19, 2001

DATE1 C'yyyymmdd' 8 C'20010419'

DATE1(c) C'yyyycmmcdd' 10 C'2001/04/19'

DATE1P P'yyyymmdd' 5 P'20010419'

DATE2 C'yyyymm' 6 C'200104'

DATE2(c) C'yyyycmm' 7 C'2001/04'

DATE2P P'yyyymm' 4 P'200104'

DATE3 C'yyyyddd' 7 C'2001109'

INREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 135

|
|
|
|
|
|
|

||

|
|
||
|
|

||||

||||

||||

||||

||||

||||

||||

Table 26. Current date constants (continued)

Separation
Field

Constant Length
(bytes)

April 19, 2001

DATE3(c) C'yyyycddd' 8 C'2001/109'

DATE3P P'yyyyddd' 4 P'2001109'

TIMEn, TIMEn(c), TIMEnP
Constant for current time. The time of the run is to appear in the
reformatted input records. Table 27 shows the constant generated for each
separation field you can specify along with its length and an example using
(:) for (c) where relevant. hh represents the hour (00-23), mm represents
the minutes (00-59), ss represents the seconds (00-59), and c can be any
character except a blank.

Table 27. Current time constants

Separation
Field

Constant Length
(bytes)

01:55:43 PM

TIME1 C'hhmmss' 6 C'135543'

TIME1(c) C'hhcmmcss' 8 C'13:55:43'

TIME1P P'hhmmss' 4 P'135543'

TIME2 C'hhmm' 4 C'1355'

TIME2(c) C'hhcmm' 5 C'13:55'

TIME2P P'hhmm' 3 P'1355'

TIME3 C'hh' 2 C'13'

TIME3P P'hh' 2 P'13'

p,m,a
Specifies that an unedited input field is to appear in the reformatted input
record.

p Specifies the first byte of the input field relative to the beginning of the
input record.13 The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5 (because the first 4 bytes contain the RDW). All fields must
start on a byte boundary, and no field can extend beyond byte 32752.
For special rules concerning variable-length records, see “INREC
Statement Notes” on page 140.

m Specifies the length of the input field. It must include the sign if the data
is signed, and must be an integer number of bytes. See “INREC
Statement Notes” on page 140 for more information.

a Specifies the alignment (displacement) of the input field in the
reformatted input record relative to the start of the reformatted input
record.

Permissible values of a are:

H Halfword aligned. The displacement (p-1) of the field from the
beginning of the reformatted input record, in bytes, is a multiple
of two (that is, position 1, 3, 5, and so forth).

13. If your E15 user exit reformats the record, p must refer to the record as reformatted by the exit.

INREC Control Statement

136 DFSORT R14 Application Programming Guide

|

|
|
||
|
|

||||

||||

|
|
|
|
|
|
|

||

|
|
||
|
|

||||

||||

||||

||||

||||

||||

||||

||||

F Fullword aligned. The displacement is a multiple of four (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of eight
(that is, position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used in a
COBOL application program where COMPUTATIONAL items are
aligned through the SYNCHRONIZED clause. Unused space preceding
aligned fields will always be padded with binary zeros.

p specifies that the unedited part of the input record (that part beyond the
minimum record length), is to appear in the reformatted input record, as the last
field. Note that if the reformatted input record includes only the RDW and the
variable part of the input record, “null” records containing only an RDW may
result.

A value must be specified for p that is less than or equal to the minimum record
length (RECORD statement L4 value) plus 1 byte.

p,m,HEX
specifies that the hexadecimal representation of an input field is to appear in
the reformatted input record.

See p,m,HEX under OUTFIL OUTREC for details.

p,HEX
specifies that the hexadecimal representation of the variable part of the input
record (that part beyond the minimum record length), is to appear in the
reformatted input record, as the last field. Note that if the reformatted input
record includes only the RDW and the variable part of the input record, ″null″
records containing only an RDW may result.

See p,HEX under OUTFIL OUTREC for details.

p,m,TRAN=LTOU
specifies that lowercase EBCDIC letters (that is, a-z) in an input field are to
appear as uppercase EBCDIC letters (that is, A-Z) in the reformatted input
record.

See p,m,TRAN=LTOU under OUTFIL OUTREC for details.

p,TRAN=LTOU
specifies that lowercase EBCDIC letters (that is, a-z) in the variable part of the
input record (that part beyond the minimum record length), are to appear as
uppercase EBCDIC letters (that is, A-Z) in the reformatted input record, as the
last field. Note that if the reformatted input record includes only the RDW and
the variable part of the input record, ″null″ records containing only an RDW may
result.

See p,TRAN=LTOU under OUTFIL OUTREC for details.

p,m,TRAN=UTOL
specifies that uppercase EBCDIC letters (that is, A-Z) in an input field are to
appear as lowercase EBCDIC letters (that is, a-z) in the reformatted input
record.

See p,m,TRAN=UTOL under OUTFIL OUTREC for details.

p,TRAN=UTOL
specifies that uppercase EBCDIC letters (that is, A-Z) in the variable part of the
input record (that part beyond the minimum record length), are to appear as
lowercase EBCDIC letters (that is, a-z) in the reformatted input record, as the

INREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 137

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

last field. Note that if the reformated input record includes only the RDW and
the variable part of the input record, ″null″ records containing only an RDW may
result.

See p,TRAN=UTOL under OUTFIL OUTREC for details.

p,m,TRAN=ALTSEQ
specifies that the characters in an input field are to be changed according to the
ALTSEQ translation table in effect in the reformatted input record.

See p,m,TRAN=ALTSEQ under OUTFIL OUTREC for details.

p,TRAN=ALTSEQ
specifies that the characters in the variable part of the input record (that part
beyond the minimum record length), are to be changed according to the
ALTSEQ translation table in effect in the reformatted input record, as the last
field. Note that if the reformatted input record includes only the RDW and the
variable part of the input record, ″null″ records containing only an RDW may
result.

See p,TRAN=ALTSEQ under OUTFIL OUTREC for details.

p,m,Y2x
specifies that the four-digit CH date representation of a two-digit year input date
field is to appear in the reformatted input record. Real dates are transformed
using the century window established by the Y2PAST option in effect. The
century window is not used for special indicators; they are just expanded
appropriately (for example, p,6,Y2T transforms C’000000’ to C’00000000’).

See p,m,Y2x under OUTFIL OUTREC for details.

Sample Syntax:
INREC FIELDS=(21,3,Y2V,X,12,5,Y2W)

p,m,Y2x(c)
specifies that the four-digit CH date representation with separators of a two-digit
year input date field is to appear in the reformatted input record. Real dates are
transformed using the century window established by the Y2PAST option in
effect. The century window is not used for special indicators; they are just
expanded appropriately (for example, p,6,Y2T(/) transforms C’000000’ to
C’0000/00/00’).

See p,m,Y2x(c) under OUTFIL OUTREC for details.

Sample Syntax:
INREC FIELDS=(25,6,Y2T(-),X,14,2,Y2U(/))

p,m,Y2xP
specifies that the four-digit PD date representation of a two-digit year input date
field is to appear in the reformatted input record. Real dates are transformed
using the century window established by the Y2PAST option in effect. The
century window is not used for special indicators; they are just expanded
appropriately (for example, p,6,Y2TP transforms C’000000’ to P’00000000’).

See p,m,Y2xP under OUTFIL OUTREC for details.

Sample Syntax:
Fixed input records

INREC FIELDS=(1:5,10,15:8C’0’,25:20,15,TRAN=LTOU,80:X)
Variable input records

INREC FIELDS=(1,4,C’ RDW=’,1,4,HEX,C’ FIXED=’,
5,20,HEX,C’ VARIABLE=’,21,HEX)

INREC Control Statement

138 DFSORT R14 Application Programming Guide

|

|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|

Sample Syntax:
INREC FIELDS=(11,3,Y2XP,X,21,4,Y2WP)

p,m,f,edit
specifies that an edited numeric input field is to appear in the reformatted input
record.You can edit BI, FI, PD, PD0, ZD, CSF/FS, DT1, DT2, DT3, TM1, TM2,
TM3 or TM4 fields using either pre-defined edit masks (M0-M26) or specific edit
patterns you define. You can control the way the edited fields look with respect
to length, leading or suppressed zeros, thousands separators, decimal points,
leading and trailing positive and negative signs, and so on.

See p,m,f,edit under OUTFIL OUTREC for details.

Sample Syntax:
INREC FIELDS=(5:21,8,ZD,M19,X,46,5,ZD,M13,

31:35,6,FS,SIGNS=(,,+,-),LENGTH=10,
51:8,4,PD,EDIT=(**II,IIT.TTXS),SIGNS=(,,+,-))

p,m,f,to
specifies that a converted numeric input field is to appear in the reformatted
input record. You can convert BI, FI, PD, PD0, ZD, CSF/FS, DT1, DT2, DT3,
TM1, TM2, TM3 or TM4 fields to BI, FI, PD, ZD or CSF/FS fields.

See p,m,f,to under OUTFIL OUTREC for details.

Sample Syntax:
INREC FIELDS=(21,5,ZD,TO=PD,X,8,4,ZD,FI,LENGTH=2)

p,m,Y2x,edit
specifies that an edited four-digit year CH date representation of a two-digit
year input date field is to appear in the reformatted input record.

See p,m,Y2x,edit under OUTFIL OUTREC for details.

p,m,Y2x,to
specifies that a converted four-digit year date representation of a two-digit year
input date field is to appear in the reformatted input record.

See p,m,Y2x,to under OUTFIL OUTREC for details.

p,m,lookup
specifies that a character or hexadecimal string from a lookup table is to appear
in the reformatted input record. You can use p,m,lookup to select a specified
character or hexadecimal string based on matching an input value against
character, hexadecimal, or bit constants.

See p,m,lookup under OUTFIL OUTREC for details.

Sample Syntax:
INREC FIELDS=(11,1,

CHANGE=(6,
C’R’,C’READ’,
C’U’,C’UPDATE’,
X’FF’,C’EMPTY’,
C’A’,C’ALTER’),

NOMATCH=(11,6),
4X,
21,1,
CHANGE=(10,

B’.1......’,C’VSAM’,
B’.0......’,C’NON-VSAM’))

seqnum
specifies that a sequence number is to appear in the reformatted input record.

INREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 139

|
|

|
|
|

The sequence numbers are assigned in the order in which the records are
received for INREC processing. You can create BI, PD, ZD or CSF/FS
sequence numbers and control their lengths, starting values and increment
values.

See seqnum under OUTFIL OUTREC for details.

Sample Syntax:
INREC FIELDS=(SEQNUM,6,ZD,START=1000,INCR=50,1,60)

Default: None; must be specified. See Appendix B, “Specification/Override of
DFSORT Options” on page 603.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

INREC Statement Notes
v When INREC is specified, DFSORT reformats the input records after user exit

E15 or INCLUDE/OMIT statement processing is finished. Thus, references to
fields by your E15 user exit and INCLUDE/OMIT statements are not affected,
whereas your SORT, OUTREC, and SUM statements must refer to fields in the
reformatted input records. Your E35 user exit must refer to fields in the
reformatted output record.

v In general, OUTREC should be used rather than INREC so your SORT and SUM
statements can refer to fields in the original input records.

v If you use locale processing for SORT, MERGE, INCLUDE, or OMIT fields, you
must not use INREC. Use the OUTREC statement or the OUTREC operand of
the OUTFIL statement instead of INREC.

v When you specify INREC, you must be aware of the change in record size and
layout of the resulting reformatted input records.

v Performance can be improved if you can significantly reduce the length of your
records with INREC. INREC and OUTREC should not be used unless they are
actually needed to reformat your records.

v For variable-length records, the first entry in the FIELDS parameter must specify
or include the 4-byte record descriptor word (RDW). DFSORT sets the length of
the reformatted record in the RDW.

If the first field in the data portion of the input record is to appear in the
reformatted input record immediately following the RDW, the entry in the FIELDS
parameter can specify both RDW and data field in one. Otherwise, the RDW
must be specifically included in the reformatted input record.

v If the SORTOUT LRECL is specified or available, DFSORT will use it even if it
does not match the reformatted INREC record length; this can cause padding or
truncation of the reformatted INREC records, or termination. If the SORTOUT
LRECL is not specified or available, DFSORT can automatically use the
reformatted INREC record length as the SORTOUT LRECL, when appropriate.
See the discussion of the SOLRF and NOSOLRF options in “OPTION Control
Statement” on page 155.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four bytes
less than the LRECL when processing variable-length records. See “VSAM
Considerations” on page 14 for more information.

v The variable part of the input record (that part beyond the minimum record
length) can be included in the reformatted input record, and if included, must be

INREC Control Statement

140 DFSORT R14 Application Programming Guide

the last part. In this case, a value must be specified for pn that is less than or
equal to the minimum record length (see L4 of the RECORD control statement)
plus 1 byte; mn and an must be omitted.

If both INREC and OUTREC are specified, either both must specify position-only
for the last part, or neither must specify position-only for the last part.

If the reformatted input includes only the RDW and the variable part of the input
record, “null” records containing only an RDW could result.

v The input records are reformatted before processing, asspecified by INREC. The
output records are in the format specified by INREC, unless OUTREC is also
specified.

v Fields referenced in INREC statements can overlap each other and control fields
or both.

v If input is variable records, the output is also variable. This means that each
record is given the correct RDW by DFSORT before output.

v If overflow might occur during summation,INREC can be used to create a larger
SUM field in the reformatted input record (perhaps resulting in a larger record for
sorting or merging) so that overflow does not occur.

v DFSORT issues a message and terminates if an INREC statement is specified
for a tape work data set sort or conventional merge application.

v If SZERO is in effect, -0 is treated as negative and +0 is treated as positive for
edited or converted input fields. If NOSZERO is in effect, -0 and +0 are treated
as positive for edited or converted input fields.

Reformatting Records Before Processing — Examples

Example 1

INREC Method:

INCLUDE COND=(5,1,GE,C’M’),FORMAT=CH
INREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(4,8,CH,A,1,3,FI,A)
SUM FIELDS=(17,4,BI)

OUTREC Method:

INCLUDE COND=(5,1,GE,C’M’),FORMAT=CH
OUTREC FIELDS=(10,3,20,8,33,11,5,1)
SORT FIELDS=(20,8,CH,A,10,3,FI,A)
SUM FIELDS=(38,4,BI)

The above examples illustrate how a fixed-length input data set is sorted and
reformatted for output. Unnecessary fields are eliminated from the output records
using INREC or OUTREC. The SORTIN LRECL is 80.

Records are also included or excluded by means of the INCLUDE statement, and
summed by means of the SUM statement.

The reformatted input records are fixed length with a record size of 23 bytes.
SOLRF (the IBM-supplied default) is in effect, so unless the SORTOUT LRECL is
specified or available, it will automatically be set to the reformatted record length of
23. The reformatted records look as follows after INREC or OUTREC processing:

INREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 141

Position Contents
1-3 Input positions 10 through 12
4-11 Input positions 20 through 27
12-22 Input positions 33 through 43
23 Input position 5

Identical results are achieved with INREC or OUTREC. However, use of OUTREC
makes it easier to code the SORT and SUM statements. In either case, the
INCLUDE COND parameters must refer to the fields of the original input records.
However, with INREC, the SUM and SORT FIELDS parameters must refer to the
fields of the reformatted input records, while with OUTREC, the SUM and SORT
FIELDS parameters must refer to the fields of the original input records.

Example 2

INREC FIELDS=(1,35,2Z,36,45)
MERGE FIELDS=(20,4,CH,D,10,3,CH,D),FILES=3
SUM FIELDS=(36,4,BI,40,8,PD)
RECORD TYPE=F,LENGTH=(80,,82)

This example illustrates how overflow of a summary field can be prevented when
three fixed-length data sets are merged and reformatted for output. The input record
size is 80 bytes. To illustrate the use of the RECORD statement, assume that
SORTIN and SORTOUT are not present (that is, all input/output is handled by user
exits).

The reformatted input records are fixed-length with a record size of 82 bytes (an
insignificant increase from the original size of 80 bytes). They look as follows:

Position Contents
1-35 Input positions 1 through 35
36-37 Binary zeros (to prevent overflow)
38-82 Input positions 36 through 80

The MERGE and SUM statements must refer to the fields of the reformatted input
records.

The reformatted output records are identical to the reformatted input records.

Thus, the 2-byte summary field at positions 36 and 37 in the original input records
expands to a 4-byte summary field in positions 36 through 39 of the reformatted
input/output record before merging. This prevents overflow of this summary field.
Note that, if OUTREC were used instead of INREC, the records would be
reformatted after merging, and the 2-byte summary field might overflow.

Note: This method of preventing overflow cannot be used for negative FI summary
fields because padding with zeros rather than ones would change the sign.

Example 3

INREC FIELDS=(20,4,12,3)
SORT FIELDS=(1,4,D,5,3,D),FORMAT=CH
OUTREC FIELDS=(5X,1,4,H,19:1,2,5,3,DATE1(−),80X’FF’)

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. A more efficient sort is achieved by using INREC before

INREC Control Statement

142 DFSORT R14 Application Programming Guide

|

|
|
|
|
|

|
|

sorting to reduce the input records as much as possible, and using OUTREC after
sorting to add padding, the current date and repeated fields. The SORTIN LRECL is
80 bytes.

The reformatted input records are fixed-length, and have a record size of seven
bytes (a significant reduction from the original size of 80 bytes). They look as
follows:

Position Contents
1-4 Input positions 20 through 23
5-7 Input positions 12 through 14

The SORT and OUTREC statements must refer to the fields of the reformatted
input records.

The reformatted output records are fixed length with a record size of 113 bytes.
SOLRF (the IBM-supplied default) is in effect, so unless the SORTOUT LRECL is
specified or available, it will automatically be set to the reformatted record length of
113. The reformatted output records look as follows:

Position Contents
1-5 EBCDIC blanks
6 Binary zero (for H alignment)
7-10 Input positions 20 through 23
11-18 EBCDIC blanks
19-20 Input positions 20 through 21
21-23 Input positions 12 through 14
24-33 The current date in the form C'yyyy-mm-dd'
34-113 Hexadecimal FF’s

Thus, the use of INREC and OUTREC allows sorting of 7-byte records rather than
80-byte records, even though the output records are 113 bytes long.

Example 4

INREC FIELDS=(8100,10,1,8099,8110,891)
SUM FIELDS=(1,10,ZD)
SORT FIELDS=(5011,6,CH,A)
OUTREC FIELDS=(11,8099,1,10,8110,891)

This example illustrates how you can sum on a field beyond DFSORT’s normal limit
of byte 4092 by using INREC and OUTREC.

The “sort” field is at input positions 5001 through 5006. The “sum” field is at
positions 8100 through 8109. The INREC statement is used to reformat the input
records so that the sum field is within the first 4092 bytes. The reformatted input
records look as follows:

Position Contents
1-10 Input positions 8100 through 8109. The sum field now starts in

position 1 rather than in position 8100.
11–8109 Input positions 1 through 8099, that is, the part of the record before

the sum field. The sort field now starts in position 5011 rather than
in position 5001.

8110–9000 Input positions 8110 through 9000, that is, the part of the record
after the sum field.

INREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 143

|
|
|

|

|

||
||

|

|

|
|
|
|
|
|

|
|

|
|
|
|

||
||
|
||
|
|
||
|

The INREC statement allows the SUM statement to refer to the sum field in the
reformatted record at position 1. The SORT statement must refer to the sort field in
the reformatted record at position 5011. The OUTREC statement is used to restore
the records to their original format, but with the updated sum field from positions 1
through 10.

Example 5

OPTION COPY,Y2PAST=1985
INREC FIELDS=(SEQNUM,4,BI,

8,5,ZD,TO=PD,
31,2,PD,TO=FI,LENGTH=2,
15,6,Y2TP,
25,3,CHANGE=(1,C’L92’,X’01’,C’M72’,X’02’,C’J42’,X’03’),
NOMATCH=(X’FF’))

This example illustrates how a sequence number can be generated, how values in
one numeric or date format can be converted to another format, and how a lookup
table can be used.

The reformatted input records will look as follows:

Position Contents
1-4 A binary sequence number that starts at 1 and increments by 1.
5–7 A PD field containing the converted ZD field from input positions 8

through 12.
8–9 An FI field containing the converted PD field from input positions 31

through 32.
10–14 A P’yyyymmdd’ date field containing the C’yymmdd’ date field from

input positions 15-20 transformed according to the specified century
window of 1985-2084.

15 A BI field containing X’01’, X’02’, X’03’ or X’FF’ as determined by
using a lookup table for the input field in positions 25-27.

The SORT statement can now refer to the “sort” field in the reformatted input
records. The OUTREC statement is used to restore the records to their original
format.

INREC Control Statement

144 DFSORT R14 Application Programming Guide

|
|
|
|
|

MERGE Control Statement
The MERGE control statement must be used when a merge operation is to be

performed; this statement describes the control fields in the input records on which
the input data sets have previously been sorted.

A MERGE statement can also be used to specify a copy application. User labels
will not be copied to the output data sets.

You can merge up to 100 data sets with Blockset merge or up to 16 data sets with
Conventional merge. If Blockset merge is not selected, you can use a SORTDIAG
DD statement to force message ICE800I, which gives a code indicating why
Blockset could not be used.

The way in which DFSORT processes short MERGE control fields depends on the
setting for VLSHRT/NOVLSHRT. A short field is one where the variable-length
record is too short to contain the entire field, that is, the field extends beyond the
record. For details about merging short records, see the discussion of the VLSHRT
and NOVLSHRT options in “OPTION Control Statement” on page 155.

The options available on the MERGE statement can be specified in other sources
as well. A table showing all possible sources for these options and the order of
override are given in Appendix B, “Specification/Override of DFSORT Options” on
page 603. When an option can be specified on either the MERGE or OPTION
statement, it is preferable to specify it on the OPTION statement.

DFSORT accepts but does not process the following MERGE operands:
WORK=value and ORDER=value.

DFSORT’s collating behavior can be modified according to your cultural
environment. The cultural environment is established by selecting the active locale.
The active locale’s collating rules affect MERGE processing as follows:

�� MERGE FIELDS= E

E

,

(p,m,f,s)
,

(p,m,s) , FORMAT=f
COPY
(COPY)

�

�

E

,

, EQUALS
NOEQUALS

FILES=n
FILSZ=x
SIZE=y

SKIPREC=z
STOPAFT=n
Y2PAST= s

f

��

MERGE Control Statement

Chapter 3. Using DFSORT Program Control Statements 145

v DFSORT produces merged records for output according to the collating rules
defined in the active locale. This provides merging for single- or multi-byte
character data, based on defined collating rules that retain the cultural and local
characteristics of a language.

If locale processing is to be used, the active locale will only be used to process
character (CH) control fields.

For more information on locale processing, see “Cultural Environment
Considerations” on page 6 or LOCALE in “OPTION Control Statement” on
page 155.

Note: For a merge application, records deleted during an E35 exit routine are not
sequence checked. If you use an E35 exit routine without an output data set,
sequence checking is not performed at the time the records are passed to
the E35 user exit; therefore, you must ensure that input records are in
correct sequence.

FIELDS

Is written exactly the same way for a merge as it is for a sort. The meanings of
p, m, f, and s are described in the discussion of the SORT statement. The
defaults for this and the following parameters are also given there. See “SORT
Control Statement” on page 300.

FIELDS=COPY or FIELDS=(COPY)

See the discussion of the COPY option on the OPTION statement, in “OPTION
Control Statement” on page 155.

FORMAT=f

See the discussion of the FORMAT option in “SORT Control Statement” on
page 300. Used the same way for a merge as for a sort.

EQUALS or NOEQUALS

See the discussion of these options on the OPTION statement, in “OPTION
Control Statement” on page 155.

FILES=n

�� FIELDS= E

,

(p,m,f,s) ��

�� FIELDS= COPY
(COPY)

��

�� FORMAT=f ��

�� EQUALS
NOEQUALS

��

MERGE Control Statement

146 DFSORT R14 Application Programming Guide

Specifies the number of input files for a merge when input is supplied through
the E32 exit.

Default: None; must be specified when an E32 exit is used.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

FILSZ or SIZE

See the discussion of these options on the OPTION statement, in “OPTION
Control Statement” on page 155.

SKIPREC

See the discussion of this option on the OPTION statement, in “OPTION
Control Statement” on page 155.

STOPAFT

See the discussion of this option on the OPTION statement, in “OPTION
Control Statement” on page 155.

Y2PAST

See the discussion of this option on the OPTION statement, in “OPTION
Control Statement” on page 155.

Note: CENTURY=value and CENTWIN=value can be used instead of
Y2PAST=value.

Specifying a MERGE or COPY—Examples

Example 1

MERGE FIELDS=(2,5,CH,A),FILSZ=29483

FIELDS
The control field begins on byte 2 of each record in the input data sets. The
field is 5 bytes long and contains character (EBCDIC) data that has been
presorted in ascending order.

�� FILES=n ��

�� FILSZ=x
SIZE=y

��

�� SKIPREC=z ��

�� STOPAFT=n ��

�� Y2PAST= s
f

��

MERGE Control Statement

Chapter 3. Using DFSORT Program Control Statements 147

FILSZ
The input data sets contain exactly 29483 records.

Example 2

MERGE FIELDS=(3,8,ZD,E,40,6,CH,D)

FIELDS
The major control field begins on byte 3 of each record, is 8 bytes long, and
contains zoned decimal data that is modified by your routine before the merge
examines it.

The second control field begins on byte 40, is 6 bytes long, and contains
character data in descending order.

Example 3

MERGE FIELDS=(25,4,A,48,8,A),FORMAT=ZD

FIELDS
The major control field begins on byte 25 of each record, is 4 bytes long, and
contains zoned decimal data that has been placed in ascending sequence.

The second control field begins on byte 48, is 8 bytes long, is also in zoned
decimal format, and is also in ascending sequence. The FORMAT parameter
can be used because both control fields have the same data format.

Example 4

MERGE FIELDS=COPY

FIELDS
The input data set is copied to output. No merge takes place.

MODS Control Statement

The MODS statement is needed only when DFSORTpasses control to your routines
at user exits. The MODS statement associates user routines with specific DFSORT
exits and provides DFSORT with descriptions of these routines. For details about
DFSORT user exits and how user routines can be used, see Chapter 4, “Using Your
Own User Exit Routines” on page 315.

To use one of the user exits,you substitute its three-character name (for example,
E31) for the word exit in the MODS statement format above. You can specify any
valid user exit, except E32. (E32 can be used only in a merge operation invoked
from a program; its address must be passed in a parameter list.)

exit

�� MODS E

,

exit= (n,m)
,

s ,e
HILEVEL=YES

��

MERGE Control Statement

148 DFSORT R14 Application Programming Guide

The values that follow the exit parameter describe the user routine. These
values are:

n specifies the name of your routine (member name if your routine is in a library).
You can use any valid operating system name for your routine. This allows you
to keep several alternative routines with different names in the same library.

m specifies the number of bytes of main storage your routine uses.Include storage
obtained (via GETMAIN) by your routine (or, for example, by OPEN) and the
storage required to load the COBOL library subroutines.

s specifies either the name of the DD statement in your DFSORT job step that
defines the library in which your routine is located or SYSIN if your routine is in
the input stream. SYSIN is not valid for copy processing.

If a value is not specified for s, DFSORT uses the following search order to find
the library in which your routine is located:
1. The libraries identified by the STEPLIB DD statement
2. The libraries identified by the JOBLIB DD statement (if there is no STEPLIB

DD statement)
3. The link library.

e specifies the linkage editor requirements of your routine or indicates that your
routine is written in COBOL. The following values are allowed:

N specifies that your routine has already been link-edited and can be used in
the DFSORT run without further link-editing. This is the default for e. N
(specified or defaulted) can be overridden by the EXEC PARM parameters
'E15=COB' and 'E35=COB' or by the HILEVEL=YES parameter.

C specifies that your E15 or E35 routine is written in COBOL. If you code C
for any other exit, it is ignored, and N is assumed. Your COBOL-written
routine must already have been link-edited. The COBEXIT option of the
OPTION statement specifies the library for the COBOL exits.

T specifies that your routine must be link-edited together with other routines to
be used in the same phase (for example, E1n routines) of DFSORT. See
“Dynamically Link-Editing User Exit Routines” on page 325 for additional
information. This value is not valid for copy processing.

S specifies that your routine requires link-editing but that it must be link-edited
separately from the other routines (for example, E3n routines) to be used in
a particular phase of DFSORT. E11 and E31 exit routines are the only
routines eligible for separate link-editing. See “Dynamically Link-Editing
User Exit Routines” on page 325 for additional information. This value is not
valid for copy processing.

If you do not specify a value for e, N is assumed.

HILEVEL=YES

specifies that:

v if an E15 routine is identified on the MODS statement, it is written in COBOL

�� exit= (n,m)
,

s ,e

��

�� HILEVEL=YES ��

MODS Control Statement

Chapter 3. Using DFSORT Program Control Statements 149

v if an E35 routine is identified on the MODS statement, it is written in COBOL.

If you identify an E15 routine and an E35 routine on the MODS statement,
specify HILEVEL=YES only if both routines are written in COBOL. If you do not
identify an E15 or E35 routine on the MODS statement, HILEVEL=YES is
ignored.

Note: COBOL=YES can be used instead of HILEVEL=YES.

Notes:

1. The s parameter must be the same or omitted for each routine with N or C for
the e parameter (library concatenation is allowed). These routines cannot be
placed in SYSIN. Each such routine must be a load module.

2. Each routine for which T or S is specified for the e parameter can be placed in
any library or in SYSIN; they do not all have to be in the same library or
SYSIN (but can be). Some routines can even be in different libraries (or the
same library) and the rest can be in SYSIN. Each such routine, if in a library,
can be either an object deck or a load module; if in SYSIN, it must be an
object deck.

3. If the same routine is used in both input (that is, E1n routines) and output (that
is, E3n routines) DFSORT program phases, a separate copy of the routine
must be provided for each exit.

4. HILEVEL=YES can be used instead of C as the fourth parameter, to indicate
that an E15 or E35 routine is written in COBOL. In this case, if T is specified
as the fourth parameter for E15 or E35, DFSORT terminates. If you identify an
E15 routine and an E35 routine on the MODS statement, specify
HILEVEL=YES only if both routines are written in COBOL.

5. EXEC PARM parameter E15=COB can be used instead of C as the fourth
parameter, to indicate that an E15 is written in COBOL. In this case, if T is
specified as the fourth parameter for E15, DFSORT terminates.

6. EXEC PARM parameter E35=COB can be used instead of C as the fourth
parameter, to indicate that an E35 is written in COBOL. In this case, if T is
specified as the fourth parameter for E35, DFSORT terminates.

7. If HILEVEL=YES, E15=COB, or E35=COB is used instead of C as the fourth
parameter, to indicate that an exit is written in COBOL, the fourth parameter
for that exit must be specified as N or not specified.

8. If a COBOL E15 or E35 is specified for a conventional merge or tape work
data set sort, DFSORT terminates.

9. exit=(n,m) can be used to omit both the s and e parameters.

10. exit=(n,m,,e) can be used to omit the s parameter, but not the parameter.

11. The s parameter must be specified for a conventional merge or tape work data
set sort, or when S or T is specified for the e parameter.

Default: None; must be specified if you use exit routines. N is the default for the
fourth parameter.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT Options”
on page 603.

For information on user exit routines in SYSIN, see “System DD Statements” on
page 62.

For details on how to design your routines, refer to “Summary of Rules for User Exit
Routines” on page 323.

MODS Control Statement

150 DFSORT R14 Application Programming Guide

When you are preparing your MODS statement,remember that DFSORT must know
the amount of main storage your routine needs so that it can allocate main storage
properly for its own use. If you do not know the exact number of bytes your
program requires (including requirements for system services), make a slightly high
estimate. The value of m in the MODS statement is written the same way whether it
is an exact figure or an estimate: you do not precede the value by E for an
estimate.

Identifying User Exit Routines—Examples

Example 1

MODS E15=(ADDREC,552,MODLIB),E35=(ALTREC,11032,MODLIB)

E15
At exit E15, DFSORT transfers control to your own routine. Your routine is in
the library defined by a job control statement with the ddname MODLIB. Its
member name is ADDREC and uses 552 bytes.

E35
At exit E35, DFSORT transfers control to your routine. Your routine is in the
library defined by the job control statement with the ddname MODLIB. Its
member name is ALTREC and will use 11032 bytes.

Example 2

MODS E15=(COBOLE15,7000,,C),
E35=(COBOLE35,7000,EXITC,C)

E15
At exit E15, DFSORT transfers control to your own routine. Your routine is
written in COBOL and is in the STEPLIB/JOBLIB or link libraries. Its member
name is COBOLE15 and it uses 7000 bytes.

E35
At exit E35, DFSORT transfers control to your routine. Your routine is written in
COBOL and is in the library defined by the job control statement with the
ddname EXITC. Its member name is COBOLE35 and it uses 7000 bytes.

OMIT Control Statement

Use an OMIT statement if you do not want all of the input records to appear in the
output data sets. The OMIT statement selects the records you do not want to
include.

You can specify either an INCLUDE statement or an OMIT statement in the same
DFSORT run, but not both.

�� OMIT COND= (logical expression)
FORMAT=f

ALL
(ALL)
NONE
(NONE)

��

MODS Control Statement

Chapter 3. Using DFSORT Program Control Statements 151

The way in which DFSORT processes short INCLUDE/OMIT compare fields
depends on the settings for VLSCMP/NOVLSCMP and VLSHRT/NOVLSHRT. A
short field is one where the variable-length record is too short to contain the entire
field, that is, the field extends beyond the record. For details about including or
omitting short records, see the discussion of the VLSCMP and NOVLSCMP options
in “OPTION Control Statement” on page 155.

A logical expression is one or more relational conditions logically combined, based
on fields in the input record, and can be represented at a high level as follows:

If the logical expression is true for a given record, the record is omitted from the
output data set.

Four types of relational conditions can be used as follows:

1. Comparisons:

Compare two compare fields or a compare field and a decimal, hexadecimal,
character or current date constant.

For example, you can compare the first 6 bytes of each record with its last 6
bytes, and omit those records in which those fields are identical. Or you can
compare a field with today’s date, and omit those records for past events.

2. Substring Comparison Tests:

Search for a constant within a field value or a field value within a constant.

For example, you can search the value in a 6-byte field for the character
constant C'OK', and omit those records for which C'OK' is found somewhere in
the field. Or you can search the character constant C'J69,L92,J82' for the value
in a 3-byte field, and omit those records for which C'J69', C'L92', or C'J82'
appears in the field.

3. Bit Logic Tests:

Test the state (on or off) of selected bits in a binary field using a bit or
hexadecimal mask or a bit constant.

For example, you can omit those records which have bits 0 and 2 on in a 1-byte
field. Or you can omit those records which have bits 3 and 12 on and bits 6 and
8 off in a 2-byte field.

4. Date Comparisons:

Compare a two-digit year date field to a two-digit year date constant, the current
two-digit year date or another two-digit year date field, using the century window
in effect.

For example, you can omit only those records for which a Z'yymm' date field is
between January 1996 and March 2005. Or you can omit only those records for
which a P'dddyy' field is less than another P'dddyy' field.

For complete details on the parameters of the OMIT control statement, see
“INCLUDE Control Statement” on page 111.

The OMIT control statement differs from the OMIT parameter of the OUTFIL
statement in the following ways:

�� relational condition1

E

.

, AND ,relational condition2
OR

��

OMIT Control Statement

152 DFSORT R14 Application Programming Guide

|

|
|

|
|
|

|

|
|
|

v The OMIT statement applies to all input records; the OMIT parameter applies
only to the OUTFIL input records for its OUTFIL group.

v FORMAT=f can be specified with the OMIT statement but not with the OMIT
parameter.

v D2 format can be specified with the OMIT statement but not with the OMIT
parameter.

See “OUTFIL Control Statements” on page 204 for more details on the OUTFIL
OMIT parameter.

COND

logical expression
specifies one or more relational conditions logically combined, based on
fields in the input record. If the logical expression is true for a given
record, the record is omitted from the output data sets.

ALL or (ALL)
specifies that all of the input records are to be omitted from the output
data sets.

NONE or (NONE)
specifies that none of the input records are to be omitted from the
output data sets.

Default: NONE. See Appendix B, “Specification/Override of DFSORT Options”
on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

FORMAT

FORMAT=f can be used only when all the input fields in the entire logical
expression have the same format. The permissible field formats for
comparisons are shown in Table 10 on page 114. SS (substring) is the only
permissible field format for substring comparison tests. BI (unsigned binary) is
the only permissible field format for bit logic tests. The Y2x formats are the only
permissible field formats for date comparisons.

Default: None. Must be specified if not included in the COND=(logical
expression) parameter. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� COND= (logical expression)
ALL
(ALL)
NONE
(NONE)

��

�� FORMAT=f ��

OMIT Control Statement

Chapter 3. Using DFSORT Program Control Statements 153

Note: If format values are specified in both FORMAT and COND, DFSORT issues
an informational message, uses the format values from COND (f must be
specified for each compare field), and does not use the format values from
FORMAT.

Omitting Records from the Output Data Set—Example

Example

OMIT COND=(27,1,CH,EQ,C’D’,&,
(22,2,BI,SOME,X’C008’,|,
28,1,BI,EQ,B’.1....01’))

This statement omits records in which:

v Byte 27 contains D

AND

v Bytes 22 through 23 have some, but not all of bits 0, 1 and 12 on OR byte 28 is
equal to the specified pattern of bit 1 on, bit 6 off and bit 7 on.

Note that the AND and OR operators can be written with the AND and OR signs,
and that parentheses are used to change the order in which AND and OR are
evaluated.

For additional examples of logical expressions, see “INCLUDE Control Statement”
on page 111.

OMIT Control Statement

154 DFSORT R14 Application Programming Guide

OPTION Control Statement

�� OPTION E

,

ARESALL= n
nK
nM

ARESINV= n
nK
nM

AVGRLEN=n
CHALT
NOCHALT
CHECK
NOCHECK
CINV
NOCINV

CKPT
COBEXIT= COB1

COB2
COPY
DSPSIZE= MAX

n
DYNALLOC

= d
(d)
(,n)
(d,n)
OFF
(OFF)

DYNSPC=n
EFS= name

NONE
EQUALS
NOEQUALS

EXITCK= STRONG
WEAK

FILSZ= x
Ex
Ux

SIZE= y
Ey
Uy

HIPRMAX= OPTIMAL
n
p%

LIST
NOLIST
LISTX
NOLISTX

LOCALE= name
CURRENT
NONE

��

Figure 13. Syntax Diagram for the Option Control Statement (Part 1 of 3)

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 155

|

MAINSIZE= n
nK
nM
MAX

MSGDDN=ddname
MSGPRT= ALL

NONE
CRITICAL

NOBLKSET
NOOUTREL
NOOUTSEC
NOSTIMER
ODMAXBF= n

nK
nM

OVFLO RC0
RC4
RC16

PAD RC0
RC4
RC16

RESALL= n
nK
nM

RESET
NORESET

RESINV= n
nK
nM

SDB= LARGE
YES
INPUT
NO

SKIPREC=z
SMF= SHORT

FULL
NO

SOLRF
NOSOLRF

SORTDD=cccc
SORTIN=ddname
SORTOUT=ddname
SPANINC= RC0

RC4
RC16

STOPAFT=n
SZERO
NOSZERO

TRUNC RC0
RC4
RC16

USEWKDD

Figure 13. Syntax Diagram for the Option Control Statement (Part 2 of 3)

OPTION Control Statement

156 DFSORT R14 Application Programming Guide

Note for Syntax Diagram: The keywords EFS, LIST, NOLIST, LISTX, NOLISTX,
MSGDDN, MSGPRT, SMF, SORTDD, SORTIN,
SORTOUT, and USEWKDD are used only when they
are specified on the OPTION control statement passed
by an extended parameter list or when specified in the
DFSPARM data set. If they are specified on an
OPTION statement read from the SYSIN or
SORTCNTL data set, the keyword is recognized, but
the parameters are ignored.

The OPTION control statement allows you to override some of the options available
at installation time (such asEQUALS and CHECK) and to supply other optional
information (such as DYNALLOC, COPY, and SKIPREC).

Some of the options available on the OPTION statement are also available on the
SORT or MERGE statement (such as FILSZ and SIZE). It is preferable to specify
these options on the OPTION statement. For override rules, see Appendix B,
“Specification/Override of DFSORT Options” on page 603.

Details of aliases for OPTION statement options are given under the description of
individual options. Table 31 on page 200 summarizes the available aliases.

DFSORT accepts but does not process the following OPTION operands: ALGQ,
APP, APPEND, BIAS=value, BLKSET, CASCADE, DIAG, ERASE, EXCPVR=value,
MAXPFIX=value, NEW, NEWFILE, NODIAG, NOERASE, NOINC, NOSWAP,
OPT=value, REP, REPLACE, WRKADR=value, WRKDEV=value, and
WRKSIZ=value.

ARESALL

VERIFY
NOVERIFY
VLLONG
NOVLLONG
VLSCMP
NOVLSCMP
VLSHRT
NOVLSHRT
VSAMEMT
NVSAMEMT
VSAMIO
NOVSAMIO
WRKREL
NOWRKREL
WRKSEC
NOWRKSEC

Y2PAST= s
f

ZDPRINT
NZDPRINT

Figure 13. Syntax Diagram for the Option Control Statement (Part 3 of 3)

�� ARESALL= n
nK
nM

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 157

Temporarily overrides the ARESALL installation option, which specifies the
number of bytes to be reserved above virtual for system use.

ARESALL applies only to the amount of main storage above virtual. This option
is normally not needed because of the large amount of storage available above
16MB virtual (the default for ARESALL is 0 bytes). The RESALL option applies
to the amount of main storage below 16MB virtual.

n specifies that n bytes of storage are to be reserved.

Limit: 8 digits.

nK specifies that n times 1024 bytes of storage are to be reserved.

Limit: 5 digits.

nM specifies that n times 1048576 bytes of storage are to be reserved.

Limit: 2 digits.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: SeeAppendix B, “Specification/Override of DFSORT
Options” on page 603.

ARESINV

Temporarily overrides the ARESINV installation option, which specifies the
number of bytes to be reserved for an invoking program’s user exits that reside
in or use space above 16MB virtual. The reserved space is not meant to be
used for the invoking program’s executable code. ARESINV is used only when
DFSORT is dynamically invoked.

ARESINV applies only to the amount of main storage above 16MB virtual. The
RESINV option applies to the amount of main storage below 16MB virtual.

n specifies that n bytes of storage are to be reserved.

Limit: 8 digits.

nK
specifies that n times 1024 bytes of storage are to be reserved.

Limit: 5 digits.

nM
specifies that n times 1048576 bytes of storage are to be reserved.

Limit: 2 digits.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� ARESINV= n
nK
nM

��

OPTION Control Statement

158 DFSORT R14 Application Programming Guide

AVGRLEN

Specifies the average input record length in bytes for variable-length record sort
applications. This value is used when necessary to determine the input file size.
The resulting value is important for sort applications, since it is used for several
internal optimizations as well as for dynamic work data set allocation (see
OPTION DYNALLOC). See “Specify Input/Output Data Set Characteristics
Accurately” on page 544 and “Allocation of Work Data Sets” on page 595 for
more information on file size considerations.

n specifies the average input record length. n must be between 4 and 32767
and must include the 4-byte record descriptor word (RDW).

Notes:

1. AVGRLEN=n on the OPTION statement overrides the L5 value on the
RECORD statement (LENGTH operand) if both are specified. The L5 value
on the RECORD statement is ignored for Blockset.

2. L5=n can be used instead of AVGRLEN=n.

Default: If AVGRLEN=n is not specified, DFSORT uses one-half of the
maximum record length as the average record length. See Appendix B,
“Specification/Override of DFSORT Options” on page 603 for full override
details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

CHALT or NOCHALT

Temporarily overrides the CHALT installation option, which specifies whether
format CH fields are translated by the alternate collating sequence as well as
format AQ or just the latter.

CHALT
specifies that DFSORT translates character control fields with formats CH
and AQ using the alternate collating sequence.

NOCHALT
specifies that format CH fields are not translated.

Note: If you use locale processing for SORT, MERGE, INCLUDE, or OMIT
fields,you must not use CHALT. If you need alternate sequence
processing for a particular field, use format AQ.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

CHECK or NOCHECK

�� AVGRLEN=n ��

�� CHALT
NOCHALT

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 159

Temporarily overrides the CHECK installation option, which specifies whether
the record count should be checked for applications that use the E35 user exit
routine without an output data set.

CHECK
specifies that the record count should be checked.

NOCHECK
specifies that the record count should not be checked.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: SeeAppendix B, “Specification/Override of DFSORT
Options” on page 603.

CINV or NOCINV

Temporarily overrides the CINV installation option, which specifies whether
DFSORT can use control interval access for VSAM data sets. The Blockset
technique uses control interval access for VSAM input data sets, when possible,
to improve performance.

CINV
specifies that DFSORT should use control interval access when possible for
VSAM data sets.

NOCINV
specifies that DFSORT should not use control interval access.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

CKPT

Activates the Checkpoint/Restart facility for sorts that use the Peerage or Vale
techniques.

Since CKPT is only supported in the Peerage and Vale techniques, the Blockset
technique must be bypassed for the Checkpoint/Restart facility to be used.
Installation option IGNCKPT=NO causes Blockset to be bypassed when CKPT
is specified at run-time. The NOBLKSET option can also be used to bypass
Blockset at run-time.

�� CHECK
NOCHECK

��

�� CINV
NOCINV

��

�� CKPT ��

OPTION Control Statement

160 DFSORT R14 Application Programming Guide

A SORTCKPT DD statement must be coded when you use the
Checkpoint/Restart facility (see SORTCKPT DD Statement).

Notes:

1. CHKPT can be used instead of CKPT.

2. Functions such as OUTFIL processing, which are supported only by the
Blockset technique, cannot be used if the Checkpoint/Restart facility is used.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

COBEXIT

Temporarily overrides the COBEXIT installation option, which specifies the
library for COBOL E15 and E35 routines.

COB1
specifies that COBOL E15 and E35 routines are run with the OS/VS
COBOL run-time library or, in some cases, with no COBOL run-time library.

COB2
specifies that COBOL E15 and E35 routines are run with either the VS
COBOL II run-time library or the Language Environment run-time library.

Note: See “COBOL User Exit Requirements” on page 345 for additional
information on the use of COBEXIT=COB2.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

COPY

Causes DFSORT to copy a SORTIN data set or inserted records to the output
data sets unless all records are disposed of by an E35 exit routine. Records
can be edited by E15 and E35 exit routines; INCLUDE/OMIT, INREC, OUTREC,
and OUTFIL statements; and SKIPREC and STOPAFT parameters. E35 is
entered after each SORTIN or E15 record is copied.

The following must not be used in copy applications:
v BDAM data sets
v Dynamic link-editing.

See message ICE160A in DFSORT Messages, Codes and Diagnosis Guide
R14 for additional restrictions that apply to copy applications.

�� COBEXIT COB1
COB2

��

�� COPY ��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 161

Note: User labels will not be copied to the output data sets.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DSPSIZE

Temporarily overrides the DSPSIZE installation option, which specifies the
maximum amount of data space to be used with dataspace sorting. A data
space is an area of contiguous virtual storage that is backed by real, expanded,
and auxiliary storage, whichever is necessary as determined by the system.
Because DFSORT is able to sort large pieces of data using data space, CPU
time and elapsed time are reduced.

The amount of data space used by DFSORT is limited to the installation or
user-specified DSPSIZE value and by the IEFUSI exit of your system.
DSPSIZE=MAX (IBM-supplied default) means that DFSORT selects the
maximum amount of data space to use based on the size of the input file and
the paging activity of the system. You can further limit the amount of data space
that DFSORT uses by specifying a maximum value in MB.

If the amount of data space DFSORT decides to use is sufficient, DFSORT
sorts your data in main storage and does not require additional temporary work
space. If the amount of data space is not sufficient, DFSORT uses DASD as
temporary work space. Installation option DYNAUTO=NO is changed to
DYNAUTO=YES whenever dataspace sorting is possible. Hiperspace is not
used when dataspace sorting is used.

MAX
specifies that DFSORT dynamically determines the maximum amount of
data space to be used for dataspace sorting. In this case, DFSORT bases
its data space usage on the size of the file being sorted and the paging
activity of the system.

n specifies the maximum amount, in MB, of data space to be used for
dataspace sorting. n must be a value between 0 and 9999. The actual
amount of data space used does not exceed n, but may be less than n
depending on the size of the file being sorted and the paging activity of the
system.

If n is zero, dataspace sorting is not used.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DYNALLOC

�� DSPSIZE= MAX
n

��

OPTION Control Statement

162 DFSORT R14 Application Programming Guide

Assigns DFSORT the task of dynamically allocating needed work space. You do
not need to calculate and use JCL to specify the amount of work space needed
by the program. DFSORT uses the dynamic allocation facility of the operating
system to allocate work space for you.

Refer to Appendix A, “Using Work Space” on page 593 for guidelines on the use
of DYNALLOC.

d specifies the device name. You can specify any IBM direct access storage
device or tape device supported by your operating system in the same way
you would specify it in the JCL UNIT parameter. You can also specify a
group name, such as DISK or SYSDA.

For best performance, specify an emulated 3390-9 device (such as
RAMAC) or another high-speed IBM DASD device, and avoid specifying a
tape, virtual (VIO), or real 3390-9 device.

n specifies the maximum number of requested work data sets. If you specify
more than 255, a maximum of 255 data sets is used. If you specify 1 and
the Blockset technique is selected, a maximum of 2 data sets is used. If
you specify more than 32 and the Blockset technique is not selected, a
maximum of 32 data sets is used.

Note: For optimum allocation of resources such as virtual storage, avoid
specifying a large number of work data sets unnecessarily.

For tape work data sets, the number of volumes specified (explicitly or by
default) is allocated to the program. The program requests standard label tapes.

DYNALLOC is not used if SORTWKdd DD statements are provided unless
ICEMAC DYNAUTO=IGNWKDD is specified and OPTION USEWKDD is not in
effect.

If VIO=NO is in effect

v Work space can be allocated on nontemporary data sets (DSNAME
parameter specified).

v If the device (d) you specify is a virtual device and reallocation to a real
device fails, DFSORT will ignore VIO=NO and use the virtual device.

Note: Message ICE165I gives information about work data set allocation/use.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

v DYNALLOC can automatically be activated by using the ICEMAC DYNAUTO
option.

v If DYNALLOC is specified without d, the default for d is that specified (or
defaulted) by the ICEMAC DYNALOC option during installation.

v If DYNALLOC is specified without n, the default for n is that specified (or
defaulted) by the ICEMAC DYNALOC option during installation.

�� DYNALLOC d
(d)
(,n)
(d,n)

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 163

You can specify DYNALLOC without n, without d, or without both. If
DYNALLOC is specified without n, and the IBM–supplied default for the n value
of the DYNALOC installation option is chosen, then:

v If one of the Blockset techniques is chosen, four work data sets will be
requested.

v If a technique other than Blockset is chosen, three work data sets will be
requested.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DYNALLOC=OFF

Directs DFSORT not to allocate work space dynamically, overriding that function
of ICEMAC installation option DYNAUTO=YES, or DYNAUTO=IGNWKDD, or
the run-time option DYNALLOC (without OFF). Use this option when you know
that an in-core sort can be performed, and you want to suppress dynamic
allocation of work space.

OFF
directs DFSORT not to allocate work space dynamically.

Note: When Hipersorting or dataspace sorting is in effect, DFSORT uses
dynamic allocation when necessary, even if DYNALLOC=OFF has been
specified.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

DYNSPC

DYNSPC=ntemporarily overrides the DYNSPC installation option, which
specifies the total default primary space allocation for all of the dynamically
allocated work data sets when the input file size is unknown. That is, when
DFSORT cannot determine the input file size for a sort application and the
number of records is not supplied by a FILSZ or SIZE value.

Generally, DFSORT can automatically determine the input file size. However, in
a few cases, such as when an E15 supplies all of the input records, when
information about a tape data set is not available from a tape management
system, or when Blockset is not selected, DFSORT cannot determine an
accurate file size. In these cases, if the number of records is not supplied by
the FILSZ or SIZE run-time option, and dynamic allocation of work data sets is
used, DFSORT uses the DYNSPC value in effect as the approximate amount of
primary space. DFSORT uses 20% of the primary space as secondary space.
Although the primary space is always allocated, secondary space (up to 15
extents) is only allocated as needed.

�� DYNALLOC= (OFF)
OFF

��

�� DYNSPC=n ��

OPTION Control Statement

164 DFSORT R14 Application Programming Guide

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

You may want to use DYNSPC to override the installation default with a larger
or smaller value depending on the amount of DASD space available for
DFSORT work data sets, and the amount of data to be sorted for this
application. As a guideline, Table 28 shows the approximate primary space in
cylinders that is allocated on a 3390 when Blockset sorts an unknown number
of 6000-byte records.

Table 28. Example of DYNSPC Primary Space

DYNSPC value (megabytes) Primary space (cylinders)

32 48

64 93

128 183

256 366

512 732

The larger your DYNSPC value, the more data DFSORT can sort when the file
size is unknown. For example, in a test using just dynamically allocated work
space (no Hiperspace or data space) with the primary space shown in Table 28,
and all of the corresponding secondary space, Blockset is able to sort
approximately 150 megabytes with DYNSPC=32 and approximately 1200
megabytes with DYNSPC=256. If Hiperspace or data space can be used along
with dynamically allocated work space, the amount of data DFSORT can sort
will increase according to the amount of Hiperspace or data space available.

n specifies the total default primary space, in megabytes, to be allocated
for all dynamically allocated work data sets (n is not the primary space
for each data set). n must be a value between 1 and 65535.

Do not specify a value which exceeds the available DASD space,
because this causes dynamic allocation to fail for sort applications that
use this value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EFS

Temporarily overrides the EFS installation option, which specifies whether
DFSORT is to pass control to an Extended Function Support (EFS) program.
See Chapter 8, “Using Extended Function Support” on page 509 for more
information.

name
specifies the name of the EFS program that will be called to interface with
DFSORT.

NONE
specifies no call will be made to the EFS program.

�� EFS= name
NONE

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 165

|
|
|
|
|
|

||

||

||

||

||

||

||
|
|
|
|
|
|
|
|
|

||
|
|

|
|
|

|
|

|
|

Notes:

1. EFS is processed only if it is passed on the OPTION control statement in an
extended parameter list or in DFSPARM.

2. If you use locale processing for SORT, MERGE, INCLUDE, orOMIT fields,
you must not use an EFS program. DFSORT’s locale processing may
eliminate the need for an EFS program. See the LOCALE option later in this
section for information related to locale processing.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

EQUALS or NOEQUALS

Temporarily overrides the EQUALS installation option, which specifies whether
the original sequence of records that collate identically for a sort or a merge
should be preserved from input to output.

EQUALS
specifies that the original sequence must be preserved.

NOEQUALS
specifies that the original sequence need not be preserved.

For sort applications, the sequence of the output records depends upon the
order of:
v The records from the SORTIN file
v The records inserted by an E15 user exit routine
v The E15 records inserted within input from SORTIN.

For merge applications, the sequence of the output records depends upon the
order of:

v The records from a SORTINnn file. Records that collate identically are output
in the order of their file increments. For example, records from SORTIN01
are output before any records that collate identically from SORTIN02.

v The records from an E32 user exit routine for the same file increment
number. Records that collate identically from E32 are output in the order of
their file increments. For example, records from the file with increment 0 are
output before any records that collate identically from the file with increment
4.

Notes:

1. When EQUALS is in effect, the total number of bytes occupied by all control
fields must not exceed 4088.

2. Using EQUALS can degrade performance.

3. When EQUALS is in effect with SUM, the first record of summed records is
kept. When NOEQUALS is in effect with SUM, the record to be kept is
unpredictable.

If a technique other than Blockset is selected, NOEQUALS is forced if SUM
is specified.

�� EQUALS
NOEQUALS

��

OPTION Control Statement

166 DFSORT R14 Application Programming Guide

|
|
|

|
|

4. Do not specify EQUALS if variable-length records are sorted using tape
work files and the RDW is part of the control field.

5. The number of records to be sorted cannot exceed 4294967295
(4 gigarecords minus 1); if the number of records exceeds this number,
message ICE121A is issued and DFSORT terminates.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options”.

EXITCK

Temporarily overrides the EXITCK installation option, which specifies whether
DFSORT terminates or continues when it receives certain invalid return codes
from E15 or E35 user exit routines. For full details of the return codes affected
by this parameter, see “E15/E35 Return Codes and EXITCK” on page 363.

STRONG
specifies that DFSORT issues an error message and terminates when it
receives an invalid return code from an E15 or E35 user exit routine.

WEAK
specifies that DFSORT interprets certain invalid return codes from E15 and
E35 user exit routines as valid and continues processing. Use of
EXITCK=WEAK can make it difficult to detect errors in the logic of E15 and
E35 user exit routines.

Note: EXITCK=WEAK is treated like EXITCK=STRONG when:

v Tape work data sets are specified for a sort application.

v The Blockset technique is not selected for a merge application.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options”.

FILSZ or SIZE

The FILSZ parameter specifies either the exact number of records to be sorted
or merged, or an estimate of the number of records to be sorted. The SIZE
parameter specifies either the exact number of records in the input data sets, or
an estimate of the number of records in the input data sets. The supplied record
count is used by DFSORT for two purposes:

�� EXITCK STRONG
WEAK

��

�� FILSZ= x
Ex
Ux

SIZE= y
Ey
Uy

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 167

1. To check that the actual number of records sorted or merged or the number
of records in the input data sets is equal to the exact number of records
expected. FILSZ=x or SIZE=y causes this check to be performed and
results in termination with message ICE047A if the check fails.

2. To determine the input file size for a sort application. DFSORT performs
calculations based on the user supplied record count and other parameters
(such as AVGRLEN) to estimate the total number of bytes to be sorted. This
value is important for sort runs, since it is used for several internal
optimizations as well as for dynamic work data set allocation (see OPTION
DYNALLOC). If no input record count (or only an estimate) is supplied for
the sort run, DFSORT attempts to automatically compute the file size to be
used for the optimizations and allocations.

The type of FILSZ or SIZE value specified (x/y, Ux/Uy, Ex/Ey, or none) controls
the way DFSORT performs the above two functions, and can have a significant
effect on performance and work data set allocation. See Chapter 9, “Improving
Efficiency” on page 541 and “File Size and Dynamic Allocation” on page 597 for
more information on file size considerations.

x or y
specifies the exact number of records to be sorted or merged (x) or the
exact number of records in the input data sets (y). This value is always
used for both the record check and the file size calculations. FILSZ=x or
SIZE=y can be used to force DFSORT to perform file size calculations
based on x or y, and to cause DFSORT to terminate the sort or merge
application if x or y is not exact.

If the FSZEST=NO installation option is in effect and either FILSZ=x or
SIZE=y is specified, DFSORT terminates if the actual number of records is
different from the specified exact value (x or y). In this case, the actual
number of records is placed in the IN field of message ICE047A (or
message ICE054I in some cases) before termination. However, if the
FSZEST=YES installation option is in effect, DFSORT treats FILSZ=x or
SIZE=y like FILSZ=Ex or SIZE=Ey, respectively; it does not terminate when
the actual number of records does not equal x or y.

FILSZ=0 causes Hipersorting, dataspace sorting, and dynamic allocation of
work space not to be used, and results in termination with message
ICE047A unless the number of records sorted or merged is 0. If no E15
user exit is present, SIZE=0 has the same effect in terms of Hipersorting
and dynamic allocation of work space, and results in termination with
message ICE047A unless the number of records in the input data sets is 0.

x specifies the exact number of records to be sorted or merged; it must
take into account the number of records in the input data sets, records
to be inserted or deleted by E15 or E32, and records to be deleted by
the INCLUDE/OMIT statement, SKIPREC, and STOPAFT. x must be
changed whenever the number of records to be sorted or merged
changes in any way.

y specifies the exact number of records in the input data sets; it must
take into account the number of records to be deleted by STOPAFT. y
must be changed whenever the number of records in the input data
sets changes in any way.

Limit: 28 digits (15 significant digits)

Ex or Ey
specifies an estimate of the number of records to be sorted (x) or an

OPTION Control Statement

168 DFSORT R14 Application Programming Guide

estimate of the number of records in the input data sets (y). This value is
not used for the record check. It is used for the file size calculations, but
only if DFSORT could not reasonably estimate the input file size itself. In all
other cases, this value is ignored by DFSORT. See “Dynamic Allocation of
Work Data Sets” on page 596 for details on exactly when an estimated
record count is used and when it is ignored by DFSORT.

FILSZ=E0 or SIZE=E0 is always ignored.

x specifies an estimate of the number of records to be sorted; it should
take into account the number of records in the input data sets, records
to be inserted or deleted by E15, and records to be deleted by the
INCLUDE/OMIT statement, SKIPREC, and STOPAFT. x should be
changed whenever the number of records to be sorted changes
significantly.

y specifies an estimate of the number of records in the input data sets; it
should take into account the number of records to be deleted by
STOPAFT. y should be changed whenever the number of records in the
input data sets changes significantly.

Limit: 28 digits (15 significant digits)

Ux or Uy
specifies the number of records to be sorted (x) or the number of records in
the input data sets (y). This value is not used for the record check, but is
always used for the file size calculations. FILSZ=Ux or SIZE=Uy can be
used to force DFSORT to perform file size calculations based on x or y,
while avoiding termination if x or y is not exact.

The FSZEST installation option has no effect on FILSZ=Ux or SIZE=Uy
processing.

FILSZ=U0 causes Hipersorting, dataspace sorting, and dynamic allocation
of work space not to be used, and may cause degraded performance or
termination with message ICE046A, if the actual number of records to be
sorted is significantly larger than 0. If no E15 user exit is present, SIZE=U0
has the same effect in terms of Hipersorting, dataspace sorting,and
dynamic allocation of work space, and may cause degraded performance or
termination with message ICE046A, if the actual number of records in the
input data sets is significantly larger than 0.

x specifies the number of records to be sorted; it should take into account
the number of records in the input data sets, records to be inserted or
deleted by E15, and records to be deleted by the INCLUDE/OMIT
statement, SKIPREC, and STOPAFT. x should be changed whenever
the number of records to be sorted changes significantly.

y specifies the number of records in the input data sets; it should take
into account the number of records to be deleted by STOPAFT. y
should be changed whenever the number of records in the input data
sets changes significantly.

Limit: 28 digits (15 significant digits)

Table 29 on page 170 summarizes the differences for the three FILSZ
variations:

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 169

Table 29. FILSZ Variations Summary. FILSZ=n is equivalent to FILSZ=En if installation option FSZEST=YES is
specified.

Conditions FILSZ=n FILSZ=Un FILSZ=En

Number of records Exact Estimate Estimate

Applications Sort, merge Sort Sort

Terminate if n wrong? Yes No No

Use for file size calculation? Yes Yes When DFSORT cannot
compute file size

n includes records:

In input data set(s) Yes Yes Yes

Inserted/deleted by E15 Yes Yes Yes

Inserted by E32 Yes No No

Deleted by
INCLUDE/OMIT

Yes Yes Yes

Deleted by SKIPREC Yes Yes Yes

Deleted by STOPAFT Yes Yes Yes

Update n when number of
records changes:

In any way Significantly Significantly

Effects of n=0 Hipersorting and
DYNALLOC not used

Hipersorting and
DYNALLOC not used

None

Table 30 summarizes the differences for the three SIZE variations:

Table 30. SIZE Variations Summary. SIZE=n is equivalent to SIZE=En if installation option FSZEST=YES is specified.

Conditions SIZE=n SIZE=Un SIZE=En

Number of records Exact Estimate Estimate

Applications Sort, merge Sort Sort

Terminate if n wrong? Yes No No

Use for file size calculation? Yes Yes When DFSORT cannot
compute file size

n includes records:

In input data set(s) Yes Yes Yes

Inserted/deleted by E15 No No No

Inserted by E32 No No No

Deleted by
INCLUDE/OMIT

No No No

Deleted by SKIPREC No No No

Deleted by STOPAFT Yes Yes Yes

Update n when number of
records changes:

In any way Significantly Significantly

Effects of n=0 Hipersorting and
DYNALLOC not used

Hipersorting and
DYNALLOC not used

None

Note: Using the SIZE or FILSZ parameter to supply inaccurate information to
DFSORT can negatively affect DFSORT performance, and, when work
space is dynamically allocated, can result in wasted DASD space or

OPTION Control Statement

170 DFSORT R14 Application Programming Guide

termination with message ICE083A or ICE046A. Therefore, it is important
to update the record count value whenever the number of records to be
sorted changes significantly.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

HIPRMAX

Temporarily overrides the HIPRMAX installation option, which specifies the
maximum amount of Hiperspace to be used for Hipersorting. Hiperspace is a
high-performance data space that resides in expanded storage, or in central
storage for 64-bit real mode, and is backed by auxiliary storage (if necessary).
Because I/O processing is reduced for Hipersorting, elapsed time, EXCP
counts, and channel usage are also reduced.

Several factors can limit the amount of Hiperspace an application uses:

v The IEFUSI exit can limit the total amount of Hiperspace and data space
available to an application.

v HIPRMAX can limit the amount of Hiperspace available to an application, as
detailed below.

v Sufficient available storage must be present to back DFSORT’s Hiperspaces.
″Available″ storage is the storage used to back new Hiperspace data and
consists of the following two types:

1. Free storage. This is storage not being used by any application.

2. Old storage. This is storage used by another application whose data has
been unreferenced for a sufficiently long time so that the system migrates
it to auxiliary storage to make room for new Hiperspace data.

The amount of available storage constantly changes, depending upon current
system activity. Consequently, DFSORT checks the available storage level
throughout a Hipersorting application and switches from Hiperspace to work
data sets if the available storage level gets too low.

v Other concurrent Hipersorting applications further limit the amount of
available storage. A Hipersorting application knows the storage needs of
every other Hipersorting application on the system. A Hipersorting application
does not try to back its Hiperspace data with storage needed by another
Hipersorting application. This prevents overcommitment of storage resources
if multiple large concurrent Hipersorting applications start at similar times on
the same system.

v The installation options EXPMAX, EXPOLD, and EXPRES can also be used
to further limit the amount of storage available to Hipersorting applications.
EXPMAX limits the total amount of available storage that can be used at any
one time to back DFSORT Hiperspaces. EXPOLD limits the total amount of
old storage that can be used at any one time to back DFSORT Hiperspaces.
EXPRES sets aside a specified amount of available storage for use by
non-Hipersorting applications.

�� HIPRMAX= OPTIMAL
n
p%

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 171

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

Some of these limits depend on system and other Hipersorting activity
throughout the time a Hipersorting application runs. Consequently, the amount
of Hiperspace a Hipersorting application uses can vary from run to run.

HIPRMAX=n specifies a fixed value for HIPRMAX. HIPRMAX=p% specifies a
value for HIPRMAX that varies as a percentage of the configured expanded
storage on the system at run-time. In 64-bit real mode, HIPRMAX=p% specifies
a percentage of an appropriate portion of central storage. If the storage on a
system changes, HIPRMAX=p% will cause a corresponding change in the
HIPRMAX value selected by DFSORT, whereas HIPRMAX=n will not. When
sharing DFSORT installation options between systems, such as in a sysplex,
HIPRMAX=p% can be used to tailor the HIPRMAX value to the system selected
for the application, providing a more dynamic HIPRMAX value than
HIPRMAX=n.

If the amount of Hiperspace available for Hipersorting is insufficient for
temporary storage of the records, intermediate DASD storage is used along
with Hiperspace. If the amount of Hiperspace is too small to improve
performance, Hipersorting is not used. DYNAUTO=NO is changed to
DYNAUTO=YES for Hipersorting.

Hipersorting can cause a small CPU time degradation. When CPU optimization
is a concern, you can use HIPRMAX=0 to suppress Hipersorting.

Note: HIPRLIM=OPTIMAL can be used instead of HIPRMAX=OPTIMAL.
HIPRLIM=m can be used instead of HIPRMAX=n. HIPRLIM=m specifies
a Hiperspace limit of m times 4096 bytes rounded up to the nearest
megabyte. m must be a value between 0 and 2559744. If m is 0,
Hipersorting is not used.

OPTIMAL
specifies that DFSORT determines dynamically the maximum amount of
Hiperspace to be used for Hipersorting.

n specifies that DFSORT determines dynamically the maximum amount of
Hiperspace to be used for Hipersorting, subject to a limit of nMB. n must be
a value between 0 and 32767. If n is 0, Hipersorting is not used.

p%
specifies that DFSORT determines dynamically the maximum amount of
hiperspace to be used for Hipersorting, subject to a limit of p percent of the
configured expanded storage. In 64-bit real mode, HIPRMAX=p% specifies
a percentage of an appropriate portion of central storage. p must be a value
between 0 and 100. If p is 0, Hipersorting is not used. The value calculated
for p% is limited to 32767MB, and is rounded down to the nearest MB.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LIST or NOLIST

�� LIST
NOLIST

��

OPTION Control Statement

172 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|
|
|
|

||
|
|

|
|
|
|
|
|
|

Temporarily overrides the LIST installation option, which specifies whether
DFSORT program control statements should be written to the message data
set. See DFSORT Messages, Codes and Diagnosis Guide R14 for details on
use of the message data set.

LIST
specifies that DFSORT control statements are printed to the message data
set.

NOLIST
specifies that DFSORT control statements are not printed to the message
data set.

Note: LIST or NOLIST are processed only if they are passed on the OPTION
control statement in an extended parameter list or in DFSPARM.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LISTX or NOLISTX

Temporarily overrides the LISTX installation option, which specifies whether
DFSORT writes to the message data set program control statements that are
returned by an EFS program. See DFSORT Messages, Codes and Diagnosis
Guide R14 for details on use of the message data set.

LISTX
specifies that control statements returned by an EFS program are printed to
the message data set.

NOLISTX
specifies that control statements returned by an EFS program are not
printed to the message data set.

Notes:

1. LISTX or NOLISTX are processed only if they are passed on the OPTION
control statement in an extended parameter list or in DFSPARM.

2. If EFS=NONE is in effect after final override rules have been applied,
NOLISTX is in effect.

3. LISTX and NOLISTX can be used independently of LIST and NOLIST.

4. For more information on printing EFS control statements, see DFSORT
Messages, Codes and Diagnosis Guide R14

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LOCALE

�� LISTX
NOLISTX

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 173

Temporarily overrides the LOCALE installation option, which specifies whether
locale processing is to be used and, if so, designates the active locale.

DFSORT’s collating behavior can be modified according to your cultural
environment. Your cultural environment is defined to DFSORT using the X/Open
locale model. A locale is a collection of data grouped into categories that
describes the information about your cultural environment.

The collate category of a locale is a collection of sequence declarations that
defines the relative order between collating elements (single character and
multi-character collating elements). The sequence declarations define the
collating rules.

If locale processing is to be used, the active locale will affect the behavior of
DFSORT’s SORT, MERGE, INCLUDE, and OMIT functions. For SORT and
MERGE, the active locale will only be used to process character (CH) control
fields. For INCLUDE and OMIT, the active locale will only be used to process
character (CH) compare fields, and character and hexadecimal constants
compared to character (CH) compare fields.

name specifies that locale processing is to be used and designates the name
of the locale to be made active during DFSORT processing.

The locales are designated using a descriptive name. For example, to
set the active locale to represent the French language and the cultural
conventions of Canada, specify LOCALE=FR_CA. You can specify up
to 32 characters for the descriptive locale name. The locale names
themselves are not case-sensitive. See Using Locales for complete
locale naming conventions.

You can use IBM-supplied and user-defined locales.

The state of the active locale prior to DFSORT being entered will be
restored on DFSORT’s completion.

CURRENT
specifies that locale processing is to be used, and the current locale
active when DFSORT is entered will remain the active locale during
DFSORT processing.

NONE specifies that locale processing is not to be used. DFSORT will use the
binary encoding of the code page defined for your data for collating and
comparing.

Notes:

1. LOCALE is processed only if it is passed on the OPTION control statement
in an extended parameter list or in DFSPARM.

2. To use an IBM-supplied locale, DFSORT must have access to the
Language Environment run-time library. For example, this library might be
called SYS1.SCEERUN. If you are unsure of the name of this library at your
location, contact your system administrator. To use a user-defined locale,
DFSORT must have access to the load library containing it.

3. If you use locale processing for SORT, MERGE, INCLUDE, or OMIT fields:

v VLSHRT is not used for SORT or MERGE

�� LOCALE= name
CURRENT
NONE

��

OPTION Control Statement

174 DFSORT R14 Application Programming Guide

v CHALT, INREC, an EFS program, or an E61 user exit must not be used.

4. Locale processing for DFSORT’s SORT, MERGE, INCLUDE, and OMIT
functions can improve performance relative to applications which perform
pre- and/or post-processing of data to produce the desired collating results.
However, locale processing should be used only when required because it
can show degraded performance relative to collating, using character
encoding values.

5. DFSORT locale processing may require an additional amount of storage
that depends on the environment supporting the locale as well as the locale
itself. It may be necessary to specify a REGION of several MB or more for
DFSORT applications that use locale processing.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions:; See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

MAINSIZE

Temporarily overrides the SIZE installation option, which specifies the amount of
main storage available to DFSORT. The value you specify must be greater than
the MINLIM value set at DFSORT installation time.

MAINSIZE applies to the total amount of main storage above and below 16MB
virtual. DFSORT determines how much storage to allocate above and below
16MB virtual, but the total amount of storage cannot exceed MAINSIZE.

Storage used for OUTFIL processing will be adjusted automatically, depending
upon several factors, including:

v Total available storage

v Non-OUTFIL processing storage requirements

v Number of OUTFIL data sets and their attributes (for example, block size).

OUTFIL processing is subject to the ODMAXBF limit and your system storage
limits (for example, IEFUSI) but not to DFSORT storage limits, that is,
SIZE/MAINSIZE, MAXLIM, and TMAXLIM. DFSORT attempts to use storage
above 16MB virtual for OUTFIL processing whenever possible.

For details on main storage allocation, see “Tuning Main Storage” on page 550.

n specifies that n bytes of storage are to be allocated. If you specify more
that 2097152000, 2097152000 is used.

Limit: 10 digits

nK
specifies that n times 1024 bytes of storage are to be allocated. If you
specify more than 2048000K, 2048000K is used.

Limit: 7 digits

�� MAINSIZE= n
nK
nM
MAX

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 175

nM
specifies that n times 1048576 bytes of storage are to be allocated. If you
specify more than 2000M, 2000M is used.

Limit: 4 digits.

MAX
instructs DFSORT to calculate the amount of virtual storage available and
allocate an amount of storage up to the TMAXLIM or DSA installation value
when Blockset is selected, or up to the MAXLIM installation value when
Blockset is not selected.

Note: CORE=value can be used instead of MAINSIZE=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

MSGDDN

Temporarily overrides the MSGDDN installation option, which specifies an
alternate ddname for the message data set. MSGDDN must be in effect if:

v A program that invokes DFSORT uses SYSOUT (for instance, COBOL uses
SYSOUT) and you do not want DFSORT messages intermixed with the
program messages.

v Your E15 and E35 routines are written in COBOL and you do not want
DFSORT messages intermixed with the program messages.

v A program invokes DFSORT more than once and you want separate
messages for each invocation of DFSORT.

The ddname can be any 1- through 8- character name but must be unique
within the job step; do not use a name that is used by DFSORT (for example,
SORTIN). If the ddname specified is not available at run-time, SYSOUT is used
instead. For details on use of the message data set, see DFSORT Messages,
Codes and Diagnosis Guide R14

Note: MSGDDN is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

MSGPRT

�� MSGDDN=ddname ��

�� MSGPRT= ALL
CRITICAL
NONE

��

OPTION Control Statement

176 DFSORT R14 Application Programming Guide

Temporarily overrides the MSGPRT installation option, which specifies the class
of messages to be written to the message data set. For details on use of the
message data set, see DFSORT Messages, Codes and Diagnosis Guide R14.

ALL
specifies that all messages except diagnostic messages (ICE800I to
ICE999I) are to be printed. Control statements print only if LIST is in effect.

CRITICAL
specifies that only critical messages will be printed. Control statements print
only if LIST is in effect.

NONE
specifies that no messages and control statements will be printed.

Notes:

1. MSGPRT is processed only if it is passed on the OPTION control statement
in an extended parameter list or in DFSPARM.

2. PRINT=value can be used instead of MSGPRT=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

NOBLKSET

Causes DFSORT to bypass the Blockset technique normally used for a sort or
merge application. Using this option generally results in degraded performance.

Note: Functions such as OUTFIL processing, which are supported only by the
Blockset technique, cause the NOBLKSET option to be ignored.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

NOOUTREL

Temporarily overrides the OUTREL installation option, which specifies whether
unused temporary output data set space is released. NOOUTREL means that
unused temporary output data set space is not released.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� NOBLKSET ��

�� NOOUTREL ��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 177

NOOUTSEC

Temporarily overrides the OUTSEC installation option, which specifies whether
automatic secondary allocation is used for temporary or new output data sets.
NOOUTSEC means that automatic secondary allocation for output data sets is
not used.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

NOSTIMER

Temporarily overrides the STIMER installation option, which specifies whether
DFSORT can use the STIMER macro. NOSTIMER means that DFSORT does
not use the STIMER macro; processor time data does not appear in SMF
records or in statistics provided to the ICETEXIT termination installation exit.

If your exits take checkpoints and STIMER=YES is the installation default, you
must specify this parameter.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

ODMAXBF

Temporarily overrides the ODMAXBF installation option, which specifies the
maximum buffer space DFSORT can use for each OUTFIL data set. The actual
amount of buffer space used for a particular OUTFIL data set will not exceed
the ODMAXBF limit, but can be less than the limit. OUTFIL processing is
supported by the Blockset technique for sort, copy, and merge applications.

The storage used for OUTFIL processing is adjusted automatically according to
the total storage available, the storage needed for non-OUTFIL processing, and
the number of OUTFIL data sets and their attributes (for example, block size).
OUTFIL processing is subject to the ODMAXBF limit in effect and the system
storage limits (for example, IEFUSI), but not to the DFSORT storage limits (that
is, SIZE, MAXLIM, and TMAXLIM). DFSORT attempts to use storage above
16MB virtual for OUTFIL processing whenever possible.

�� NOOUTSEC ��

�� NOSTIMER ��

�� ODMAXBF= n
nK
nM

��

OPTION Control Statement

178 DFSORT R14 Application Programming Guide

Lowering ODMAXBF below 2M can cause performance degradation for the
application, but may be necessary if you consider the amount of storage used
for OUTFIL processing to be a problem. Raising ODMAXBF can improve
EXCPs for the application but can also increase the amount of storage needed.

n specifies that a maximum of n bytes of buffer space is to be used for each
OUTFIL data set. If you specify less than 262144, 262144 is used. If you
specify more than 16777216, 16777216 is used.

Limit: 8 digits

nK
specifies that a maximum of n times 1024 bytes of buffer space is to be
used for each OUTFIL data set. If you specify less than 256K, 256K is
used. If you specify more than 16384K, 16384K is used.

Limit: 5 digits

nM
specifies that a maximum of n times 1048576 bytes of buffer space is to be
used for each OUTFIL data set. If you specify 0M, 256K is used. If you
specify more than 16M, 16M is used.

Limit: 2 digits

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

OVFLO

Temporarily overrides the OVFLO installation option, which specifies the action
to be taken by DFSORT when BI, FI, PD or ZD summary fields overflow.

RC0
specifies that DFSORT should issue message ICE152I (once), set a return
code of 0 and continue processing when summary fields overflow. The pair
of records involved in a summary overflow is left unsummed and neither
record is deleted. Summary overflow does not prevent further summation.

RC4
specifies that DFSORT should issue message ICE152I (once), set a return
code of 4 and continue processing when summary fields overflow. The pair
of records involved in a summary overflow is left unsummed and neither
record is deleted. Summary overflow does not prevent further summation.

RC16
specifies that DFSORT should issue message ICE195A, terminate and give
a return code of 16 when summary fields overflow.

Note: The return code of 0 or 4 set for summary overflow can be overridden by
a higher return code set for some other reason.

�� OVFLO= RC0
RC4
RC16

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 179

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

PAD

Temporarily overrides the PAD installation option, which specifies the action to
be taken by DFSORT when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL, for the cases where DFSORT allows LRECL
padding.

RC0
specifies that DFSORT should issue message ICE171I, set a return code of
0 and continue processing when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL.

RC4
specifies that DFSORT should issue message ICE171I, set a return code of
4 and continue processing when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL.

RC16
specifies that DFSORT should issue message ICE196A, terminate and give
a return code of 16 when the SORTOUT LRECL is larger than the
SORTIN/SORTINnn LRECL.

Notes:

1. The return code of 0 or 4 set for LRECL padding can be overridden by a
higher return code set for some other reason.

2. For an ICEGENER application, the GNPAD value is used and the PAD
value is ignored.

3. For some LRECL padding situations (for example, a tape work data set
sort), DFSORT issues ICE043A and terminates with a return code of 16.
The PAD value has no effect in these cases.

4. DFSORT does not check for LRECL padding if:

a. A SORTIN DD (sort/copy), SORTINnn DD (merge) or SORTOUT DD is
not present

b. A SORTIN DD (sort/copy), SORTINnn DD (merge) or SORTOUT DD
specifies a VSAM data set.

5. DFSORT does not check OUTFIL data sets for LRECL padding.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

RESALL

�� PAD= RC0
RC4
RC16

��

OPTION Control Statement

180 DFSORT R14 Application Programming Guide

Temporarily overrides the RESALL installation option, which specifies the
number of bytes to be reserved in a REGION for system use. Usually, only 4K
bytes (the standard default) of main storage must be available in a region for
system use. However, in some cases, this may not be enough; for example, if
your installation does not have BSAM/QSAM modules resident, you have user
exits that open data sets, or you have COBOL exits. RESALL is used only
when MAINSIZE/SIZE=MAX is in effect.

RESALL applies only to the amount of main storage below 16MB virtual. The
ARESALL option applies to the amount of main storage above 16MB virtual.

n specifies that n bytes of storage are to be reserved. If you specify less than
4096, 4096 is used.

Limit: 8 digits.

nK
specifies that n times 1024 bytes of storage are to be reserved. If you
specify less than 4K, 4K is used.

Limit: 5 digits.

nM
specifies that n times 1048576 bytes of storage are to be reserved. If you
specify 0M, 4K is used.

Limit: 2 digits.

Note: A better way to reserve the required storage for user exits activated by
the MODS statement is to use the m parameter of the MODS statement.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

RESET or NORESET

Temporarily overrides the RESET installation option, which specifies whether
DFSORT should process a VSAM output data set defined with REUSE as a
NEW or MOD data set.

RESET
specifies that DFSORT processes a VSAM output data set defined with
REUSE as a NEW data set. The high-used RBA is reset to zero and the
output data set is effectively treated as an initially empty cluster.

NORESET
specifies that DFSORT processes a VSAM output data set defined with
REUSE as a MOD data set. The high-used RBA is not reset and the output
data set is effectively treated as an initially non-empty cluster.

�� RESALL= n
nK
nM

��

�� RESET
NORESET

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 181

Note: A VSAM output data set defined without REUSE is processed as a MOD
data set.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

RESINV

Temporarily overrides the RESINV installation option, which specifies the
number of bytes to be reserved in a REGION for the invoking program. RESINV
is used only when DFSORT is dynamically invoked and MAINSIZE/SIZE=MAX
is in effect.

RESINV applies only to the amount of main storage below 16MB virtual. The
ARESINV option applies to the amount of main storage above 16MB virtual.

This extra space is usually required for data handling by the invoking program
or user exits while DFSORT is running (as is the case with some PL/I- and
COBOL- invoked sort applications). Therefore, if your invoking program’s user
exits do not perform data set handling, you do not need to specify this
parameter. The reserved space is not meant to be used for the invoking
program’s executable code.

The amount of space required depends upon what routines you have, how the
data is stored, and which access method you use.

n specifies that n bytes of storage are to be reserved.

Limit: 8 digits

nK
specifies that n times 1024 bytes of storage are to be reserved.

Limit: 5 digits

nM
specifies n times 1048576 bytes of main storage are to be reserved.

Limit: 2 digits.

Note: A better way to reserve the required storage for user exits is to use the
m parameter on the MODS statement.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SDB

�� RESINV= n
nK
nM

��

OPTION Control Statement

182 DFSORT R14 Application Programming Guide

Temporarily overrides the SDB installation option, which specifies whether
DFSORT should use the system-determined optimum block size for output data
sets when the block size is specified as zero or defaulted to zero.
System-determined block size applies to both SMS-managed and
non-SMS-managed data sets and results in the most efficient use of space for
the device on which the output data set resides.

With OS/390 Release 10 and above, DFSORT can select system-determined
optimum block sizes greater than 32760 bytes for tape output data sets.

If you want DFSORT to use system-determined block sizes for DASD and tape
output data sets, specify one of the following values:

v SDB=LARGE if you want to allow DFSORT to select tape output block sizes
greater than 32760 bytes.

v SDB=YES (or its alias SDB=SMALL) if you want DFSORT to select tape
output block sizes less than or equal to 32760 bytes.

v SDB=INPUT if you want to allow DFSORT to select tape output block sizes
greater than 32760 bytes only when tape input data sets with block sizes
greater than 32760 bytes are used.

DFSORT will not select a tape output block size greater than the BLKSZLIM in
effect. In particular, if a default BLKSZLIM of 32760 is in effect, DFSORT will
not select a tape output block size greater than 32760 bytes. Therefore, in order
to allow DFSORT to select tape output block sizes greater than 32760 bytes for
particular jobs, you may need to ensure that your JCL or data class supplies
appropriately large BLKSZLIM values (for example, 1GB) for those jobs.

If you don’t want DFSORT to use system-determined block sizes, specify
SDB=NO (not recommended as an installation option).

LARGE
specifies that DFSORT is to use the system-determined optimum block size
for an output data set when its block size is zero. With OS/390 Release 10
and above, SDB=LARGE allows DFSORT to select a block size greater
than 32760 bytes for a tape output data set, when appropriate. A larger
tape block size can improve elapsed time and tape utilization, but you must
ensure that applications which subsequently use the resulting tape data set
can handle larger block sizes.

DFSORT selects the system-determined optimum block size as follows:

v For a DASD output data set, the optimum block size for the device used
is selected based on the obtained or derived RECFM and LRECL for the
output data set. The maximum block size for DASD output data sets is
32760 bytes.

v For a tape output data set, the optimum block size is selected based on
the obtained or derived RECFM and LRECL for the output data set, as
shown in Figure 14 on page 184.

�� SDB= LARGE
YES
INPUT
NO

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 183

DFSORT uses the system-determined optimum block size for the output
data set in most cases when the block size is zero. However, the following
conditions prevent DFSORT from using the system-determined block size:

v Output data set block size is available (that is, non-zero) in the JFCB
(DASD or tape) or format 1 DSCB (DASD) or tape label (only for
DISP=MOD with AL, SL, or NSL label, when appropriate)

v Not MVS/DFP 3.1.0 or above

v Output is a spool, dummy, VSAM, or unmovable data set, or an HFS file.

v The output data set is on tape with a label type of AL

v DFSORT’s Blockset technique is not selected.

In the above cases, DFSORT uses the specified block size, or determines
an appropriate (though not necessarily optimum) block size for the output
data set. The selected block size is limited to 32760 bytes.

YES
specifies that DFSORT is to use the system-determined optimum block size
for an output data set when its block size is zero, but is to limit the selected
block size to a maximum of 32760 bytes. See the discussion of
SDB=LARGE for more information; the only difference between
SDB=LARGE and SDB=YES is that SDB=LARGE allows block sizes
greater than 32760 bytes for tape output data sets, whereas SDB=YES
does not.

INPUT
specifies that DFSORT is to use the system-determined optimum block size
for an output data set when its block size is zero, but is to limit the selected
block size to a maximum of 32760 bytes if the input block size is less than
or equal to 32760 bytes. Thus, SDB=INPUT works like SDB=LARGE if the
input block size is greater than 32760 bytes (only possible for tape input
data sets) and works like SDB=YES if the input block size is less than or
equal to 32760 bytes. See the discussions of SDB=LARGE and SDB=YES
for more information.

NO
specifies that DFSORT is not to use the system-determined optimum block
size. When the output data set block size is zero, DFSORT selects an
appropriate (though not necessarily optimum) block size for the output data
set based on the obtained or derived output or input attributes. SDB=NO
limits the selected block sizes to a maximum of 32760 bytes.

RECFM BLKSIZE is set to:

F or FS LRECL

FB or FBS Highest possible multiple of LRECL that is
less than or equal to the optimum block size
for the device, subject to the BLKSZLIM in
effect.

V, D, VS, or DS LRECL + 4

VB, DB, VBS, or DBS Optimum block size for the device, subject to
the BLKSZLIM in effect.

Figure 14. SDB=LARGE Block Sizes for Tape Output Data Sets

OPTION Control Statement

184 DFSORT R14 Application Programming Guide

SDB=NO works like SDB=YES if the input block size is greater than 32760
bytes (only possible for tape input data sets). See the discussion of
SDB=YES for more information.

Notes:

1. With OS/390 R9 and below, SDB=LARGE and SDB=INPUT work like
SDB=YES.

2. SDB=NO does not prevent the use of system-determined block size for the
output data set at allocation or in other cases where the output data set
block size is set before DFSORT gets control.

3. When DFSORT uses system-determined block size, the selected output
data set block size may be different from the block size selected previously.
Applications that require a specific output data set block size should be
changed to specify that block size explicitly.

4. SDB and SDB=SMALL can be used instead of SDB=YES. NOSDB can be
used instead of SDB=NO.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SIZE
See FILSZ.

SKIPREC

Specifies the number of records z you want to skip (delete) before starting to
sort or copy the input data set. SKIPREC is usually used if, on a preceding
DFSORT run, you have processed only part of the input data set.

An application with an input data set that exceeds intermediate storage capacity
usually terminates unsuccessfully. However, for a tape work data set sort, you
can use a routine at E16 (as described in Chapter 4, “Using Your Own User Exit
Routines” on page 315) to instruct the program to sort only those records
already read in. It then prints a message giving the number of records sorted.
You can use SKIPREC in a subsequent sort run to bypass the previously-sorted
records, sort only the remaining records, and then merge the output from
different runs to complete the application.

z specifies the number of records to be skipped.

Limit: 28 digits (15 significant digits)

Notes:

1. SKIPREC applies only to records read from SORTIN (not from E15
routines). (See Figure 2 on page 8.)

2. If SKIPREC=0 is in effect, SKIPREC is not used.

3. You may want to consider using the STARTREC parameter of the OUTFIL
statement as an alternative to using SKIPREC.

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

�� SKIPREC=z ��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 185

|
|
|

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SMF

Temporarily overrides the SMF installation option, which specifies whether a
DFSORT SMF record is to be produced as described in DFSORT Installation
and Customization R14.

SHORT
specifies that DFSORT is to produce a short SMF type-16 record for a
successful run. The short SMF record does not contain record-length
distribution statistics or data set sections.

FULL
specifies that DFSORT is to produce a full SMF type-16 record for a
successful run. The full SMF record contains the same information as the
short record, as well as record-length distribution and data set sections, as
appropriate.

NO
specifies that DFSORT is not to produce an SMF type-16 record for this
run.

Notes:

1. SMF is processed only if it is passed on the OPTION control statement in
an extended parameter list or in DFSPARM.

2. SMF=FULL can degrade performance for a variable-length record
application.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SOLRF or NOSOLRF

Temporarily overrides the SOLRF installation option, which specifies whether
DFSORT should set the SORTOUT LRECL to the reformatted record length
when the SORTOUT LRECL is unknown.

SOLRF
specifies that DFSORT should use the reformatted record length for the
SORTOUT LRECL when the SORTOUT LRECL is not specified or
available. DFSORT will use one of the following for the SORTOUT LRECL,
in the order listed:

1. The SORTOUT LRECL if available from the JFCB, format 1 DSCB,
DFSMSrmm, ICETPEX, or tape label

2. The L3 length if specified in the RECORD statement

�� SMF= SHORT
FULL
NO

��

�� SOLRF
NOSOLRF

��

OPTION Control Statement

186 DFSORT R14 Application Programming Guide

|
|

3. The OUTREC length if the OUTREC statement is specified

4. The INREC length if the INREC statement is specified

5. The L2 length if specified in the RECORD statement providing an E15
user exit is present

6. The SORTIN or SORTINnn LRECL if available from the JFCB, format 1
DSCB, DFSMSrmm, ICETPEX, or tape label

7. The L1 length in the RECORD statement

NOSOLRF
specifies that DFSORT should not use the reformatted record length for the
SORTOUT LRECL. DFSORT will use one of the following for the
SORTOUT LRECL, in the order listed:

1. The SORTOUT LRECL if available from the JFCB, format 1 DSCB,
DFSMSrmm, ICETPEX, or tape label

2. The L3 length if specified in the RECORD statement providing an E35
exit, OUTREC statement or INREC statement is present

3. The L2 length if specified in the RECORD statement providing an E15
user exit is present

4. The SORTIN or SORTINnn LRECL if available from the JFCB, format 1
DSCB, DFSMSrmm, ICETPEX, or tape label

5. The L1 length in the RECORD statement

Notes:

1. With SOLRF in effect (the IBM-supplied default), DFSORT sets the
SORTOUT LRECL to the INREC or OUTREC record length when
appropriate, which is usually what you want when you use INREC or
OUTREC. If you want DFSORT to use the input length for the SORTOUT
LRECL even when INREC or OUTREC is present, you can use NOSOLRF,
but be aware that this can cause padding or truncation of the reformatted
records, or termination.

2. CAOUTREC can be used instead of SOLRF.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SORTDD

Specifies a four-character prefix for the ddnames to be used when you
dynamically invoke DFSORT more than once in a program step. The four
characters replace “SORT” in the following ddnames: SORTIN, SORTOUT,
SORTINn, SORTINnn, SORTOFd, SORTOFdd, SORTWKd, SORTWKdd, and
SORTCNTL. This allows you to use a different set of ddnames for each call to
DFSORT.

cccc
Specifies a four-character prefix. The four characters must all be
alphanumeric or national ($, #, or @). The first character must be
alphabetic. The first three characters must not be SYS.

�� SORTDD=cccc ��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 187

|
|

|
|

|
|

For example, if you use ABC# as replacement characters, DFSORT uses
DD statements ABC#IN, ABC#CNTL, ABC#WKdd, and ABC#OUT instead
of SORTIN, SORTCNTL, SORTWKdd, and SORTOUT.

Notes:

1. SORTDD is processed only if it is passed on the OPTION control statement
in an extended parameter list, or in DFSPARM.

2. If both SORTIN=ddname and SORTDD=cccc are specified, ddname is used
for DFSORT input.

3. If both SORTOUT=ddname and SORTDD=cccc are specified, ddname is
used for DFSORT output.

Default: SORT. See Appendix B, “Specification/Override of DFSORT Options” on
page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SORTIN

Specifies a ddname to be associated with the SORTIN data set. This allows
you to dynamically invoke DFSORT more than once in a program step, passing
a different ddname for each input data set.

The ddname can be 1 through 8 characters, but must be unique within the job
step. Do not use ddnames reserved for use by DFSORT (such as SYSIN).

Notes:

1. SORTIN is processed only if it is passed on the OPTION control statement
in an extended parameter list, or in DFSPARM.

2. If both SORTIN=ddname and SORTDD=cccc are specified, ddname is used
for the input file. The same ddname cannot be specified for SORTIN and
SORTOUT.

3. If SORTIN is used for a tape work data set sort, DFSORT terminates.

Default: SORTIN, unless SORTDD=cccc is specified in which case ccccIN is
the default. See Appendix B, “Specification/Override of DFSORT Options” on
page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SORTOUT

Specifies a ddname to be associated with the SORTOUT data set. This allows
you to dynamically invoke DFSORT more than once in a program step, passing
a different ddname for each output data set.

The ddname can be 1 through 8 characters, but must be unique within the job
step. Do not use ddnames reserved for use by DFSORT (such as SYSIN).

�� SORTIN=ddname ��

�� SORTOUT=ddname ��

OPTION Control Statement

188 DFSORT R14 Application Programming Guide

Notes:

1. SORTOUT is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

2. If both SORTOUT=ddname and SORTDD=cccc are specified, ddname is
used for the output file. The same ddname cannot be specified for SORTIN
and SORTOUT.

3. If SORTOUT is specified for a conventional merge or for a tape work data
set sort, DFSORT terminates.

Default: SORTOUT, unless SORTDD=cccc is specified, in which case ccccOUT
is the default. See Appendix B, “Specification/Override of DFSORT Options” on
page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SPANINC

Temporarily overrides the SPANINC installation option, which specifies the
action to be taken by DFSORT when one or more incomplete spanned records
are detected in a variable spanned input data set.

RC0
specifies that DFSORT should issue message ICE197I (once), set a return
code of 0 and eliminate all incomplete spanned records it detects. Valid
records will be recovered.

RC4
specifies that DFSORT should issue message ICE197I (once), set a return
code of 4 and eliminate all incomplete spanned records it detects. Valid
records will be recovered.

RC16
specifies that DFSORT should issue message ICE204A, terminate and give
a return code of 16 when an incomplete spanned record is detected.

Notes:

1. The return code of 0 or 4 set for incomplete spanned records can be
overridden by a higher return code set for some other reason.

2. In cases where a spanned record cannot be properly assembled (for
example, it has a segment length less than 4 bytes), DFSORT issues
ICE141A and terminates with a return code of 16. The SPANINC value has
no effect in these cases.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

STOPAFT

�� SPANINC= RC0
RC4
RC16

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 189

Specifies the maximum number of records (n) you want accepted for sorting or
copying (that is, read from SORTIN or inserted by E15 and not deleted by
SKIPREC, E15, or the INCLUDE/OMIT statement). When n records have been
accepted, no more records are read from SORTIN; E15 continues to be entered
as if EOF were encountered until a return code of 8 is sent, but no more
records are inserted. If end-of-file is encountered before n records are
accepted, only those records accepted up to that point are sorted or copied.

n specifies the maximum number of records to be accepted.

Limit: 28 digits (15 significant digits)

Default: None; optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

SZERO or NOSZERO

Temporarily overrides the SZERO installation option, which specifies whether
DFSORT should treat numeric -0 and +0 values as signed (that is, different) or
unsigned (that is, the same) for collation, comparisons, editing and conversions,
minimums and maximums. The following DFSORT control statements are
affected by this option: INCLUDE, INREC, MERGE, OMIT, OUTFIL, OUTREC
and SORT.

SZERO
specifies that DFSORT should treat numeric zero values as signed. -0 and
+0 are treated as different values, that is, -0 is treated as a negative value
and +0 is treated as a positive value. SZERO affects DFSORT processing
of numeric values as follows:

v For collation of SORT and MERGE fields, -0 collates before +0 in
ascending order and after +0 in descending order.

v For comparisons of INCLUDE, OMIT and OUTFIL INCLUDE and OMIT
fields and constants, -0 compares as less than +0.

v For editing and conversions of INREC, OUTREC and OUTFIL OUTREC
fields, -0 is treated as negative and +0 is treated as positive.

v For minimums and maximums of OUTFIL TRAILERx fields, -0 is treated
as negative and +0 is treated as positive.

NOSZERO
specifies that DFSORT should treat numeric zero values as unsigned. -0
and +0 are treated as the same value, that is, -0 and +0 are both treated
as positive values. NOSZERO affects DFSORT processing of numeric
values as follows:

v For collation of SORT and MERGE fields, -0 collates equally with +0.

v For comparisons of INCLUDE, OMIT and OUTFIL INCLUDE and OMIT
fields and constants, -0 compares as equal to +0.

�� STOPAFT=n ��

�� SZERO
NOSZERO

��

OPTION Control Statement

190 DFSORT R14 Application Programming Guide

v For editing and conversions of INREC, OUTREC and OUTFIL OUTREC
fields, -0 and +0 are treated as positive.

v For minimums and maximums of OUTFIL TRAILERx fields, -0 and +0 are
treated as positive.

Note: OPTION SZERO or OPTION NOSZERO is ignored for OUTFIL
INCLUDE=(...) or OUTFIL OMIT=(...) if the OPTION statement is
″found″ after the OUTFIL statement. To avoid this, specify SZERO
or NOSZERO as an EXEC/DFSPARM PARM option, or in an
OPTION statement before the OUTFIL statement in the same
source, for example:
//SYSIN DD *
OPTION NOSZERO,COPY
OUTFIL INCLUDE=(...)
/*

Default: Usually, the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

TRUNC

Temporarily overrides the TRUNC installation option, which specifies the action
to be taken by DFSORT when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL, for the cases where DFSORT allows LRECL
truncation.

RC0
specifies that DFSORT should issue message ICE171I, set a return code of
0 and continue processing when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL.

RC4
specifies that DFSORT should issue message ICE171I, set a return code of
4 and continue processing when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL.

RC16
specifies that DFSORT should issue message ICE196A, terminate and give
a return code of 16 when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL.

Notes:

1. The return code of 0 or 4 set for LRECL truncation can be overridden by a
higher return code set for some other reason.

2. For an ICEGENER application, the GNTRUNC value is used and the
TRUNC value is ignored.

3. For some LRECL truncation situations (for example, a tape work data set
sort), DFSORT issues ICE043A and terminates with a return code of 16.
The TRUNC value has no effect in these cases.

4. DFSORT does not check for LRECL truncation if:

�� TRUNC= RC0
RC4
RC16

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 191

a. A SORTIN DD (sort/copy), SORTINnn DD (merge) or SORTOUT DD is
not present

b. A SORTIN DD (sort/copy), SORTINnn DD (merge) or SORTOUT DD
specifies a VSAM data set.

5. DFSORT does not check OUTFIL data sets for LRECL truncation.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

USEWKDD

Temporarily overrides the DYNAUTO=IGNWKDD option, which specifies that
dynamic work data sets are used even if SORTWKdd DD statements are
present. This option allows JCL SORTWKdd data sets to be used rather than
deallocated.

Note: USEWKDD is processed only if it is passed on the OPTION control
statement in an extended parameter list or in DFSPARM.

Default: None, optional. See Appendix B, “Specification/Override of DFSORT
Options” on page 603 for full override details.

Applicable Function: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VERIFY or NOVERIFY

Temporarily overrides the VERIFY installation option, which specifies whether
sequence checking of the final output records must be performed.

VERIFY
specifies that sequence checking is performed.

NOVERIFY
specifies that sequence checking is not performed.

Notes:

1. Using VERIFY can degrade performance.

2. SEQ=YES can be used instead of VERIFY, SEQ=NO can be used instead
of NOVERIFY.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� USEWKDD ��

�� VERIFY
NOVERIFY

��

OPTION Control Statement

192 DFSORT R14 Application Programming Guide

VLLONG or NOVLLONG

Temporarily overrides the VLLONG installation option, which specifies whether
DFSORT is to truncate ″long″ variable-length output records. A long output
record is one whose length is greater than the LRECL of the SORTOUT or
OUTFIL data set it is to be written to.

VLLONG is not meaningful for fixed-length output record processing.

VLLONG
specifies that DFSORT truncates long variable-length output records to the
LRECL of the SORTOUT or OUTFIL data set.

NOVLLONG
specifies that DFSORT terminates if a long variable-length output record is
found.

Notes:

1. VLLONG should not be used unless you want the data at the end of long
variable-length output records to be truncated for your DFSORT application;
inappropriate use of VLLONG can result in unwanted loss of data.

2. VLLONG can be used to truncate long OUTFIL data records, but has no
effect on long OUTFIL header or trailer records.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VLSCMP or NOVLSCMP

Temporarily overrides the VLSCMP installation option, which specifies whether
DFSORT is to pad ″short″ variable-length INCLUDE/OMIT compare fields with
binary zeros. A short field is one where the variable-length record is too short to
contain the entire field, that is, the field extends beyond the record. VLSCMP
and NOVLSCMP apply to the INCLUDE and OMIT statements and to the
INCLUDE and OMIT parameters of the OUTFIL statement.

The compare fields are only padded temporarily for testing; they are not actually
changed for output.

VLSCMP is not meaningful for fixed-length record processing.

The settings for VLSCMP/NOVLSCMP and VLSHRT/NOVLSHRT provide three
levels of processing for short INCLUDE/OMIT fields in the following hierarchy:

1. VLSCMP allows all of the INCLUDE/OMIT comparisons to be performed
even if some fields are short. Since short fields are padded with binary

�� VLLONG
NOVLLONG

��

�� VLSCMP
NOVLSCMP

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 193

zeros, comparisons involving short fields are false (unless a test against
binary zero is relevant, as discussed below). Comparisons involving
non-short fields can be true or false.

2. NOVLSCMP and VLSHRT treat the entire INCLUDE/OMIT logical
expression as false if any field is short. Thus comparisons involving
non-short fields are ignored if any comparison involves a short field.

3. NOVLSCMP and NOVLSHRT result in termination if any field is short.

To illustrate how this works, suppose the following INCLUDE statement is used:
INCLUDE COND=(6,1,CH,EQ,C’1’,OR,70,2,CH,EQ,C’T1’)

If a variable-length input record has a length less than 71 bytes, the field at
bytes 70-71 is short and the following occurs:

v With VLSCMP, the record is included if byte 6 of the input record is C’1’ or
omitted if byte 6 is not C’1’. The comparison of bytes 70-71 equal to C’T1’ is
false because bytes 70-71 contain either X’hh00’ (for a record length of 70
bytes) or X’0000’ (for a record length of less than 70 bytes). The comparison
involving the non-short field is performed even though a short field is present.

v With NOVLSCMP and VLSHRT, the record is omitted because any short field
makes the entire logical expression false. The comparison involving the
non-short field is not performed because a short field is present.

v With NOVLSCMP and NOVLSHRT, DFSORT terminates because any short
field results in termination.

In general, comparisons involving short fields are false with VLSCMP. However,
if a binary zero value is relevant to the comparison, the use of binary zeros for
padding might make the comparison true. For example, suppose the following
INCLUDE statement is used:

INCLUDE COND=(21,2,CH,EQ,C’JX’,OR,
(55,2,CH,EQ,58,2,CH,AND,
70,1,BI,LT,X’08’))

If a variable-length input record has a length less than 70 bytes, the field at byte
70 is short and is padded to X’00’. This makes the comparison of byte 70 less
than X’08’ true even though byte 70 is a short field and so probably irrelevant.

Likewise, if a variable-length record has a length less than 55 bytes, the fields
at bytes 55-56 and 58-59 are short and are each padded to X’0000’, and the
field at byte 70 is short and is padded to X’00’. This makes the comparison of
bytes 55-56 equal to 58-59 true and the comparison of byte 70 less than X’08’
true even though all three fields are short and probably irrelevant.

In such cases where padding of short fields with binary zeros may result in
unwanted true comparisons, you can get the result you want by adding an
appropriate check of the record length to the INCLUDE/OMIT logical
expression, such as:

INCLUDE COND=(21,2,CH,EQ,C’JX’,OR,
(1,2,BI,GE,X’0046’,AND,
55,2,CH,EQ,58,2,CH,AND,
70,1,BI,LT,X’08’))

Now the comparisons involving bytes 55-56, 58-59 and 70 can only be true for
records that are 70 bytes (X’0046’) or longer. Thus, the irrelevant comparisons
involving short fields are eliminated.

OPTION Control Statement

194 DFSORT R14 Application Programming Guide

Keep in mind that short compare fields are padded with zeros when VLSCMP is
in effect and code your INCLUDE/OMIT logical expressions to allow for that or
even take advantage of it.

VLSCMP
specifies that short variable-length compare fields are padded with binary
zeros.

NOVLSCMP
specifies that short variable-length compare fields are not padded.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VLSHRT or NOVLSHRT

Temporarily overrides the VLSHRT installation option, which specifies whether
DFSORT is to continue processing if a ″short″ variable-length SORT/MERGE
control field, INCLUDE/OMIT compare field, or SUM summary field is found. A
short field is one where the variable-length record is too short to contain the
entire field, meaning that the field extends beyond the record. VLSHRT applies
to the SORT, MERGE, INCLUDE, OMIT and SUM statements, and to the
INCLUDE and OMIT parameters of the OUTFIL statement.

VLSHRT processing is not meaningful for fixed-length record processing.

The way in which DFSORT processes short INCLUDE/OMIT compare fields
depends on the settings for VLSCMP/NOVLSCMP and VLSHRT/NOVLSHRT.
For details, see the discussion of the VLSCMP and NOVLSCMP options.

VLSHRT
specifies that DFSORT continues processing if a short control field,
compare field or summary field is found.

NOVLSHRT
specifies that DFSORT terminates if a short control field, compare field or
summary field is found.

Notes:

1. VLSHRT is not used if an INREC or OUTREC statement is specified, if you
have an EFS01 or EFS02 routine, or if locale processing is used for SORT
or MERGE fields. Note that none of these situations prevents the use of
VLSCMP.

2. Unlike the OUTREC statement, the OUTREC parameter of the OUTFIL
statement does not force NOVLSHRT. Thus, you can use VLSHRT with
OUTFIL to eliminate records with the INCLUDE or OMIT parameter and
reformat the remaining records with the OUTREC parameter. If a short
OUTFIL OUTREC field is found, DFSORT terminates (even if VLSHRT is in
effect) unless the VLFILL=byte parameter of OUTFIL is specified.

3. If VLSHRT is in effect and Blockset is selected:

�� VLSHRT
NOVLSHRT

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 195

|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

|

v DFSORT pads short SORT or MERGE control fields with binary zeros,
thus making the order predictable for records with equal control fields of
different lengths. The control fields are only padded temporarily for
collation; they are not actually changed for output. Padding may increase
the amount of work space required.

v Records with short SUM summary fields are excluded from summation;
that is, if either one of a pair of records being summed has a short SUM
field, the records are left unsummed and neither record is deleted.

4. If VLSHRT is in effect and Blockset is not selected:

v DFSORT terminates if the first byte of the first (major) SORT or MERGE
control field is not included in the record.

v DFSORT does not pad short SORT or MERGE control fields, thus
making the order unpredictable for records with equal control fields of
different lengths.

v In certain cases, VLSHRT is not used because of the number and
position of the SORT or MERGE control fields.

v EQUALS is not used.

Note: You can use a SORTDIAG DD statement to force message ICE800I,
which gives a code indicating why Blockset could not be used.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VSAMEMT or NVSAMEMT

Temporarily overrides the VSAMEMT installation option, which specifies whether
DFSORT should accept an empty VSAM input data set.

VSAMEMT
specifies that DFSORT accepts an empty VSAM input data set and
processes it as having zero records.

NVSAMEMT
specifies that DFSORT terminates if an empty VSAM input data set is
found.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

VSAMIO or NOVSAMIO

�� VSAMEMT
NVSAMEMT

��

�� VSAMIO
NOVSAMIO

��

OPTION Control Statement

196 DFSORT R14 Application Programming Guide

|
|
|
|
|

|
|
|

Temporarily overrides the VSAMIO installation option, which specifies whether
DFSORT should allow a VSAM data set defined with REUSE to be sorted
in-place.

VSAMIO
specifies that DFSORT can use the same VSAM data set for input and
output when all of the following conditions are met:

v The application is a sort.

v RESET is in effect.

v The VSAM data set was defined with REUSE.

These conditions ensure that the VSAM data set is processed as NEW for
output and will contain the sorted input records, that is, it will be sorted
in-place.

DFSORT terminates if the same VSAM data set is specified for input and
output and any of the above conditions are not met.

NOVSAMIO
specifies that DFSORT terminates if the same VSAM data set is used for
input and output.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

WRKREL or NOWRKREL

Temporarily overrides the WRKREL installation option, which specifies whether
unused temporary SORTWKdd data set space will be released.

WRKREL
specifies that unused space is released.

NOWRKREL
specifies that unused space is not released.

Notes:

1. If you have dedicated certain volumes for SORTWKdd data sets, and you
do not want unused temporary space to be released, you should specify
NOWRKREL.

2. If WRKREL is in effect, DFSORT releases space for the SORTWKdd data
sets just prior to termination. Space is released only for those SORTWKdd
data sets that were used for the sort application.

3. RLS=0 can be used instead of NOWRKREL. RLS=n (n greater than 0) can
be used instead of WRKREL.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

�� WRKREL
NOWRKREL

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 197

WRKSEC or NOWRKSEC

Temporarily overrides the WRKSEC installation option, which specifies whether
DFSORT uses automatic secondary allocation for temporary JCL SORTWKdd
data sets.

WRKSEC
specifies that automatic secondary allocation for temporary JCL
SORTWKdd data sets is used and that 25 percent of the primary allocation
will be used as the secondary allocation.

NOWRKSEC
specifies that automatic secondary allocation for temporary JCL
SORTWKdd data sets is not used.

Note: SEC=0 can be used instead of NOWRKSEC. SEC=n (n greater than 0)
can be used instead of WRKSEC.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Y2PAST

Temporarily overrides the Y2PAST installation option, which specifies the sliding
(s) or fixed (f) century window. The century window is used with DFSORT’s Y2
formats to correctly interpret two-digit year data values as four-digit year data
values.

s specifies the number of years DFSORT is to subtract from the current year
to set the beginning of the sliding century window. Since the Y2PAST value
is subtracted from the current year, the century window slides as the current
year changes. For example, Y2PAST=81 would set a century window of
1915-2014 in 1996 and 1916-2015 in 1997. s must be a value between 0
and 100.

f specifies the beginning of the fixed century window. For example,
Y2PAST=1 would set a century window of 1962-2061. f must be a value
between 1000 and 3000.

Note: CENTURY=value and CENTWIN=value can be used instead of
Y2PAST=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Y2PAST

�� WRKSEC
NOWRKSEC

��

�� Y2PAST= s
f

��

OPTION Control Statement

198 DFSORT R14 Application Programming Guide

Temporarily overrides the Y2PAST installation option, which specifies the sliding
(s) or fixed (f) century window. The century window is used with DFSORT’s Y2
formats to correctly interpret two-digit year data values as four-digit year data
values.

s specifies the number of years DFSORT is to subtract from the current year
to set the beginning of the sliding century window. Since the Y2PAST value
is subtracted from the current year, the century window slides as the current
year changes. For example, Y2PAST=81 would set a century window of
1915-2014 in 1996 and 1916-2015 in 1997. s must be a value between 0
and 100.

f specifies the beginning of the fixed century window. For example,
Y2PAST=1 would set a century window of 1962-2061. f must be a value
between 1000 and 3000.

Note: CENTURY=value and CENTWIN=value can be used instead of
Y2PAST=value.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

ZDPRINT or NZDPRINT

Temporarily overrides the ZDPRINT installation option, which specifies whether
positive zoned-decimal (ZD) fields resulting from summing must be converted to
printable numbers (that is, whether the zone of the last digit should be changed
from a hexadecimal C to a hexadecimal F). See “SUM Control Statement” on
page 310 for further details on the use of ZDPRINT and NZDPRINT.

ZDPRINT
means convert positive ZD summation results to printable numbers. For
example, change hexadecimal F3F2C5 (prints as 32E) to F3F2F5 (prints as
325).

NZDPRINT
means do not convert positive ZD summation results to printable numbers.

Note: ZDPRINT=YES can be used instead of ZDPRINT. ZDPRINT=NO can be
used instead of NZDPRINT.

Default: Usually the installation default. See Appendix B, “Specification/Override
of DFSORT Options” on page 603 for full override details.

Applicable Function: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Aliases for OPTION Statement Options
For compatibility reasons, the following OPTION statement options can be specified
by using the aliases listed below. See the indicated OPTION statement options for

�� Y2PAST= s
f

��

�� ZDPRINT
NZDPRINT

��

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 199

complete details.

Table 31. Aliases for OPTION Statement Options

Alias OPTION Statement Option

CAOUTREC SOLRF

CENTURY=value Y2PAST=value

CENTWIN=value Y2PAST=value

CHKPT CKPT

CORE=value MAINSIZE=value

HIPRLIM=value HIPRMAX=value

L5=value AVGRLEN=value

NOSDB SDB=NO

PRINT=value MSGPRT=value

RLS=n WRKREL

RLS=0 NOWRKREL

SDB SDB=YES

SDB=SMALL SDB=YES

SEC=n WRKSEC

SEC=0 NOWRKSEC

SEQ=YES VERIFY

SEQ=NO NOVERIFY

ZDPRINT=YES ZDPRINT

ZDPRINT=NO NZDPRINT

Specifying DFSORT Options or COPY—Examples

Example 1

SORT FIELDS=(1,20,CH,A)
OPTION SIZE=50000,SKIPREC=5,EQUALS,DYNALLOC

FIELDS
The control field begins on the first byte of each record in the input data set, is
20 bytes long, contains character data, and is to be sorted in ascending order.

SIZE
The data set to be sorted contains 50000 records.

SKIPREC
Five records are skipped (deleted) before starting to process the input data set.

EQUALS
The sequence of records that collate identically is preserved from input to
output.

DYNALLOC
Two data sets (by default) are allocated on SYSDA (by default). The space on
the data set is calculated using the SIZE value in effect.

OPTION Control Statement

200 DFSORT R14 Application Programming Guide

|
|

Example 2

SORT FIELDS=(1,2,CH,A),CKPT
OPTION EQUALS,NOCHALT,NOVERIFY,CHECK

FIELDS
The control field begins on the first byte of each record in the input data set, is
2 bytes long, contains character data, and is to be sorted in ascending order.

CKPT
DFSORT takes checkpoints during this run.

Note: CKPT is ignored if the Blockset technique is used. If checkpoints are
required, you must bypass the Blockset technique by specifying the
NOBLKSET option, or by specifying IGNCKPT=NO on the ICEMAC
installation macro. However, functions such as OUTFIL, which are
supported only by the Blockset technique, cannot be used if the
Checkpoint/Restart facility is used.

EQUALS
The sequence of records that collate identically is preserved from input to
output.

NOCHALT
Only AQ fields are translated through the ALTSEQ translate table. If
CHALT=YES was specified during installation, then NOCHALT temporarily
overrides it.

NOVERIFY
No sequence check is performed on the final output records.

CHECK
The record count is checked at the end of program processing.

Example 3

OPTION FILSZ=50,SKIPREC=5,DYNALLOC=3390
SORT FIELDS=(1,2,CH,A),SKIPREC=1,SIZE=200,DYNALLOC=(3380,5)

This example shows how parameters specified on the OPTION control statement
override those specified on the SORT control statement, regardless of the order of
the two statements.

FILSZ
DFSORT expects 50 records on the input data set. (Note that there is a
difference in meaning between FILSZ and SIZE and that the OPTION
specification of FILSZ is used in place of SIZE.)

SKIPREC
DFSORT causes five records from the beginning of the input file to be skipped.
(SKIPREC=1 on the SORT statement is ignored.)

DYNALLOC
DFSORT allocates two work data sets (by default) on an IBM 3390.

FIELDS
The control field begins on the first byte of each record in the input data set, is
2 bytes long, contains character data, and is to be sorted in ascending order.

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 201

Example 4

OPTION NOBLKSET

NOBLKSET
DFSORT does not use the Blockset technique for a sort or merge.

Example 5

OPTION STOPAFT=100,COBEXIT=COB2

STOPAFT
DFSORT accepts 100 records before sorting or copying.

COBEXIT
COBOL E15 and E35 routines are run with either the VS COBOL II library or
the Language Environment library.

Example 6

OPTION RESINV=32000,MSGPRT=NONE,
MSGDDN=SORTMSGS,SORTDD=ABCD,SORTIN=MYINPUT,
SORTOUT=MYOUTPUT,NOLIST

This example illustrates the parameters RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST, and the actions taken when these parameters
are supplied on an OPTION statement read from the SYSIN data set or the
SORTCNTL data set. The parameters are recognized, but not used.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=NONE
The keyword is ignored, and messages are printed according to the
installation-supplied default.

MSGDDN=SORTMSGS
The keyword is ignored, and all messages are written to the SYSOUT data set.

SORTDD=ABCD
The keyword is ignored, and the standard prefix SORT is used.

SORTIN=MYINPUT
The keyword is ignored, and the ddname SORTIN is used to reference the
input data set.

SORTOUT=MYOUTPUT
The keyword is ignored, and the ddname SORTOUT is used to reference the
output data set.

NOLIST
The keyword is ignored, and control statements are printed according to the
installation-supplied defaults.

Example 7

OPTION RESINV=32000,MSGPRT=CRITICAL
MSGDDN=SORTMSGS,SORTDD=ABCD,SORTIN=MYINPUT,
SORTOUT=MYOUTPUT,NOLIST

OPTION Control Statement

202 DFSORT R14 Application Programming Guide

This example illustrates keywords RESINV, MSGPRT, MSGDDN, SORTDD,
SORTIN, SORTOUT, and NOLIST and the actions taken when these keywords are
supplied on the OPTION control statement passed by DFSPARM. These options
can also be passed in an extended parameter list, but must be coded as one
contiguous statement without continuation lines.

RESINV
32000 bytes of storage are reserved for the user.

MSGPRT=CRITICAL
Only critical messages are printed on the message data set.

MSGDDN=SORTMSGS
Messages are written to the SORTMSGS data set.

SORTDD=ABCD
SORT uses ABCD as a prefix for all sort names.

SORTIN=MYINPUT
The ddname MYINPUT is used to reference the input data set.

SORTOUT=MYOUTPUT
The ddname MYOUTPUT is used to reference the output data set.

NOLIST
Control statements are not printed.

Example 8

SORT FIELDS=(3,4,CH,A)
OPTION COPY,SKIPREC=10,CKPT
MODS E15=(E15,1024,MODLIB),E35=(E35,1024,MODLIB)

SORT
The sort statement is ignored because the COPY option has been specified.

COPY
The copy processing is always done on a record-by-record basis. Each record
is therefore read from SORTIN, passed to the E15 exit, passed to the E35 exit,
and written to SORTOUT. (Contrast this with a sort, where all the records are
read from SORTIN and passed to the E15 exit before any records are passed
to the E35 exit and written to SORTOUT.)

SKIPREC
Ten records are skipped before copying starts.

CKPT
The checkpoint option is not used for copy applications.

Example 9

SORT FIELDS=(5,4,CH,A)
SUM FIELDS=(12,5,ZD,25,6,ZD)
OPTION ZDPRINT

ZDPRINT
The positive summed ZD values are printable because DFSORT uses an F sign
for the last digit.

OPTION Control Statement

Chapter 3. Using DFSORT Program Control Statements 203

OUTFIL Control Statements

OUTFIL control statements allow you to create one or more output data sets for a
sort, copy, or merge application from a single pass over one or more input data
sets. You can use multiple OUTFIL statements, with each statement specifying the
OUTFIL processing to be performed for one or more output data sets. OUTFIL
processing begins after all other processing ends (that is, after processing for exits,
options, and other control statements). OUTFIL statements support a wide variety of
output data set tasks, including:

v Creation of multiple output data sets containing unedited or edited records from a
single pass over one or more input data sets.

�� OUTFIL E

E

E

E

E

E

E

E

E

,

FNAMES= ddname
,

(ddname)
FILES= suffix

,

(suffix)
STARTREC=n
ENDREC=n

INCLUDE= (logical expression)
ALL
NONE

OMIT= (logical expression)
ALL
NONE

SAVE
SPLIT

,

OUTREC= (field)
,VTOF ,VLFILL=byte
,CONVERT

FTOV
VLTRIM=byte
LINES=n

,

HEADER1= (field)
,

TRAILER1= (field)
,

HEADER2= (field)
,

TRAILER2= (field)
,

SECTIONS= (field)
NODETAIL
REMOVECC

��

OUTFIL Control Statements

204 DFSORT R14 Application Programming Guide

v Creation of multiple output data sets containing different ranges or subsets of
records from a single pass over one or more input data sets. In addition, records
that are not selected for any subset can be saved in a separate output data set.

v Conversion of variable-length record data sets to fixed-length record data sets.

v Conversion of fixed-length record data sets to variable-length record data sets.

v Insertion of blanks, zeros, strings, current date, current time, and sequence
numbers before, between, and after the input fields in the reformatted records.

v Sophisticated conversion capabilities, such as hexadecimal display, conversion of
EBCDIC letters from lowercase to uppercase or uppercase to lowercase,
conversion of characters using the ALTSEQ translation table, and conversion of
numeric values from one format to another.

v Sophisticated editing capabilities, such as control of the way numeric fields are
prsented with respect to length, leading or suppressed zeros, thousands
separators, decimal points, leading and trailing positive and negative signs, and
so on.

Twenty-seven pre-defined editing masks are available for commonly used
numeric editing patterns, encompassing many of the numeric notations used
throughout the world. In addition, a virtually unlimited number of numeric editing
patterns are available via user-defined editing masks.

v Transformation of SMF date and time values to more usable forms.

v Transformation of two-digit year dates to various forms of four-digit year dates
using a specified fixed or sliding century window.

v Selection of a character or hexadecimal string for output from a lookup table,
based on a character, hexadecimal, or bit string as input (that is, lookup and
change).

v Highly detailed three-level (report, page, and section) reports containing a variety
of report elements you can specify (for example, current date, current time,page
number, character strings, and blank lines) or derive from the input records (for
example, character fields; edited numeric input fields; record counts; and edited
totals, maximums, minimums, and averages for numeric input fields).

v Creation of multiple output records from each input record, with or without
intervening blank output records.

The parameters of OUTFIL are grouped by primary purpose as follows:

v FNAMES and FILES specify theddnames of the OUTFIL data sets to be
created. Each OUTFIL data set to be created must be specifically identified using
FNAMES or FILES in an OUTFIL statement. By contrast, the SORTOUT data
set is created by default if a DD statement for it is present. The term “SORTOUT
data set” denotes the single non-OUTFIL output data set, but in fact, the
SORTOUT ddname can be used for an OUTFIL data set either explicitly or by
default.

If SORTOUT is identified as an OUTFIL ddname, either explicitly(for example, via
FILES=OUT) or by default (OUTFIL without FILES or FNAMES), the data set
associated with the SORTOUT ddname will be processed as an OUTFIL data set
rather than as the SORTOUT data set.

OUTFIL data sets have characteristics and requirements similar to those for the
SORTOUT data set, but there are differences in the way each is processed. The
major differences are that an E39 exit routine is not entered for OUTFIL data
sets, and that OUTFIL processing does not permit the use of the LRECL value to
pad fixed-format OUTFIL records. (DFSORT will automatically determine and set
an appropriate RECFM, LRECL, and BLKSIZE for each OUTFIL data set for
which these attributes are not specified or available.)

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 205

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

For a single DFSORT application, OUTFIL data sets can be intermixed with
respect to VSAM and non-VSAM, tape and DASD, and so on. All of the data sets
specified for a particular OUTFIL statement are processed in a similar way and
thus are referred to as an OUTFIL group. (That is, you group OUTFIL data sets
that use the same operands by specifying them on a single OUTFIL statement.)
For example, the first OUTFIL statement might have an INCLUDE operand that
applies to an OUTFIL group of one non-VSAM data set on DASD and another on
tape; a second OUTFIL statement might have OMIT and OUTREC operands that
apply to an OUTFIL group of one non-VSAM data set on DASD and two VSAM
data sets.

Records areprocessed for OUTFIL as they are for SORTOUT, after all other
DFSORT processing is complete. Conceptually, you can think of an OUTFIL
input record as being intercepted at the point between being passed from an
E35 exit and written to SORTOUT, although neither an E35 exit nor SORTOUT
need actually be specified with OUTFIL processing. With that in mind, see
Figure 2 on page 8 for details on the processing that occurs prior to processing
the OUTFIL input record. In particular:

– Records deleted by an E15 or E35 exit, an INCLUDE, OMIT or SUM
statement, or the SKIPREC or STOPAFT parameter are not available for
OUTFIL processing

– If records are reformatted by an E15 exit, an INREC or OUTREC statement,
or an E35 exit, the resulting reformatted record is the OUTFIL input record to
which OUTFIL fields must refer.

v STARTREC starts processing for an OUTFIL group at a specific OUTFIL input
record. ENDREC ends processing for an OUTFIL group at a specific OUTFIL
input record. Separately or together, STARTREC and ENDREC select a range of
records to which subsequent OUTFIL processing will apply.

v INCLUDE, OMIT, and SAVE select the records to be included in the data sets of
an OUTFIL group. INCLUDE and OMIT operate against the specified fields of
each OUTFIL input record to select the output records for their OUTFIL group (all
records are selected by default). SAVE selects the records that are not selected
for any other OUTFIL group.

Whereas the INCLUDE and OMIT statements apply to all input records, the
INCLUDE and OMIT parameters apply only to the OUTFIL input records for their
OUTFIL group. The INCLUDE and OMIT parameters have all of the logical
expression capabilities of the INCLUDE and OMIT statements.

v SPLIT splits the output records in rotation among the data sets of an OUTFIL
group. The first output record is written to the first OUTFIL data set in the group,
the second output record is written to the second data set, and so on. When
each OUTFIL data set has one record, the rotation starts again with the first
OUTFIL data set.

v OUTREC reformats the output records for an OUTFIL group. OUTREC enables
you to rearrange, edit, and change the fields of the OUTFIL input records and to
insert blanks, zeros, strings, current date, current time, and sequence numbers.

OUTREC also enables you to produce multiple reformatted output records from
each input record, with or without intervening blank output records.

VTOF or CONVERT can be used with OUTREC to convert variable-length input
records to fixed-length output records.

VLFILL can be used to allow processing of variable-length input records which
are too short to contain all specified OUTREC fields

Whereas the OUTREC statement applies to all input records, the OUTREC
parameter applies only to the OUTFIL input records for its OUTFIL group. In

OUTFIL Control Statements

206 DFSORT R14 Application Programming Guide

|
|
|
|
|

|

|
|

addition, the OUTREC parameter supports the forward slash (/) separator for
creating blank records and new records, whereas the OUTREC statement does
not.

v FTOV can be used to convert fixed-length input records to variable-length output
records. FTOV can be used with or without OUTREC.

v VLTRIM can be used to remove the trailing bytes with a specified value, such as
blanks, binary zeros or asterisks, from variable-length records. VLTRIM can be
used with or without FTOV.

v LINES, HEADER1, TRAILER1, HEADER2, TRAILER2, SECTIONS , and
NODETAIL indicate that a report is to be produced for an OUTFILgroup, and
specify the details of the report records to be produced for the report. Reports
can contain report records for a report header (first page), report trailer (last
page), page header and page trailer (at the top and bottom of each page,
respectively), and section headers and trailers (before and after each section,
respectively).

Data records for the report result from the inclusion of OUTFIL input records. All
of the capabilities of the OUTREC parameter are available to create reformatted
data records from the OUTFIL input records. Each set of sequential OUTFIL
input records, with the same binary value for a specified field, results in a
corresponding set of data records that is treated as a section in the report.

The length for the data records must be equal to or greater than the maximum
report record length. OUTFIL data sets used for reports must have or will be
given ANSI control character format ('A' as in, for example, RECFM=FBA or
RECFM=VBA), and must allow an extra byte in the LRECL for the carriage
control character that DFSORT will add to each report and data record. DFSORT
uses these carriage control characters to control page ejects and the placement
of the lines in your report according to your specifications. DFSORT uses
appropriate carriage controls (for example, C'-' for triple space) in header and
trailer records when possible, to reduce the number of report records written.
DFSORT always uses the single space carriage control (C' ') in data records.
Although these carriage control characters may not be shown when you view an
OUTFIL data set (depending upon how you view it), they will be used if you print
the report.

v REMOVECC can be used to remove the ANSI control characters from a report.
In this case, an 'A' is not added to or required for the RECFM and an extra byte
is not added to or required for the LRECL.

v Figure 15 on page 208 illustrates the order in which OUTFIL records and
parameters are processed.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 207

|
|

|
|
|

|
|
|

Notes:

1. DFSORT accepts but does not process the following OUTFIL
operands:BLKSIZE=value, BUFLIM=value, BUFOFF=value, CARDS=value,
CLOSE=value, DISK, ESDS, EXIT, FREEOUT, KSDS, LRECL=value, NOTPMK,
OPEN=value, OUTPUT, PAGES=value, PRINT, PUNCH, REUSE, RRDS, SPAN,
SYSLST, TAPE, and TOL.

2. Sample syntax is shown throughout this section. Complete OUTFIL statement
examples are shown and explained under “OUTFIL Features—Examples” on
page 270.

FNAMES

Specifies ddnames associated with the OUTFIL data sets for this OUTFIL
statement. The ddnames specified using the FNAMES and FILES parameters
constitute the output data sets for this OUTFIL group to which all of the other
parameters for this OUTFIL statement apply.

If FNAMES specifies the ddname in effect for the SORTOUT data set (that is,
whichever is in effect among SORTOUT, name from SORTOUT=name, or

OUTFIL STARTREC
OUTFIL ENDREC

OUTFIL INCLUDE
OUTFIL OMIT
OUTFIL SAVE

OUTFIL OUTREC
OUTFIL VTOF or CONVERT
OUTFIL FTOV
OUTFIL Reports

OUTFIL input records

OUTFIL SPLIT

OUTFIL Data Sets

Figure 15. OUTFIL Processing Order

�� FNAMES=

E

ddname
,

(ddname)

��

OUTFIL Control Statements

208 DFSORT R14 Application Programming Guide

ccccOUT from SORTDD=cccc), DFSORT will treat the data set associated with
that ddname as an OUTFIL data set rather than as the SORTOUT data set.

ddname
specifies a 1- through 8-character ddname. A DD statement must be
present for this ddname.

Sample Syntax:

OUTFIL FNAMES=(OUT1,OUT2,PRINTER,TAPE)
OUTFIL FNAMES=BACKUP

Default for FNAMES: If neither FNAMES nor FILES is specified for an OUTFIL
statement, the default ddname is SORTOUT or ccccOUT if SORTDD=cccc is in
effect.

FILES

Specifies suffixes for ddnames to be associated with the OUTFIL data sets for
this OUTFIL statement. The ddnames specified using the FNAMES and FILES
parameters constitute the output data sets for this OUTFIL group to which all of
the other parameters for this OUTFIL statement apply.

If FILES specifies the ddname in effect for the SORTOUT data set (that is,
whichever is in effect among SORTOUT, name from SORTOUT=name, or
ccccOUT from SORTDD=cccc), DFSORT will treat the data set associated with
that ddname as an OUTFIL data set rather than as the SORTOUT data set.

d specifies the 1-character suffix to be used to form the ddname SORTOFd or
ccccOFd if SORTDD=cccc is in effect. A DD statement must be present for
this ddname.

dd specifies the 2-character suffix to be used to form the ddname SORTOFdd
or ccccOFdd if SORTDD=cccc is in effect. A DD statement must be present
for this ddname.

OUT
specifies the suffix OUT is to be used to form the ddname SORTOUT or
ccccOUT if SORTDD=cccc is in effect. A DD statement must be present for
this ddname.

Sample Syntax:
OUTFIL FILES=(1,2,PR,TP)
OUTFIL FILES=OUT

Default for FILES: If neither FNAMES nor FILES is specified for an OUTFIL
statement, the default ddname is SORTOUT or ccccOUT if SORTDD=cccc is in
effect.

�� FILES=

E

d
dd
OUT

,

(d)
dd
OUT

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 209

STARTREC

Specifies the OUTFIL input record at which OUTFIL processing is to start for
this OUTFIL group. OUTFIL input records before this starting record are not
included in the data sets for this OUTFIL group.

n specifies the relative record number. The value for n starts at 1 (the first
record) and is limited to 28 digits (15 significant digits).

Sample Syntax:
OUTFIL FNAMES=SKIP20,STARTREC=21

Default for STARTREC: 1.

ENDREC

Specifies the OUTFIL input record at which OUTFIL processing is to end for this
OUTFIL group. OUTFIL input records after this ending record are not included
in the data sets for this OUTFIL group.

The ENDREC value must be equal to or greater than the STARTREC value if
both are specified on the same OUTREC statement.

n specifies the relative record number. The value for n starts at 1 (the first
record) and is limited to 28 digits (15 significant digits).

Sample Syntax:
OUTFIL FNAMES=TOP10,ENDREC=10
OUTFIL FNAMES=FRONT,ENDREC=500
OUTFIL FNAMES=MIDDLE,STARTREC=501,ENDREC=2205
OUTFIL FNAMES=BACK,STARTREC=2206

Default for ENDREC: The last OUTFIL input record.

INCLUDE

Selects the records to be included in the data sets for this OUTFIL group.

The INCLUDE parameter operates in the same way as the INCLUDE
statement, except that:

v The INCLUDE statement applies to all input records; the INCLUDE
parameter applies only to the OUTFIL input records for its OUTFIL group.

v FORMAT=f can be specified with the INCLUDE statement, but not with the
INCLUDE parameter.

�� STARTREC=n ��

�� ENDREC=n ��

�� INCLUDE= (logical expression)
ALL
(ALL)
NONE
(NONE)

��

OUTFIL Control Statements

210 DFSORT R14 Application Programming Guide

v D2 format can be specified with the INCLUDE statement, but not with the
INCLUDE parameter.

See “INCLUDE Control Statement” on page 111 for complete details.

logical expression
specifies one or more relational conditions logically combined based on
fields in the OUTFIL input record. If the logical expression is true for a given
record, the record is included in the data sets for this OUTFIL group.

ALL or (ALL)
specifies that all of the OUTFIL input records are to be included in the data
sets for this OUTFIL group.

NONE or (NONE)
specifies that none of the OUTFIL input records are to be included in the
data sets for this OUTFIL group.

Sample Syntax:
OUTFIL FNAMES=J69,INCLUDE=(5,3,CH,EQ,C’J69’)
OUTFIL FNAMES=J82,INCLUDE=(5,3,CH,EQ,C’J82’)

Default for INCLUDE: ALL.

OMIT

Selects the records to be omitted from the data sets for this OUTFIL group.

The OMIT parameter operates in the same way as the OMIT statement, except
that:

v The OMIT statement applies to all input records; the OMIT parameter applies
only to the OUTFIL input records for its OUTFIL group.

v FORMAT=f can be specified with the OMIT statement, but not with the OMIT
parameter.

v The D2 format can be specified with the OMIT statement, but not with the
OMIT parameter.

See “OMIT Control Statement” on page 151 and “INCLUDE Control Statement”
on page 111 for complete details.

logical expression
specifies one or more relational conditions logically combined based on
fields in the OUTFIL input record. If the logical expression is true for a given
record, the record is omitted from the data sets for this OUTFIL group.

ALL or (ALL)
specifies that all of the OUTFIL input records are to be omitted from the
data sets for this OUTFIL group.

NONE or (NONE)
specifies that none of the OUTFIL input records are to be omitted from the
data sets for this OUTFIL group.

�� OMIT= (logical expression)
ALL
(ALL)
NONE
(NONE)

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 211

Sample Syntax:
OUTFIL FILES=01,OMIT=NONE
OUTFIL OMIT=(5,1,BI,EQ,B’110.....’)
OUTFIL FNAMES=(OUT1,OUT2),

OMIT=(7,2,CH,EQ,C’32’,OR,18,3,CH,EQ,C’XYZ’)

Default for OMIT: NONE.

SAVE

Specifies that OUTFIL input records not included by INCLUDE or OMIT for any
other OUTFIL group are to be included in the data sets for this OUTFIL group.
SAVE operates in a global fashion over all of the other OUTFIL statements for
which SAVE is not specified, enabling you to keep any OUTFIL input records
that would not be kept otherwise. SAVE will include the same records for each
group for which it is specified.

Sample Syntax:
OUTFIL INCLUDE=(8,6,CH,EQ,C’ACCTNG’),FNAMES=GP1
OUTFIL INCLUDE=(8,6,CH,EQ,C’DVPMNT’),FNAMES=GP2
OUTFIL SAVE,FNAMES=NOT1OR2

Default for SAVE: None; must be specified.

SPLIT

Splits the output records in rotation among the data sets of this OUTFIL group.
Thus for an OUTFIL group with n data sets, the first OUTFIL data set in the
group will receive records 1, 1+n, 1+2n, ..., the second data set will receive
records 2, 2+n, 2+2n, ..., and so on for each data set in the group, until all of
the output records have been written. As a result, the records will be split as
evenly as possible among all of the data sets in the group.

The SPLIT parameter cannot be used with any of the report parameters
(LINES, HEADER1, TRAILER1, HEADER2, TRAILER2, SECTIONS, and
NODETAIL) since it doesn’t make sense to split up the records of a report.

Sample Syntax:
OUTFIL FNAMES=(PIPE1,PIPE2,PIPE3,PIPE4),SPLIT
OUTFIL FNAMES=(TAPE1,TAPE2),SPLIT,

INCLUDE=(8,2,ZD,EQ,27),OUTREC=(5X,1,75)

Default for SPLIT: None; must be specified.

OUTREC

�� SAVE ��

�� SPLIT ��

OUTFIL Control Statements

212 DFSORT R14 Application Programming Guide

Specifies how the records in the data sets for this OUTFIL group are to be
reformatted. OUTREC can define which parts of the OUTFIL input record are
included in the reformatted OUTFIL output record, in what order the parts
appear, how they are aligned, and how they are edited or changed. You can
also insert separation fields (blanks, zeros, strings, current date and current
time) and sequence numbers before, between, and after the input fields, and
produce multiple reformatted output records for each input record, with or
without intervening blank output records.

You can use the OUTREC parameter in conjunction with the VTOF or
CONVERT parameter to convert variable-length record data sets to fixed-length
record data sets.

You can use the OUTREC parameter with the FTOV parameter to convert
fixed-length record data sets to variable-length record data sets.

You can use the VLFILL parameter to allow processing of variable-length input
records which are too short to contain all specified OUTREC fields.

The OUTREC parameter can be used with any or all of the report parameters
(LINES, HEADER1, TRAILER1, HEADER2, TRAILER2, SECTIONS, and
NODETAIL) to produce reports. The report parameters specify the report
records to be produced, while the OUTREC parameter specifies the reformatted
data records to be produced. DFSORT uses ANSI carriage control characters to
control page ejects and the placement of the lines in your report, according to
your specifications. You can use the REMOVECC parameter to remove the
ANSI carriage control characters.

When you create an OUTFIL report, the length for the longest or only data
record must be equal to or greater than the maximum report record length. You
can use the OUTREC parameter to force a length for the data records that is
longer than any report record; you can then either let DFSORT compute and

�� E

,

OUTREC= (s)
c: p,m

,a
p
p,m,HEX
p,HEX
p,m,TRAN=LTOU
p,TRAN=LTOU
p,m,TRAN=UTOL
p,TRAN=UTOL
p,m,TRAN=ALTSEQ
p,TRAN=ALTSEQ
p,m,Y2x
p,m,Y2x(c)
p,m,Y2xP
p,m,f

,edit
p,m,f,to
p,m,Y2x,edit
p,m,Y2x,to
p,m,lookup
seqnum

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 213

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

set the LRECL, or ensure that the computed LRECL is equal to the existing or
specified LRECL. Remember to allow an extra byte in the LRECL for the ANSI
carriage control character.

For example, if your data records are 40 bytes, but your longest report record is
60 bytes, you can use an OUTREC parameter such as:

OUTREC=(1,40,80:X)

DFSORT will then set the LRECL to 81 (1 byte for the ANSI carriage control
character plus 80 bytes for the length of the data records), and pad the data
records with blanks on the right.

If you don’t want the ANSI carriage control characters to appear in the output
data set, use the REMOVECC parameter to remove them. For example, if you
specify:

OUTREC=(1,40,80:X),REMOVECC

DFSORT will set the LRECL to 80 instead of 81 and remove the ANSI carriage
control character from each record before it is written.

Note: The OUTREC statement applies to all input records, whereas the
OUTREC parameter of the OUTFIL statement applies only to the
OUTFIL input records for its OUTFIL group. The OUTREC parameter of
the OUTFIL statement supports the slash (/) separator for creating blank
records and new records; the OUTREC statement does not.

You can choose to include any or all of the following in your reformatted
OUTFIL output records:

v Blanks, binary zeros, character strings, and hexadecimal strings

v Current date and current time in various forms

v Unedited input fields aligned on byte, halfword, fullword, and doubleword
boundaries

v Hexadecimal representations of binary input fields

v Numeric input fields of various formats converted to different numeric
formats, or to character format edited to contain signs, thousands separators,
decimal points, leading zeros or no leading zeros, and so on.

v SMF date and time fields that are converted to different numeric formats, or
to character format edited to contain separators, leading zeros or no leading
zeros, and so on.

v Two-digit year input dates of various formats converted to four-digit year
dates in different numeric formats, or to character format edited to contain
separators, leading zeros or no leading zeros, and so on.

v Sequence numbers in various formats.

v Character or hexadecimal strings from a lookup table.

The reformatted OUTFIL output record consists of the separation fields, edited
and unedited input fields and sequence numbers you select, in the order in
which you select them, aligned on the boundaries or in the columns you
indicate.

c: specifies the position (column) for a separation field, input field or sequence
number, relative to the start of the reformatted OUTFIL output record. Count the
RDW (variable-length output records only) but not the carriage control character

OUTFIL Control Statements

214 DFSORT R14 Application Programming Guide

|
|
|

|

|
|

|

|
|
|

(for reports) when specifying c:. That is, 1: indicates the first byte of the data in
fixed-length output records and 5: indicates the first byte of the data in
variable-length output records.

Unused space preceding the specified column is padded with EBCDIC blanks.
The following rules apply:

v c must be a number between 1 and 32752.

v c: must be followed by an input field or a separation field.

v c must not overlap the previous input field or separation field in the
reformatted OUTFIL output record.

v For variable-length records, c: must not be specified before the first input
field (the record descriptor word) nor after the variable part of the OUTFIL
input record.

v The colon (:) is treated like the comma (,) or semicolon (;) for continuation to
another line.

See Table 21 on page 133 for examples of valid and invalid column alignment.

s specifies that a separation field (blanks, zeros, character string, hexadecimal
string, current date or current time) is to appear in the reformatted OUTFIL
output record, or that a new output record is to be started, with or without
intervening blank output records. These separation elements (separation fields,
new record indicators, and blank record indicators) can be specified before or
after any input field. Consecutive separation elements may be specified. For
variable-length records, separation elements must not be specified before the
first input field (the record descriptor word) or after the variable part of the
OUTFIL input record. Permissible values are nX, nZ, nC'xx...x', nX'yy...yy',
DATE1, DATE1(c), DATE1P, DATE2, DATE2(c), DATE2P, DATE3, DATE3(c),
DATE3P, TIME1, TIME1(c), TIME1P, TIME2, TIME2(c), TIME2P, TIME3,
TIME3P, /.../ and n/.

nX Blank separation. n bytes of EBCDIC blanks (X'40') are to appear in the
reformatted OUTFIL output records. n can range from 1 to 4095. If n is
omitted, 1 is used.

See Table 22 on page 133 for examples of valid and invalid blank
separation.

nZ Binary zero separation. n bytes of binary zeros (X'00') are to appear in
the reformatted OUTFIL output records. n can range from 1 to 4095. If
n is omitted, 1 is used.

See Table 23 on page 134 for examples of valid and invalid binary zero
separation.

nC'xx...x'
Character string separation. n repetitions of the character string
constant (C'xx...x') are to appear in the reformatted OUTFIL output
records. n can range from 1 to 4095. If n is omitted, 1 is used. x can be
any EBCDIC character. You can specify from 1 to 256 characters.

If you want to include a single apostrophe in the character string, you
must specify it as two single apostrophes:
Required: O'NEILL Specify: C'O''NEILL'

See Table 24 on page 134 for examples of valid and invalid character
string separation.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 215

|
|
|
|
|
|
|
|
|
|
|
|

nX'yy...yy'
Hexadecimal string separation. n repetitions of the hexadecimal string
constant (X'yy...yy') are to appear in the reformatted OUTFIL output
records. n can range from 1 to 4095. If n is omitted, 1 is used.

The value yy represents any pair of hexadecimal digits. You can specify
from 1 to 256 pairs of hexadecimal digits.

See Table 25 on page 135 for examples of valid and invalid
hexadecimal string separation.

DATEn, DATEN(c), DATEnP
Constant for current date. The date of the run is to appear in the
reformatted OUTFIL output records. Table 32 shows the constant
generated for each separation field you can specify along with its length
and an example using (/) for (c) where relevant. yyyy represents the
year, mm represents the month (01-12), dd represents the day (01-31),
ddd represents the day of the year (001-366),and c can be any
character except a blank.

Table 32. Current date constants

Separation
Field

Constant Length
(bytes)

April 19, 2001

DATE1 C'yyyymmdd' 8 C'20010419'

DATE1(c) C'yyyycmmcdd' 10 C'2001/04/19'

DATE1P P'yyyymmdd' 5 P'20010419'

DATE2 C'yyyymm' 6 C'200104'

DATE2(c) C'yyyycmm' 7 C'2001/04 '

DATE2P P'yyyymm' 4 P'200104'

DATE3 C'yyyyddd' 7 C'2001109'

DATE3(c) C'yyyycddd' 8 C'2001/109'

DATE3P P'yyyyddd' 4 P'2001109'

TIMEn, TIMEn(c), TIMEnP
Constant for current time. The time of the run is to appear in the
reformatted OUTFIL output records. Table 33 shows the constant
generated for each separation field you can specify along with its length
and an example using (:) for (c) where relevant. hh represents the hour
(00-23), mm represents the minutes (00-59), ss represents the seconds
(00-59), and c can be any character except a blank.

Table 33. Current time constants

Separation
Field

Constant Length
(bytes)

01:55:43 PM

TIME1 C'hhmmss' 6 C'135543'

TIME1(c) C'hhcmmcss' 8 C'13:55:43'

TIME1P P'hhmmss' 4 P'135543'

TIME2 C'hhmm' 4 C'1355'

TIME2(c) C'hhcmm' 5 C'13:55'

TIME2P P'hhmm' 4 P'1355'

TIME3 C'hh' 2 C'13'

OUTFIL Control Statements

216 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|
|

||

|
|
||
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

|
|
|
|
|
|
|

||

|
|
||
|
|

||||

||||

||||

||||

||||

||||

||||

Table 33. Current time constants (continued)

Separation
Field

Constant Length
(bytes)

01:55:43 PM

TIME3P P'hh' 2 P'13'

/.../ or n/
Blank records or a new record. A new output record is to be started with
or without intervening blank output records. If /.../ or n/ is specified at
the beginning or end of OUTREC, n blank output records are to be
produced. If /.../ or n/ is specified in the middle of OUTREC, n-1 blank
output records are to be produced (thus, / or 1/ indicates a new output
record with no intervening blank output records).

At least one input field or separation field must be specified if you use
/.../ or n/. For example, OUTREC=(//) is not allowed, whereas
OUTREC=(//X) is allowed.

Either n/ (for example, 5/) or multiple /'s (for example, /////) can be used.
n can range from 1 to 255. If n is omitted, 1 is used.

As an example, if you specify:
OUTFIL OUTREC=(2/,C’Field 2 contains ’,4,3,/,

C’Field 1 contains ’,1,3)

an input record containing:
111222

would produce the following four output records:
Blanks
Blanks
Field 2 contains 222
Field 1 contains 111

Note that four OUTFIL output records are produced for each OUTFIL
input record.

p,m,a
specifies that an unedited input field is to appear in the reformatted OUTFIL
output record.

p specifies the first byte of the input field relative to the beginning of the
OUTFIL input record. The first data byte of a fixed-length record has relative
position 1. The first data byte of a variable-length record has relative
position 5, because the first four bytes are occupied by the RDW. All fields
must start on a byte boundary, and no field can extend beyond byte 32752.
See “OUTFIL Statements Notes” on page 267 for special rules concerning
variable-length records.

m specifies the length in bytes of the input field.

a specifies the alignment (displacement) of the input field in the reformatted
OUTFIL output record relative to the start of the reformatted OUTFIL output
record.

The permissible values of a are:

H Halfword aligned. The displacement (p-1) of the field from the
beginning of the reformatted OUTFIL input record, in bytes, is a
multiple of 2 (that is, position 1, 3, 5, and so forth).

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 217

|

|
|
||
|
|

||||
|

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that is,
position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is used in a COBOL
application program where COMPUTATIONAL items are aligned through the
SYNCHRONIZED clause. Unused space preceding aligned fields are
always padded with binary zeros.

p specifies the unedited variable part of the OUTFIL input record (that part
beyond the minimum record length) is to appear in the reformatted OUTFIL
output record as the last field. Note that if the reformatted OUTFIL record
includes only the RDW and the variable part of the OUTFIL input record, “ null”
records containing only an RDW may result.

A value must be specified for p that is less than or equal to the minimum
OUTFIL input record length plus 1 byte.

p,m,HEX
specifies that the hexadecimal representation of an input field is to appear in
the reformatted OUTFIL output record.

p See p under p,m,a.

m specifies the length in bytes of the input field. The value for m must be 1 to
16376.

HEX
requests hexadecimal representation of the input field. Each byte of the
input field is replaced by its two-byte equivalent. For example, the
characters AB would be replaced by C1C2.

p,HEX
specifies that the hexadecimal representation of the variable part of the OUTFIL
input record (that part beyond the minimum record length) is to appear in the
reformatted OUTFIL output record as the last field. Note that if the reformatted
OUTFIL record includes only the RDW and the variable part of the OUTFIL
input record, “null” records containing only an RDW may result.

p A value must be specified for p that is less than or equal to the minimum
record length plus 1 byte.

HEX
requests hexadecimal representation of the variable part of the OUTFIL
input record. Each byte of the input field is replaced by its two-byte
equivalent. For example, the characters AB would be replaced by C1C2.

p,m,TRAN=LTOU
specifies that lowercase EBCDIC letters (that is, a-z) in an input field are to
appear as uppercase EBCDIC letters (that is, A-Z) in the reformatted OUTFIL
output record.

p See p under p,m,a

m See m under p,m,a

TRAN=LTOU
requests conversion of lowercase letters to uppercase letters. Each a-z
character of the input field is replaced by the corresponding A-Z character.
Other characters are not changed. For example, the characters
’Vicky-123,x’ would be replaced by ’VICKY-123,X’.

OUTFIL Control Statements

218 DFSORT R14 Application Programming Guide

|
|
|
|

||

||

|
|
|
|
|

p,TRAN=LTOU
specifies that lowercase EBCDIC letters (that is, a-z) in the variable part of the
OUTFIL input record (that part beyond the minimum record length), are to
appear as uppercase EBCDIC letters (that is, A-Z) in the reformatted OUTFIL
output record, as the last field. Note that if the reformatted OUTFIL record
includes only the RDW and the variable part of the OUTFIL input record, ″null″
records containing only an RDW may result.

p A value must be specified for p that is less than or equal to the minimum
record length plus 1 byte.

TRAN=LTOU
requests conversion of lowercase EBCDIC letters to uppercase EBCDIC
letters. Each a-z character of the variable part of the OUTFIL input record is
replaced by the corresponding A-Z character. Other characters are not
changed. For example, the characters ’Vicky-123,x’ would be replaced by
’VICKY-123,X’.

p,m,TRAN=UTOL
specifies that uppercase EBCDIC letters (that is, A-Z) in an input field are to
appear as lowercase EBCDIC letters (that is, a-z) in the reformatted OUTFIL
output record.

p See p under p,m,a

m See m under p,m,a

TRAN=UTOL
requests conversion of uppercase EBCDIC leters to lowercase EBCDIC
leters. Each A-Z character of the variable part of the OUTFIL input record is
replaced by the corresponding a-z character. Other characters are not
changed. For example, the characters 'CARRIE-005, CA' would be replaced
by 'carrie-005, ca'.

Note: If TRAN-UTOL is used for numeric data, it may have unintended
consequences. For example, a ZD field with 32J (X’F3F2D1 =
Z’-321’) would appear as 32j (X’F3F28A’=invalid ZD number).

p,TRAN=UTOL
specifies that uppercase EBCDIC letters (that is, A-Z) in the variable part of the
OUTFIL input record (that part beyond the minimum record length), are to
appear as lowercase EBCDIC letters (that is, a-z) in the reformatted OUTFIL
output record, as the last field. Note that if the reformatted OUTFIL record
includes only the RDW and the variable part of the OUTFIL input record, ″null″
records containing only an RDW may result.

p A value must be specified for p that is less than or equal to the minimum
record length plus 1 byte.

TRAN=UTOL
requests conversion of uppercase letters to lowercase letters. Each A-Z
character of the variable part of the OUTFIL input record is replaced by the
corresponding a-z character. Other characters are not changed. For
example, the characters ’CARRIE-005, CA’ would be replaced by
’carrie-005, ca’.

Note: If TRAN-UTOL is used for numeric data, it may have unintended
consequences. For example, a ZD field with 32J (X’F3F2D1 =
Z’-321’) would appear as 32j (X’F3F291’ = a ZD number with an
invalid sign of 9).

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 219

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|

|
|
|
|

||

||

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|

|
|
|
|

p,m,TRAN=ALTSEQ
specifies that the characters in an input field are to be changed according to the
ALTSEQ translation table in effect in the reformatted OUTFIL output record.

p See p under p,m,a

m See m under p,m,a

TRAN=ALTSEQ
specifies that the characters in the variable part of the OUTFIL input record
(that part beyond the minimum record length), are to be changed according
to the ALTSEQ translation table in effect in the reformatted OUTFIL output
record, as the last field. Note that if the reformatted OUTFIL record includes
only the RDW and the variable part of the OUTFIL input record, ″null″
records containing only an RDW may result.

Note: If TRAN=ALTSEQ is used for numeric data, it may have unintended
consequences. For example, with TRAN=ALTSEQ and ALTSEQ
CODE=(0040), a PD field with X’00003C’ (P’3’) would appear as
X’40403C’ (P’40403’).

p,TRAN=ALTSEQ
specifies that the characters in the variable part of the OUTFIL input record
(that part beyond the minimum record length), are to be changed according to
the ALTSEQ translation table in effect in the reformatted OUTFIL output record,
as the last field. Note that if the reformatted OUTFIL record includes only the
RDW and the variable part of the OUTFIL input record, ″null″ records containing
only an RDW may result.

p A value must be specified for p that is less than or equal to the minimum
record length plus 1 byte.

TRAN=ALTSEQ
requests conversion of characters according to the ALTSEQ translation
table in effect. Each character of the variable part of the OUTFIL input
record which has been assigned a different character in the ALTSEQ table
is replaced by that character. Other characters are not changed. For
example, if this ALTSEQ statement is specified:
ALTSEQ CODE=(5C61,C1F1)

the characters ’/*XA*/’ would be replaced by ’//X1//’. See “ALTSEQ Control
Statement” on page 103 for more information on how to assign replacement
characters in the ALTSEQ table.

Note: If TRAN=ALTSEQ is used for numeric data, it may have unintended
consequences. For example, with TRAN=ALTSEQ and ALTSEQ
CODE=(0040), a PD field with X’00003C’ (P’3’) would appear as
X’40403C’ (P’40403’).

OUTFIL Control Statements

220 DFSORT R14 Application Programming Guide

|
|
|

||

||

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

||
|

|
|
|
|
|
|

|

|
|
|

|
|
|
|

p,m,Y2x
specifies that the four-digit year CH date representation of a two-digit year input
date field is to appear in the reformatted OUTFIL output record. Real dates are
transformed using the century window established by the Y2PAST option in
effect. The century window is not used for special indicators; they are just
expanded appropriately (for example, p,6,Y2T transforms C'000000' to
C'00000000').

p See p under p,m,a.

m specifies the length in bytes of the two-digit year date field.

Y2x
specifies the Y2 format. See Appendix C, “Data Format Descriptions” on
page 633 for detailed format descriptions.

Sample Syntax:
OUTFIL OUTREC=(21,3,Y2V,X,12,5,Y2W)

Table 34 shows the output produced for each type of date.

Table 34. p,m,Y2x Output

Type of Date Fields (m,f) Output for p,m,Y2x

yyx 3,Y2T 2,Y2U C'yyyyx'

yyxx 4,Y2T 3,Y2V C'yyyyxx'

yyxxx 5,Y2T 3,Y2U C'yyyyxxx'

yyxxxx 6,Y2T 4,Y2V C'yyyyxxxx'

xyy 3,Y2W 2,Y2X C'xyyyy'

xxyy 4,Y2W 3,Y2Y C'xxyyyy'

xxxyy 5,Y2W 3,Y2X C'xxxyyyy'

xxxxyy 6,Y2W 4,Y2Y C'xxxxyyyy'

yy 2,Y2C 2,Y2Z C'yyyy'

yy 2,Y2S 2,Y2P C'yyyy'

yy 1,Y2D 1,Y2B C'yyyy'

p,m,Y2x(c)
specifies that the four-digit year CH date representation with separators of a
two-digit year input date field is to appear in the reformatted OUTFIL output
record. Real dates are transformed using the century window established by the
Y2PAST option in effect. The century window is not used for special indicators;
they are just expanded appropriately (for example, p,6,Y2T(/) transforms
C'000000' to C'0000/00/00').

p See p under p,m,a.

Sample Syntax:

Fixed input records:
OUTFIL FNAMES=(OUT1,OUT2),

OUTREC=(1:5,10,15:8C’0’,
25:20,15,TRAN=UTOL,80:X)

Variable input records:
OUTFIL OUTREC=(1,4,C’ RDW=’,1,3,HEX,C’ FIXED=’,

5,20,HEX,C’ VARIABLE=’,21,HEX)

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 221

|

|
|
|
|
|
|
|
|
|

m specifies the length in bytes of the two-digit year date field.

Y2x
specifies the Y2 format. See Appendix C, “Data Format Descriptions” on
page 633 for detailed format descriptions.

c specifies the separator character. c can be any character except a blank.

Sample Syntax:
OUTFIL OUTREC=(25,6,Y2T(-),X,14,2,Y2U(/))

Table 35 shows the output produced for each type of Y2x(c) date field when / is
used for c.

Table 35. p,m,Y2x(c) Output

Type of Date Fields (m,f) Output for
p,m,Y2x(/)

yyx 3,Y2T 2,Y2U C'yyyy/x'

yyxx 4,Y2T 3,Y2V C'yyyy/xx'

yyxxx 5,Y2T 3,Y2U C'yyyy/xxx'

yyxxxx 6,Y2T 4,Y2V C'yyyy/xx/xx'

xyy 3,Y2W 2,Y2X C'x/yyyy'

xxyy 4,Y2W 3,Y2Y C'xx/yyyy'

xxxyy 5,Y2W 3,Y2X C'xxx/yyyy'

xxxxyy 6,Y2W 4,Y2Y C'xx/xx/yyyy'

p,m,Y2xP
specifies that the four-digit year PD date representation of a two-digit year input
date field is to appear in the reformatted OUTFIL output record. Real dates are
transformed using the century window established by the Y2PAST option in
effect. The century window is not used for special indicators; they are just
expanded appropriately (for example, p,6,Y2TP transforms C'000000' to
P'00000000'):

p See p under p,m,a.

m specifies the length in bytes of the two-digit year date field.

Y2xP
specifies the Y2 format. See Appendix C, “Data Format Descriptions” on
page 633 for detailed format descriptions.

Sample Syntax:
OUTFIL OUTREC=(11,3,Y2XP,X,21,4,Y2WP)

Table 36 shows the output produced for each type of date.

Table 36. p,m,Y2xP Output

Type of Date Fields (m,f) Output for p,m,Y2xP

yyx 3,Y2TP 2,Y2UP P'yyyyx'

yyxx 4,Y2TP 3,Y2VP P'yyyyxx'

yyxxx 5,Y2TP 3,Y2UP P'yyyyxxx'

yyxxxx 6,Y2TP 4,Y2VP P'yyyyxxxx'

OUTFIL Control Statements

222 DFSORT R14 Application Programming Guide

Table 36. p,m,Y2xP Output (continued)

Type of Date Fields (m,f) Output for p,m,Y2xP

xyy 3,Y2WP 2,Y2XP P'xyyyy'

xxyy 4,Y2WP 3,Y2YP P'xxyyyy'

xxxyy 5,Y2WP 3,Y2XP P'xxxyyyy'

xxxxyy 6,Y2WP 4,Y2YP P'xxxxyyyy'

yy 2,Y2PP P'yyyy'

yy 1,Y2DP X'yyyy'

p,m,f,edit
specifies that an edited numeric input field is to appear in the reformatted
OUTFIL output record. You can edit BI, FI, PD, PD0, ZD, CSF/FS, DT1, DT2,
DT3, TM1, TM2, TM3 or TM4 fields using either pre-defined edit masks
(M0-M26) or specific edit patterns you define. You can control the way the
edited fields look with respect to length, leading or suppressed zeros,
thousands separators, decimal points, leading and trailing positive and negative
signs, and so on.

p See p under p,m,a.

m specifies the length in bytes of the numeric field. The length must include
the sign, if the data is signed. See Table 37 for permissible length values.

f specifies the format of the numeric field:

Table 37. Edit Field Formats and Lengths

Format Code Length Description

BI 1 to 4 bytes Unsigned binary

FI 1 to 4 bytes Signed fixed-point

PD 1 to 8 bytes Signed packed decimal

PD0 2 to 8 bytes Packed decimal with sign and first
digit ignored

ZD 1 to 15 bytes Signed zoned decimal

CSF or FS 1 to 16 bytes (15-digit limit) Signed numeric with optional leading
floating sign

DT1 4 bytes SMF date interpreted as Z'yyyymmdd'

DT2 4 bytes SMF date interpreted as Z'yyyymm'

DT3 4 bytes SMF date interpreted as Z'yyyyddd'

TM1 4 bytes SMF time interpreted as Z'hhmmss'

TM2 4 bytes SMF time interpreted as Z'hhmmm'

TM3 4 bytes SMF time interpreted as Z'hh'

TM4 4 bytes SMF time interpreted as Z'hhmmssxx'

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format descriptions.

For a CSF/FS format field:

v A maximum of 15 digits is allowed. If a CSF/FS value with 16 digits is found, the
leftmost digit will be treated as a positive sign indicator.

For a ZD or PD format field:

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 223

|
|
|
|
|
|
|

|||

|||

|||

|||

|||

|||

|||

v An invalid digit results in a data exception (0C7 ABEND) or incorrect numeric
output; A-F are invalid digits. ICETOOL’s VERIFY or DISPLAY operator can be
used to identify decimal values with invalid digits.

v A value is treated as positive if its sign is F, E, C, A, 8, 6, 4, 2, or 0.

v A value is treated as negative if its sign is D, B, 9, 7, 5, 3, or 1.

For a PD0 format field:

v The first digit is ignored.

v An invalid digit other than the first results in a data exception (0C7 ABEND) or
incorrect numeric output; A-F are invalid digits.

v The sign is ignored and the value is treated as positive.

For a DT1, DT2, or DT3 format field:

v An invalid SMF date can result in a data exception (0C7 ABEND) or an incorrect
ZD date.

v SMF date values are always treated as positive.

For a TM1, TM2, TM3, or TM4 format field:

v An invalid SMF time can result in an incorrect ZD time.

v SMF time values are always treated as positive.

edit

Specifies how the numeric field is to be edited for output. If an Mn, EDIT, or
EDxy parameter is not specified:

v a DT1, DT2, DT3, TM1, TM2, TM3, or TM4 field is edited using the M11 edit
mask.

v a BI, FI, PD, PD0, ZD, or CSF/FS field is edited using the M0 edit mask.

Mn
specifies one of twenty-seven pre-defined edit masks (M0-M26) for
presenting numeric data. If these pre-defined edit masks are not suitable for
presenting your numeric data, the EDIT parameter gives you the flexibility to
define your own edit patterns.

The twenty-seven pre-defined edit masks can be represented as follows:

Table 38. Edit Mask Patterns

Mask Pattern Examples

Value Result

M0 IIIIIIIIIIIIIITS +01234 1234

-00001 1-

�� Mn
EDIT= (pattern)
EDxy= (’pattern’)

��

��
, SIGNS= (lp,ln,tp,tn)

SIGNz=
,LENGTH= n

(n)

��

OUTFIL Control Statements

224 DFSORT R14 Application Programming Guide

|

|
|

|

|

|

|

|
|

|
|

|

|
|
|

|

Table 38. Edit Mask Patterns (continued)

Mask Pattern Examples

Value Result

M1 TTTTTTTTTTTTTTTS -00123 00123-

+00123 00123

M2 I,III,III,III,IIT.TTS +123450 1,234.50

-000020 0.20-

M3 I,III,III,III,IIT.TTCR -001234 12.34CR

+123456 1,234.56

M4 SI,III,III,III,IIT.TT +0123456 +1,234.56

-1234567 -12,345.67

M5 SI,III,III,III,IIT.TTS -001234 (12.34)

+123450 1,234.50

M6 III-TTT-TTTT 00123456 012-3456

12345678 1-234-56788

M7 TTT-TT-TTTT 00123456 000-12-3456

12345678 012-34-5678

M8 IT:TT:TT 030553 3:05:53

121736 12:17:36

M9 IT/TT/TT 123094 12/30/94

083194 8/31/94

M10 IIIIIIIIIIIIIIT 01234 1234

00000 0

M11 TTTTTTTTTTTTTTT 00010 00010

01234 01234

M12 SIII,III,III,III,IIT +1234567 1,234,567

-0012345 -12,345

M13 SIII.III.III.III.IIT +1234567 1.234.567

-0012345 -12.345

M14 SIII III III III IITS +1234567 1 234 567

-0012345 (12 345)

M15 III III III III IITS +1234567 1 234 567

-0012345 12 345-

M16 SIII III III III IIT +1234567 1 234 567

-0012345 -12 345

M17 SIII’III’III’III’IIT +1234567 1’234’567

-0012345 -12’345

M18 SI,III,III,III,IIT.TT +0123456 1,234.56

-1234567 -12,345.67

M19 SI.III.III.III.IIT,TT +0123456 1.234,56

-1234567 -12.345,67

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 225

Table 38. Edit Mask Patterns (continued)

Mask Pattern Examples

Value Result

M20 SI III III III IIT,TTS +0123456 1 234,56

-1234567 (12 345,67)

M21 I III III III IIT,TTS +0123456 1 234,567

-1234567 12 345,67-

M22 SI III III III IIT,TT +0123456 1 234,56

-1234567 -12 345,67

M23 SI’III’III’III’IIT.TT +0123456 1’234.56

-1234567 -12’345.67

M24 SI’III’III’III’IIT,TT +0123456 1’234,56

-1234567 -12’345,67

M25 SIIIIIIIIIIIIIIT +01234 1234

-00001 -1

M26 STTTTTTTTTTTTTTT 1234 +01234

-1 -00001

The elements used in the representation of the edit masks in Table 38 on page 224
are as follows:

v I indicates a leading insignificant digit. If zero, this digit will not be shown.

v T indicates a significant digit. If zero, this digit will be shown.

v CR (in M3) is printed to the right of the digits if the value is negative; otherwise,
two blanks are printed to the right of the digits.

v S indicates a sign. If it appears as the first character in the pattern, it is a leading
sign. If it appears as the last character in the pattern, it is a trailing sign. If S
appears as both the first and last characters in a pattern (example: M5), the first
character is a leading sign and the last character is a trailing sign. Four different
sign values are used: leading positive sign (lp), leading negative sign (ln), trailing
positive sign (tp) and trailing negative sign (tn). Their applicable values for the
Mn edit masks are:

Table 39. Edit Mask Signs

Mask lp ln tp tn

M0 none none blank -

M1 none none blank -

M2 none none blank -

M3 none none none none

M4 + - none none

M5 blank (blank)

M6 none none none none

M7 none none none none

M8 none none none none

M9 none none none none

M10 none none none none

OUTFIL Control Statements

226 DFSORT R14 Application Programming Guide

||||

Table 39. Edit Mask Signs (continued)

Mask lp ln tp tn

M11 none none none none

M12 blank - none none

M13 blank - none none

M14 blank (blank)

M15 none none blank -

M16 blank - none none

M17 blank - none none

M18 blank - none none

M19 blank - none none

M20 blank (blank)

M21 none none blank -

M22 blank - none none

M23 blank - none none

M24 blank - none none

M25 blank - none none

M26 + - none none

v any other character (for example, /) will be printed as shown, subject to certain
rules to be subsequently discussed.

The implied length of the edited output field depends on the number of digits and
characters needed for the pattern of the particular edit mask used. The LENGTH
parameter can be used to change the implied length of the edited output field.

The number of digits needed depends on the format and length of the numeric field
as follows:

Table 40. Digits Needed for Numeric Fields

Format Input Length Digits Needed

ZD m m

PD m 2m-1

PD0 m 2m-2

BI, FI 1 3

BI, FI 2 5

BI, FI 3 8

BI, FI 4 10

CSF or FS 16 15

CSF or FS m (less than 16) m

The length of the output field can be represented as follows for each pattern, where
d is the number of digits needed, as shown in Table 40, and the result is rounded
down to the nearest integer:

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 227

|||||

Table 41. Edit Mask Output Field Lengths

Mask Output Field Length Example

Input (f,m) Output Length

M0 d + 1 ZD,3 4

M1 d + 1 PD,5 10

M2 d + 1 + d/3 BI,4 14

M3 d + 2 + d/3 ZD,6 10

M4 d + 1 + d/3 PD,8 21

M5 d + 2 + d/3 FI,3 12

M6 12 ZD,10 12

M7 11 PD,5 11

M8 8 ZD,6 8

M9 8 PD,4 8

M10 d BI,1 3

M11 d PD,5 9

M12 d + 1 + (d - 1)/3 PD,3 7

M13 d + 1 + (d - 1)/3 FS,5 7

M14 d + 2 + (d - 1)/3 ZD,5 8

M15 d + 1 + (d - 1)/3 FI,3 11

M16 d + 1 + (d - 1)/3 ZD,6 8

M17 d + 1 + (d - 1)/3 FI,4 14

M18 d + 1 + d/3 BI,4 14

M19 d + 1 + d/3 PD,8 21

M20 d + 2 + d/3 FI,3 12

M21 d + 1 + d/3 ZD,3 5

M22 d + 1 + d/3 BI,2 7

M23 d + 1 + d/3 PD,6 15

M24 d + 1 + d/3 ZD,9 13

M25 d + 1 CSF,16 16

M26 d + 1 ZD,4 5

To illustrate conceptually how DFSORT produces the edited output from the
numeric value, consider the following example:

OUTFIL OUTREC=(5,7,ZD,M5)

with ZD values of C’0123456’(+0123456)
and C’000302J’ (-0003021)

As shown in the preceding tables, it is determined that:

v The general pattern for M5 is: SI,III,...,IIT.TTS

v The signs to be used are blank for leading positive sign, C'(' for leading negative
sign, blank for trailing positive sign and C')' for trailing negative sign

v The number of digits needed is 7

OUTFIL Control Statements

228 DFSORT R14 Application Programming Guide

||||

v The length of the output field is 11 (7 + 2 + 7/3)

v The specific pattern for the output field is thus: C'SII,IIT.TTS'

The digits of C'0123456' are mapped to the pattern, resulting in C'S01,234.56S'.
Since the value is positive, the leading sign is replaced with blank and the trailing
sign is replaced with blank, resulting in C' 01,234.56 '. Finally, all digits before the
first non-zero digit (1 in this case), are replaced with blanks, resulting in the final
output of C' 1,234.56 '.

The digits of C'000302J' are mapped to the pattern, resulting in C'S00,030.21S'.
Since the value is negative, the leading sign is replaced with C'(' and the trailing
sign is replaced with C')' resulting in C'(00,030.21)'. All digits before the first
non-zero digit (3 in this case), are replaced with blanks, resulting in C'(30.21)'.
Finally, the leading sign is ″floated″ to the right, next to the first non-zero digit,
resulting in the final output of C' (30.21)'.

To state the rules in more general terms, the steps DFSORT takes conceptually to
produce the edited output from the numeric value are as follows:

v Determine the specific pattern and its length, using the preceding tables.

v Map the digits of the numeric value to the pattern.

v If the value is positive, replace the leading and trailing signs (if any) with the
characters for positive values shown in Table 39 on page 226. Otherwise, replace
the leading and trailing signs (if any) with the characters for negative values
shown in that same table.

v Replace all digits before the first non-zero (I) or significant digit (T) with blanks.

v Float the leading sign (if any) to the right, next to the first non-zero (I) or
significant digit (T).

The following additional rule applies to edit masks:

v The specific pattern is determined from the general pattern by including signs,
the rightmost digits needed as determined from the input format and length, and
any characters in between those rightmost digits. This may unintentionally
truncate significant digits (T). As an example, if you specify 5,1,ZD,M4, the length
of the output field will be 2 (1 + 1 + 1/3). The general pattern for M4 is
SI,III,...,IIT.TT, but the specific pattern will be ST (the leading sign and the
rightmost digit).

EDIT
specifies an edit pattern for presenting numeric data. If the pre-defined edit
masks (M0-M26) are not suitable for presenting your numeric data, EDIT gives
you the flexibility to define your own edit patterns. The elements you use to
specify the pattern are the same as those used for the edit masks: I, T, S, and
printable characters. However, S will not be recognized as a sign indicator
unless the SIGNS parameter is also specified.

pattern
specifies the edit pattern to be used. Not enclosing the pattern in single
apostrophes restricts you from specifying the following characters in the
pattern: blank, apostrophe, unbalanced left or right parentheses, and
hexadecimal digits 20, 21, and 22. For example, EDIT=((IIT.TT)) is valid,
whereas EDIT=(C)ITT.TT), EDIT=(I / T) and EDIT=(S’II.T) are not.

The maximum number of digits (I’s and T’s) you specify in the pattern must
not exceed 15. The maximum length of the pattern must not exceed 22
characters.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 229

|
|

’pattern’
specifies the edit pattern to be used. Enclosing the pattern in single
apostrophes allows you to specify any character in the pattern except
hexadecimal digits 20, 21, or 22. If you want to include a single apostrophe
in the pattern, you must specify it as two single apostrophes, which will be
counted as a single character in the pattern. As examples,
EDIT=(’C)ITT.TT’), EDIT=(’I / T’), and EDIT=(’S’II.T’) are all valid.

The maximum number of digits (I’s and T’s) you specify in the pattern must
not exceed 15. The maximum length of the pattern must not exceed 22
characters.

The implied length of the edited output field is the same as the length of the
pattern. The LENGTH parameter can be used to change the implied length of
the edited output field.

To illustrate conceptually how DFSORT produces the edited output from the
numeric value, consider the following example:

OUTFIL OUTREC=(1,5,ZD,EDIT=(**I/ITTTCR))

with ZD values of C’01230’(+1230)
and C’0004J’ (-41)

The digits of C'01230' are mapped to the pattern, resulting in C'**0/1230CR'.
Since the value is positive, the characters (C'CR') to the right of the last digit
are replaced with blanks, resulting in C'**0/1230 '. All digits before the first
non-zero digit (1 in this case) are replaced with blanks, resulting in
C'** /1230 '. Finally, all characters before the first digit in the pattern are
floated to the right, next to the first non-zero digit, resulting in C' **1230 '.

The digits of C'0004J' are mapped to the pattern, resulting in C'**0/0041CR'.
Since the value is negative, the characters (C'CR') to the right of the last digit
are kept. All digits before the first T digit are replaced with blanks, resulting in
C'** / 041CR'. Finally, all characters before the first digit in the pattern are
floated to the right, next to the first non-zero digit, resulting in C' **041CR'.

In general terms, the steps DFSORT takes conceptually to produce the edited
output from the numeric value are as follows:

v Map the digits of the numeric value to the pattern, padding on the left with
zeros, if necessary.

v If the value is positive, replace the leading and trailing signs (if any) with the
characters for positive values specified by the SIGNS parameter and replace
any characters between the last digit and the trailing sign (if any) with blanks.
Otherwise, replace the leading and trailing signs (if any) with the characters
for negative values specified by the SIGNS parameter and keep any
characters between the last digit and the trailing sign (if any).

v Replace all digits before the first non-zero (I) or significant digit (T) with
blanks.

v Float all characters (if any) before the first digit in the pattern to the right,
next to the first non-zero (I) or significant digit (T).

The following additional rules apply to edit patterns:

v An insignificant digit (I) after a significant digit (T) is treated as a significant
digit.

OUTFIL Control Statements

230 DFSORT R14 Application Programming Guide

v If SIGNS is specified, an S in the first or last character of the pattern is
treated as a sign; an S anywhere else in the pattern is treated as the letter S.
If SIGNS is not specified, an S anywhere in the pattern is treated as the
letter S.

v If the pattern contains fewer digits than the value, the leftmost digits of the
value will be lost, intentionally or unintentionally. As an example, if you
specify 5,5,ZD,EDIT=(IIT) for a value of C’12345’, the result will be C'345'. As
another example, if you specify 1,6,ZD,EDIT=($IIT.T) for a value of
C'100345', the result will be C' $34.5'.

EDxy
specifies an edit pattern for presenting numeric data. EDxy is a special variation
of EDIT that allows other characters to be substituted for I and T in the pattern.
For example, if you use EDAB instead of EDIT, you must use A in the pattern
instead of I and use B instead of T to represent digits. x and y must not be the
same character. If SIGNS is specified, x and y must not be S. If SIGNz is
specified, x and y must not be the same character as z. You can select x and y
from: A-Z, #, $, @, and 0-9.

SIGNS
specifies the sign values to be used when editing numeric values according to
the edit mask (Mn) or pattern (EDIT or EDxy). You can specify any or all of the
four sign values. Any value not specified must be represented by a comma.
Blank will be used for any sign value you do not specify. As examples,
SIGNS=(+,-) specifies + for lp, - for ln, blank for tp, and blank for tn;
SIGNS=(,,+,-) specifies blank for lp, blank for ln, + for tp, and - for tn.

lp specifies the value for the leading positive sign. If an S is specified as the
first character of the edit mask or pattern and the value is positive, the lp
value will be used as the leading sign.

ln specifies the value for the leading negative sign. If an S is specified as the
first character of the edit mask or pattern and the value is negative, the ln
value will be used as the leading sign.

tp specifies the value for the trailing positive sign. If an S is specified as the
last character of the edit mask or pattern and the value is positive, the tp
value will be used as the trailing sign.

tn specifies the value for the trailing negative sign. If an S is specified as the
last character of the edit mask or pattern and the value is negative, the tn
value will be used as the trailing sign.

If you want to use any of the following characters as sign values, you must
enclose them in single apostrophes: comma, blank, or unbalanced left or right
parentheses. A single apostrophe must be specified as four single apostrophes
(that is, two single apostrophes enclosed in single apostrophes).

A semicolon cannot be substituted for a comma as the delimiter between sign
characters.

SIGNz
specifies the sign values to be used when editing numeric values according to
the edit pattern (EDIT or EDxy). SIGNz is a special variation of SIGNS which
allows another character to be substituted for S in the pattern. For example, if
you use SIGNX instead of SIGNS, you must use X in the pattern instead of S to
identify a sign. If EDIT is specified, z must not be I or T. If EDxy is specified, z
must not be the same character as either x or y. You can select z from: A-Z, #,
$, @, and 0-9.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 231

LENGTH
specifies the length of the edited output field. If the implied length of the edited
output field produced using an edit mask or edit pattern is not suitable for
presenting your numeric data, LENGTH can be used to make the edited output
field shorter or longer.

n specifies the length of the edited output field. The value for n must be
between 1 and 22.

LENGTH does not change the pattern used, only the length of the resulting
edited output field. For example, as discussed previously for Mn, if you specify:

OUTFIL OUTREC=(5,1,ZD,M4)

the pattern will be C'ST' rather than C'ST.TT' because the digit length is 1.
Specifying:

OUTFIL OUTREC=(5,1,ZD,M4,LENGTH=5)

will change the pattern to C' ST', not to C'ST.TT'.

If you specify a value for n that is shorter than the implied length, truncation will
occur on the left after editing. For example, if you specify:

OUTFIL OUTREC=(1,5,ZD,EDIT=($IIT.TT),LENGTH=5)

with a value of C'12345', editing according to the specified $IIT.TT pattern will
produce C'$123.45', but the specified length of 5 will truncate this to C'23.45'.

If you specify a value for n that is longer than the implied length, padding on the
left with blanks will occur after editing. For example, if you specify:

OUTFIL OUTREC=(1,5,ZD,EDIT=($IIT.TT),LENGTH=10)

with a value of C'12345', editing according to the specified $IIT.TT pattern will
produce C'$123.45', but the specified length of 10 will pad this to
C' $123.45'.

Sample Syntax:
OUTFIL FNAMES=OUT1,OUTREC=(5:21,8,ZD,M19,25:46,5,ZD,M13)
OUTFIL FILES=1,OUTREC=(5,2,BI,C’ * ’,18,2,BI,80:X),

ENDREC=2000,OMIT=(5,2,BI,EQ,18,2,BI)
OUTFIL FILES=(2,3),

OUTREC=(11:35,6,FS,SIGNS=(,,+,-),LENGTH=10,
31:8,4,PD,EDIT=(**II,IIT.TTXS),SIGNS=(,,+,-))

p,m,f,to
specifies that a converted numeric input field is to appear in the reformatted
OUTFIL output record. You can convert BI, FI, PD, PD0, ZD, CSF/FS, DT1,
DT2, DT3, TM1, TM2, TM3, or TM4 fields to BI, FI, PD, ZD, or CSF/FS
fields.

p See p under p,m,f,edit.

m See m under p,m,f,edit.

f See f under p,m,f,edit.

to

OUTFIL Control Statements

232 DFSORT R14 Application Programming Guide

|
|
|
|

�� fo
TO= fo ,LENGTH= n

(fo) (n)

��

specifies how the numeric field is to be converted for output.

fo specifies the format for the output field which can be BI, FI, PD, ZD or CSF/FS.
Any one of these output field formats (fo) can be used with any one of the input
field formats (f).

If you do not specify the LENGTH parameter, DFSORT will determine the
implied length of the output field from the length (m) and format (f) of the input
field and the format (fo) of the output field. The implied length of the output field
can be represented as follows for each output format, where d is the number of
digits needed for the input field as shown in Table 40 on page 227, and the
result is rounded down to the nearest integer:

Table 42. To Output Field Lengths

Output Format Output Length Example Input (f,m)
Example Output
Length

BI 4 FS,9 4

FI 4 ZD,7 4

PD d/2 + 1 BI,4 6

ZD d PD,4 7

CSF or FS d + 1 FI,3 9

For ZD output, F is used as the positive sign and D is used as the negative
sign.

For PD output, C is used as the positive sign and D is used as the negative
sign.

For CSF/FS output, blank is used as the positive sign, - is used as the negative
sign and leading zeros are suppressed.

For ZD, PD and CSF/FS output, the maximum output value is
999999999999999 (15 digits) and the minimum output value is
-999999999999999 (15 digits) which correspond to the maximum and minimum
input values, respectively.

For BI output:

v An input value greater than 4294967295 (X’FFFFFFFF’) produces an output
value of 4294967295 (X’FFFFFFFF’)

v An input value less than zero produces an absolute output value. For
example, an input value of P’-5000’ produces a BI output value of 5000
(X’1388’).

For FI output, an input value greater than 2147483647 (X’7FFFFFFF’) produces
an output value of 2147483647 (X’7FFFFFFF’), and an input value less than
-2147483648 (X’80000000’) produces an output value of -2147483648
(X’80000000’).

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 233

fo, TO=fo and TO=(fo) are interchangeable except that:

v fo must be specified before the LENGTH parameter whereas TO can be
specified before or after the LENGTH parameter.

v TO=fo or TO=(fo) should be used after a symbol rather than fo to prevent the
misinterpretation of fo as f. See the discussion of OUTFIL OUTREC in
Chapter 7 for details.

LENGTH
specifies the length of the converted output field. If the implied length of the
output field is not suitable, LENGTH can be used to make the output field
shorter or longer.

n specifies the length of the converted output field. The value for n must be
between 1 and 22.

If you specify a value for n that is shorter than the implied length, truncation
on the left will occur after conversion. For example, if you specify:

OUTFIL OUTREC=(1,8,ZD,TO=PD,LENGTH=3)

with values of ZL8’-12345678’ (X’F1F2F3F4F5F6F7D8’) and ZL8’58’
(X’F0F0F0F0F0F0F5F8’), conversion with the implied length (5) will produce
PL5’-12345678’ (X’012345678D’) and PL5’58’ (X’0000000058C’). The
specified length of 3 will then result in truncation to PL3’-45678’ (X’45678D’)
and PL3’58’ (X’00058C’).

If you specify a value for n that is longer than the implied length, padding
on the left will occur after conversion using:

v Blanks for CSF/FS output values

v Character zeros for ZD output values

v Binary zeros for PD and BI output values

v Binary zeros for positive FI output values

v Binary ones for negative FI output values

For example, if you specify:
OUTFIL OUTREC=(1,4,ZD,TO=FI,LENGTH=6)

with values of ZL4’-1234’ (X’F1F2F3D4’) and ZL4’58’ (X’F0F0F5F8’),
conversion with the implied length (4) will produce FL4’-1234’
(X’FFFFFB2E’) and FL4’58’ (X’000004D2’). The specified length of 6 will
then result in padding to FL6’-1234’ (X’FFFFFFFFFB2E’) and FL6’58’
(X’00000000003A’).

Sample Syntax:
OUTFIL OUTREC=(21,5,ZD,TO=PD,X,8,4,ZD,FI,LENGTH=2)

p,m,Y2x,edit
specifies that an edited four-digit year CH date representation of a two-digit
year input date field is to appear in the reformatted OUTFIL output record. The
two-digit year date field you specify is transformed to a four-digit year ZD date
field as shown in Table 34 on page 221, and then edited according to the edit
parameters you specify.

For example, if you specify:
OUTFIL OUTREC=(28,3,Y2V,EDIT=(TTTT-T-T))

the PL3’yyxx’ (X’0yyxxC’) date value will be transformed to a Z’yyyyxx’ date
value and then edited to C’yyyy-x-x’.

OUTFIL Control Statements

234 DFSORT R14 Application Programming Guide

See p,m,Y2x and p,m,f,edit for related details.

p,m,Y2x,to
specifies that a converted four-digit year date representation of a two-digit year
input date field is to appear in the reformatted OUTFIL output record. The
two-digit year date field you specify is transformed to a four-digit year ZD date
field as shown in Table 34 on page 221, and then converted according to the to
parameters you specify.

For example, if you specify:
OUTFIL OUTREC=(5,4,Y2W,TO=PD,LENGTH=6)

the C’xxyy’ date value will be transformed to a Z’xxyyyy’ date value and then
converted to PL6’xxyyyy’ (X’00000xxyyyyC’).

See p,m,Y2x and p,m,f,to for related details.

p,m,lookup
specifies that a character or hexadecimal string from a lookup table is to appear
in the reformatted OUTFIL output record. You can use p,m,lookup to select a
specified character or hexadecimal string based on matching an input value
against character, hexadecimal, or bit constants.

p See p under p,m,a.

m specifies the length in bytes of the input field to be compared to the
find-constants. The value for m must be 1 to 64 if character or hexadecimal
find-constants are used, or 1 if bit find-constants are used.

lookup
Specifies how the input field is to be changed to the output field, using a
lookup table.

CHANGE

specifies a list of change pairs, each consisting of a find-constant to be
compared to the input field value and a set-constant to use as the output field
when a match occurs.

v specifies the length in bytes of the output field to be inserted in the
reformatted OUTFIL output record. The value for v must be between 1 and
64.

find
specifies a find-constant to be compared to the input field value. If the input
field value matches the find-constant, the corresponding set-constant is
used for the output field. The find-constants can be either character and
hexadecimal string constants or bit constants:

v Character string constants (C’xx...x’) and hexadecimal string constants
(X’yy...yy’) can be 1 to m bytes and can be intermixed with each other,
but not with bit constants. See “INCLUDE Control Statement” on
page 111 for details of coding character and hexadecimal string
constants.

�� E

.

CHANGE=(-v ,find,set)
,NOMATCH=(set)

q,n

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 235

If the string is less than m bytes, it will be padded on the right to a length
of m bytes, using blanks (X’40’) for a character string constant or zeros
(X’00’) for a hexadecimal string constant.

v Bit constants (B’bbbbbbbb’) must be 1 byte and cannot be intermixed
with character or string constants. See “INCLUDE Control Statement” on
page 111 for details of coding bit constants.

set
specifies a set-constant to be used as the output field if the corresponding
find-constant matches the input field value. The set-constants can be
character string constants (C'xx...x') or hexadecimal string constants
(X'yy...yy') of 1 to v bytes and can be intermixed. See “INCLUDE Control
Statement” on page 111 for details of coding character and hexadecimal
string constants.

If the string is less than v bytes, it will be padded on the right to a length of
v bytes, using blanks (X'40') for a character string constant or zeros (X'00')
for a hexadecimal string constant.

For bit constants, because of the specification of bits to be ignored, more than
one find-constant can match an input field value; the set-constant for the first
match found will be used as the output field. For example, if you specify:

OUTFIL OUTREC=(5,1,
CHANGE=(2,B’11......’,C’A’,B’1.......’,C’B’))

input field value X'C0' (B'11000000') matches both bit constants, but C'A' will be
used for the set-constant because its find-constant is the first match.

NOMATCH
specifies the action to be taken if an input field value does not match any of
the find-constants. If you do not specify NOMATCH, and no match is found
for any input value, DFSORT will terminate processing.

If you specify NOMATCH, it must follow CHANGE.

set
specifies a set-constant to be used as the output field if no match is
found. See set under CHANGE for details.

q specifies the position of an input field to be used as the output field if
no match is found. See p under p,m,a for details.

n specifies the length of an input field to be used as the output field if no
match is found. The value for n must be 1 to v. If n is less than v, the
input field will be padded on the right to a length of v bytes, using
blanks (X'40').

Sample Syntax:
OUTFIL FILES=1,
OUTREC=(11,1,

CHANGE=(6,
C’R’,C’READ’,
C’U’,C’UPDATE’,
X’FF’,C’EMPTY’,
C’A’,C’ALTER’),

NOMATCH=(11,6),
4X,
21,1,
CHANGE=(10,

B’.1......’,C’VSAM’,
B’.0......’,C’NON-VSAM’))

OUTFIL Control Statements

236 DFSORT R14 Application Programming Guide

seqnum

�� SEQNUM,n,fs
,START= j

(j)

��

��
,INCR= i

(i)

��

specifies that a sequence number is to appear in the reformatted OUTFIL
output record. The sequence numbers are assigned in the order in which the
records are received for OUTFIL OUTREC processing.You can create BI, PD,
ZD or CSF/FS sequence numbers and control their lengths, starting values and
increment values.

n specifies the length of the sequence number. The value for n must be
between 1 and 16.

fs specifies the format for the sequence number which can be BI, PD, ZD or
CSF/FS.

For a ZD format sequence number, F is used as the sign.

For a PD format sequence number, C is used as the sign.

For a CSF/FS format sequence number, blank is used as the sign and
leading zeros are suppressed.

For a PD, ZD or CSF/FS format sequence number, the maximum value
DFSORT can create is limited to the lesser of 15 decimal digits or the
output field length (n). If a sequence number overflows this limit, it will be
truncated to the lesser of 15 decimal digits or the output field length, and
then subsequently incremented as usual.

For a BI format sequence number, the maximum value DFSORT can create
is limited to the lesser of 8 bytes of ones (X’FFFFFFFFFFFFFFFF’) or the
number of ones that will fit in the specified output field length (n). If a
sequence number overflows this limit, it will be truncated to the lesser of 8
bytes or the output field length, and then subsequently incremented as
usual.

START
specifies the starting value for the sequence number.

j specifies the starting value. The value for j must be between 0 and
100000000000. The default for j is 1.

INCR
specifies the increment value for the sequence number.

i specifies the increment value. The value for i must be between 1 and
10000000. The default for i is 1.

Sample Syntax:
OUTFIL FNAMES=O1,OUTREC=(SEQNUM,6,ZD,START=1000,INCR=50,

X,22,8,X,13,5)
OUTFIL FNAMES=O2,OUTREC=(1,12,SEQNUM,4,BI)

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 237

Default for OUTREC: None; must be specified.

VTOF or CONVERT

Specifies that variable-length OUTFIL input records are to be converted to
fixed-length OUTFIL output records for this OUTFIL group.

You must specify an OUTREC parameter. The fields and columns you specify
produce a reformatted fixed-length OUTFIL output record without an RDW (the
data starts at position 1). Any OUTREC fields you specify apply to the
variable-length OUTFIL input records (the data starts at position 5 after the
4-byte RDW). However, you cannot specify parameters for the variable-part of
the OUTFIL input records (for example, p or p,HEX). Any OUTREC columns
you specify apply to the reformatted fixed-length OUTFIL output records.

By default, VTOF or CONVERT automatically uses VLFILL=X’40’ (blank fill
byte) to allow processing of variable-length input records which are too short to
contain all specified OUTREC fields. You can specify VLFILL=byte to change
the fill byte.

If you do not specify a RECFM for the OUTFIL data set, it will be given a record
format of FB.

If you specify a RECFM for the OUTFIL data set, it must have a fixed-length
record format (for example, FB).

If VTOF or CONVERT is specified for fixed-length input records, it will not be
used.

If VTOF or CONVERT is specified with FTOV, DFSORT will terminate.

Sample Syntax:
OUTFIL FNAMES=FIXOUT,VTOF,

OUTREC=(1:5,14,35:32,8,50:22,6,7c'*')

Default for VTOF or CONVERT: None; must be specified.

VLFILL

Allows DFSORT to continue processing if a variable-length OUTFIL input record
is found to be too short to contain all specified OUTFIL OUTREC fields for this
OUTFIL group. Without VLFILL=byte, a short record causes DFSORT to issue
message ICE218A and terminate. With VLFILL=byte, missing bytes in OUTFIL
OUTREC fields are replaced with fill bytes so the filled fields can be processed.

If VLFILL=byte is specified for fixed-length input records, it will not be used.

If VLFILL=byte is specified with FTOV, DFSORT will terminate.

byte
specifies the fill byte. Permissible values are C'x' and X'yy'.

�� VTOF
CONVERT

��

�� VLFILL=byte ��

OUTFIL Control Statements

238 DFSORT R14 Application Programming Guide

|

|
|

|
|
|
|
|
|
|

|
|
|
|

|
|

|
|

|
|

|

|

C'x'
Character byte: The value x must be one EBCDIC character. If you want to
use an apostrophe as the fill byte, you must specify it as C''''.

X'yy'
Hexadecimal byte: The value yy must be one pair of hexadecimal digits
(00-FF).

Sample Syntax:
OUTFIL FNAMES=FIXOUT,VTOF,OUTREC=(5,20,2X,35,10),VLFILL=C’*’
OUTFIL FNAMES=OUT1,VLFILL=X’FF’,OUTREC=(1,4,15,5,52)

Default for VLFILL: VLFILL=X’40’ (blank fill byte) if VTOF or CONVERT is
specified. Otherwise, none; must be specified.

FTOV

Specifies that fixed-length OUTFIL input records are to be converted to
variable-length OUTFIL output records for this OUTFIL group.

If you do not specify an OUTREC parameter, the OUTREC fields and columns
you specify produce a reformatted fixed-length OUTFIL input record is
converted to a variable-length OUTFIL output record. A 4-byte RDW is
prepended to the fixed-length record before it is written.

If you specify an OUTREC parameter, the OUTREC fields and columns you
specify produce a reformatted fixed-length record that is converted to a
variable-length OUTFIL output record. Any OUTREC fields you specify apply to
the fixed-length OUTFIL input records (the data starts at position 1). A 4-byte
RDW is prepended to the reformatted fixed-length record before it is written.

If you do not specify a RECFM for the OUTFIL data set, it will be given a record
format of VB.

If you specify a RECFM for the OUTFIL data set, it must have a variable-length
record format (for example, VB or VBS).

If you do not specify an LRECL for the OUTFIL data set, it will be given an
LRECL that can contain the largest variable-length output record to be
produced, up to a maximum of 32756 for an unspanned record format (for
example, VB) or up to 32767 for a spanned record format (for example, VBS).

If you specify an LRECL for the OUTFIL data set, it must be big enough to
contain the largest variable-length output record to be produced.

If your largest variable-length output record is between 32757 and 32767 bytes,
you’ll need to specify a spanned record format (for example, VBS) for the
output data set.

If FTOV is specified for variable-length input records, it will not be used.

If FTOV is specified with VTOF, CONVERT or VLFILL=byte, DFSORT will
terminate.

Sample Syntax:

�� FTOV ��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 239

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|
|

|

|
|

|

OUTFIL FNAMES=VAROUT,FTOV
OUTFIL FNAMES=V1,FTOV,OUTREC=(1,20,26:21,10,6C’*’)

Default for FTOV: None; must be specified.

VLTRIM=byte

VLTRIM=byte specifies that the trailing bytes are to be removed from the end of
variable-length OUTFIL output records for this OUTFIL group before the records
are written.

The trim byte can be any value, such as blank, binary zero, or asterisk. If
DFSORT finds one or more trim bytes at the end of a variable-length OUTFIL
data record or report record, it will decrease the length of the record
accordingly, effectively removing the trailing trim bytes. However, VLTRIM=byte
will not remove the RDW, the ANSI carriage control character (if produced), or
the first data byte.

For example, say that you have the following 17-byte fixed-length data records
that you want to convert to variable-length data records:

123456***********
0003*************
ABCDEFGHIJ*****22

If you use:
OUTFIL FTOV

the following variable-length output records will be written (4-byte RDW followed
by data):

Length | Data
21 123456***********
21 0003*************
21 ABCDEFGHIJ*****22
21 *****************

but if you use:
OUTFIL FTOV,VLTRIM=C’*’

the following variable-length output records will be written (4-byte RDW followed
by data):

Length | Data
10 123456
8 0003
21 ABCDEFGHIJ*****22
5 *

VLTRIM=C’*’ removed the trailing asterisks from the first and second records.
The third record did not have any trailing asterisks to remove. The fourth record
had all asterisks, so one asterisk was kept.

If VLTRIM=byte is specified for fixed-length output records, it will not be used.

byte specifies the trim byte. Permissible values are C’x’ and X’yy’.

�� VLTRIM=byte ��

OUTFIL Control Statements

240 DFSORT R14 Application Programming Guide

|
|

|

|

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|

|

|

|
|

|
|
|
|
|

|

|

|
|

|
|
|
|
|

|
|
|

|

||

C’x’ Character byte: The value x must be one EBCDIC character. If
you want to use an apostrophe as the trim byte, you must
specify it as C’’’’.

X’yy’ Hexadecimal byte: The value yy must be one pair of
hexadecimal digits (00-FF)

Sample Syntax:
Fixed input:
OUTFIL FNAMES=TRIM1,FTOV,VLTRIM=C’ ’

Variable input:
OUTFIL FNAMES=TRIM2,VLTRIM=X’00’
OUTFIL FNAMES=TRIM3,VLTRIM=C’*’,

OUTREC=(1,15,5X,16,8,5X,28)

Default for VLTRIM: None; must be specified.

LINES

Specifies the number of lines per page to be used for the reports produced for
this OUTFIL group. DFSORT uses ANSI carriage control characters to control
page ejects and the placement of the lines in your report, according to your
specifications.

n specifies the number of lines per page. The value for n must be between 1
and 255. However, n—or the default for n if LINES is not specified—must
be greater than or equal to the number of lines needed for each of the
following:

v The HEADER1 lines

v The TRAILER1 lines

v The sum of all lines for HEADER2, TRAILER2, HEADER3s, TRAILER3s,
and the data lines and blank lines produced from an input record.

Sample Syntax:
OUTFIL FNAMES=RPT1,LINES=50

Default for LINES: None; must be specified, unless HEADER1, TRAILER1,
HEADER2, TRAILER2, SECTIONS, or NODETAIL is specified, in which case
the default for LINES is 60.

HEADER1

�� LINES=n ��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 241

|||||||
|
|

||
|
|

||
|

|

|
|
|
|
|
|
|

|

Specifies the report header to be used for the reports produced for this OUTFIL
group.The report header appears by itself as the first page of the report.
DFSORT uses ANSI carriage control characters to control page ejects and the
placement of the lines in your report, according to your specifications.

You can choose to include any or all of the following report elements in your
report header:

v Blanks and character strings

v Unedited input fields from the first OUTFIL input record

v Current date

v Current time

v Page number.

The report header consists of the elements you select, in the order in which you
specify them, and in the columns or lines you specify.

c: specifies the column in which the first position of the associated report
element is to appear, relative to the start of the data in the report record.
Ignore the RDW (variable-length report records only) and carriage control
character when specifying c:. That is, 1: indicates the first byte of the data
in the report record for both fixed-length and variable-length report records.

Unused space preceding the specified column is padded with EBCDIC
blanks. The following rules apply:

v c must be a number between 1 and 32752.

v c: must be followed by a report element, but must not precede / or n/.

v c must not overlap the previous report element in the report record.

v The colon (:) is treated like the comma (,) or semicolon (;) for
continuation to another line.

r specifies that blanks or a character string are to appear in the report record,
or that a new report record is to be started in the header, with or without
intervening blank lines. These report elements can be specified before or
after any other report elements. Consecutive character strings or blank lines
can be specified. Permissible values are nX, n'xx...x', nC'xx...x', /.../ and n/.

nX Blanks. n bytes of EBCDIC blanks (X'40') are to appear in the
report record. n can range from 1 to 4095. If n is omitted, 1 is used.

�� E

,

HEADER1=()
r

c: p,m
DATE
&DATE
DATE=(abcd)
&DATE=(abcd)
DATENS=(abc)
TIME
&TIME
TIME=(abc)
&TIME=(abc)
TIMENS=(ab)
PAGE
&PAGE

��

OUTFIL Control Statements

242 DFSORT R14 Application Programming Guide

n'xx...x'
Character string. n repetitions of the character string constant
('xx...x') are to appear in the report record. n can range from 1 to
4095. If n is omitted, 1 is used. x can be any EBCDIC character.
You can specify 1 to 256 characters.

nC'xx...x' can be used instead of n'xx...x'.

If you want to include a single apostrophe in the character string,
you must specify it as two single apostrophes:
Required: O'NEILL Specify: 'O''NEILL' or C'O''NEILL'

/.../ or n/
Blank lines or a new line. A new report record is to be started in the
header with or without intervening blank lines. If /.../ or n/ is
specified at the beginning or end of the header, n blank lines are to
appear in the header. If /.../ or n/ is specified in the middle of the
header, n-1 blank lines are to appear in the header (thus, / or 1/
indicates a new line with no intervening blank lines).

Either n/ (for example, 5/) or multiple /’s (for example, /////) can be
used. n can range from 1 to 255. If n is omitted, 1 is used.

As an example, if you specify:
OUTFIL HEADER1=(2/,’First line of text’,/,

’Second line of text’,2/,
’Third line of text’,2/)

the report header appears as follows when printed:
blank line
blank line
First line of text
Second line of text
blank line
Third line of text
blank line
blank line

p,m
specifies that an unedited input field, from the first OUTFIL input record for
which a data record appears in the report, is to appear in the report record.

p specifies the first byte of the input field relative to the beginning of the
OUTFIL input record. The first data byte of a fixed-length record has
relative position 1. The first data byte of a variable-length record has
relative position 5, because the first four bytes are occupied by the
RDW. All fields must start on a byte boundary, and no field can extend
beyond byte 32752. See “OUTFIL Statements Notes” on page 267 for
special rules concerning variable-length records.

m specifies the length in bytes of the input field. The value for m must be
between 1 and 256.

DATE
specifies that the current date is to appear in the report record in the form
’mm/dd/yy’, where mm represents the month (01-12), dd represents the day
(01-31), and yy represents the last two digits of the year (for example, 95).

&DATE
&DATE can be used instead of DATE.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 243

DATE=(abcd)
specifies that the current date is to appear in the report record in the form
’adbdc’, where a, b, and c indicate the order in which the month, day, and
year are to appear and whether the year is to appear as two or four digits,
and d is the character to be used to separate the month, day and year.

For a, b, and c, use M to represent the month (01-12), D to represent the
day (01-31), Y to represent the last two digits of the year (for example, 95),
or 4 to represent the four digits of the year (for example, 1995). M, D, and
Y or 4 can each be specified only once. Examples: DATE=(DMY.) would
produce a date of the form ’dd.mm.yy’ which on March 29, 1995, would
appear as ’29.03.95’. DATE=(4MD-) would produce a date of the form
’yyyy-mm-dd’ which on March 29, 1995, would appear as ’1995-03-29’.

a, b, c, and d must be specified.

&DATE=(abcd)
&DATE=(abcd) can be used instead of DATE=(abcd).

DATENS=(abc)
specifies that the current date is to appear in the report record in the form
'abc', where a, b and c indicate the order in which the month, day, and year
are to appear and whether the year is to appear as two or four digits.

For a, b and c, use M to represent the month (01-12), D to represent the
day (01-31), Y to represent the last two digits of the year (for example, 02),
or 4 to represent the four digits of the year (for example, 2002). M, D, and
Y or 4 can each be specified only once. Examples: DATENS=(DMY) would
produce a date of the form 'ddmmyy' which on March 29, 2002, would
appear as '290302'. DATENS=(4MD) would produce a date of the form
'yyyymmdd' which on March 29, 2002, would appear as '20020329'.

a, b and c must be specified.

TIME
specifies that the current time is to appear in the report record in the form
’hh:mm:ss’, where hh represents the hour (00-23), mm represents the
minutes (00-59), and ss represents the seconds (00-59).

&TIME
&TIME can be used instead of TIME.

TIME=(abc)
specifies that the current time is to appear in the report record in the form
’hhcmmcss’ (24-hour time) or ’hhcmmcss xx’ (12-hour time).

If ab is 24, the time is to appear in the form ’hhcmmcss’ (24-hour time)
where hh represents the hour (00-23), mm represents the minutes (00-59),
ss represents the seconds (00-59), and c is the character used to separate
the hours, minutes, and seconds. Example: TIME=(24.) would produce a
time of the form ’hh.mm.ss’ which at 08:25:13 pm would appear as
’20.25.13’.

If ab is 12, the time is to appear in the form ’hhcmmcss xx’ (12-hour time)
where hh represents the hour (01-12), mm represents the minutes (00-59),
ss represents the seconds (00-59), xx is am or pm, and c is the character
used to separate the hours, minutes, and seconds. Example: TIME=(12.)
would produce a time of the form ’hh.mm.ss xx’ which at 08:25:13 pm
would appear as ’08.25.13 pm’.

ab and c must be specified.

OUTFIL Control Statements

244 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|
|
|
|
|

|

&TIME=(abc)
&TIME=(abc) can be used instead of TIME=(abc).

TIMENS=(ab)
specifies that the current time is to appear in the report record in the form
'hhmmss' (24-hour time) or 'hhmmss xx' (12-hour time).

If ab is 24, the time is to appear in the form 'hhmmss' (24-hour time) where
hh represents the hour (00-23), mm represents the minutes (00-59), and ss
represents the seconds (00-59). Example: TIMENS=(24) would produce a
time of the form 'hhmmss' which at 08:25:13 pm would appear as '202513'.

If ab is 12, the time is to appear in the form 'hhmmss xx' (12-hour time)
where hh represents the hour (01-12), mm represents the minutes (00-59),
and ss represents the seconds (00-59). Example: TIMENS=(12) would
produce a time of the form 'hhmmss xx' which at 08:25:13 pm would appear
as '082513 pm'.

ab must be specified.

PAGE
specifies that the page number is to appear in the report record. The page
number for the report header appears as ’ 1’.

If HEADER1 is specified with PAGE, PAGE for the report header (first page)
will be ’ 1’ and PAGE for the next page (second page) will be
’ 2’. If HEADER1 is specified without PAGE, PAGE for the page after
the report header (second page) will be ’ 1’ (typical of a report with a
cover sheet).

&PAGE
&PAGE can be used instead of PAGE.

Sample Syntax:
OUTFIL FNAMES=(RPT1,RPT2),

HEADER1=(30:’January Report’,4/,
28:’Prepared on ’,DATE,//,
32:’at ’,TIME,//,
28:’using DFSORT’S OUTFIL’,5/,
10:’Department: ’,12,8,50:’Page:’,PAGE)

Default for HEADER1: None; must be specified.

TRAILER1

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 245

|
|
|

|
|
|
|

|
|
|
|
|

|

Specifies the report trailer to be used for the reports produced for this OUTFIL
group. The report trailer appears by itself as the last page of the report.
DFSORT uses ANSI carriage control characters to control page ejects and the
placement of the lines in your report, according to your specifications.

You can choose to include any or all of the following report elements in your
report trailer:

v Blanks and character strings

v Unedited input fields from the last OUTFIL input record

v Current date

v Current time

v Page number

v Any or all of the following statistics:

– Count of data records in the report

�� E

,

TRAILER1= (r)
c: p,m

DATE
&DATE
DATE=(abcd)
&DATE=(abcd)
DATENS=(abc)
TIME
&TIME
TIME=(abc)
&TIME=(abc)
TIMENS=(ab)
PAGE
&PAGE

COUNT
COUNT15
COUNT=(edit)
SUBCOUNT
SUBCOUNT15
SUBCOUNT=(edit)

TOTAL= (p,m,f)
TOT= ,edit

MIN= (p,m,f)
,edit

MAX= (p,m,f)
,edit

AVG= (p,m,)
,edit

SUBTOTAL= (p,m,f)
SUBTOT= ,edit
SUB=

SUBMIN= (p,m,f)
,edit

SUBMAX= (p,m,f)
,edit

SUBAVG= (p,m,f)
,edit

��

OUTFIL Control Statements

246 DFSORT R14 Application Programming Guide

– Total, minimum, maximum, or average for each specified ZD, PD, BI, FI,
or CSF/FS numeric input field in the data records of the report, edited to
contain signs, decimal points, leading zeros or no leading zeros, and so
on.

The report trailer consists of the elements you select, in the order in which you
specify them, and in the columns or lines you specify.

c: See c: under HEADER1.

r specifies that blanks or a character string are to appear in the report record,
or that a new report record is to be started in the trailer, with or without
intervening blank lines. These report elements can be specified before or
after any other report elements. Consecutive character strings or blank lines
can be specified. Permissible values are nX, n'xx...x', nC'xx...x', /.../, and n/.

nX Blanks. See nX under r for HEADER1.

n'xx...x'
Character string. See n'xx...x' under r for HEADER1. nC'xx...x' can
be used instead of n'xx...x'

/.../ or n/
Blank lines or a new line. A new report record is to be started in the
trailer, with or without intervening blank lines. If /.../ or n/ is specified
at the beginning or end of the trailer, n blank lines are to appear in
the trailer. If /.../ or n/ is specified in the middle of the trailer, n-1
blank lines are to appear in the trailer (thus, / or 1/ indicates a new
line with no intervening blank lines).

Either n/ (for example, 5/) or multiple /’s (for example, /////) can be
used. n can range from 1 to 255. If n is omitted, 1 is used.

p,m
specifies that an unedited input field, from the last OUTFIL input record for
which a data record appears in the report, is to appear in the report record.

p See p under HEADER1.

m See m under HEADER1.

DATE
See DATE under HEADER1.

&DATE
&DATE can be used instead of DATE. See &DATE under HEADER1.

DATE=(abcd)
See DATE=(abcd) under HEADER1.

&DATE=(abcd)
&DATE=(abcd) can be used instead of DATE=(abcd). See &DATE=(abcd)
under HEADER1.

DATENS=(abc)
See DATENS=(abc) under HEADER1.

TIME
See TIME under HEADER1.

&TIME
&TIME can be used instead of TIME. See &TIME under HEADER1.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 247

|
|

TIME=(abc)
See TIME=(abc) under HEADER1.

&TIME=(abc)
&TIME=(abc) can be used instead of TIME=(abc). See &TIME=(abc) under
HEADER1.

TIMENS=(ab)
See TIMENS=(ab) under HEADER1.

PAGE
specifies that the current page number is to appear in the report record.
The page number for the trailer appears as 6 digits, right-justified, with
leading zeros suppressed. For example, if the page is numbered 12, it
appears as ’ 12’.

&PAGE
&PAGE can be used instead of PAGE.

COUNT
specifies that the count of data records in the report is to appear in the
report record as 8 digits, right-justified, with leading zeros suppressed. For
example, if there are 6810 input records in the report, the count appears as
' 6810'.

COUNT counts input records, not data records. However, unless slash (/) is
used in OUTREC to produce multiple records, the count will also represent
the number of data records.

COUNT15
same as COUNT except that the count appears as 15 digits.

COUNT=(edit)
same as COUNT except that the 15–digit count appears edited as
specified. See p,m,f,edit under OUTREC for further details on the edit fields
you can use.

SUBCOUNT
specifies that the running count of input records in the report is to appear in
the report record as 8 digits, right-justified, with leading zeros suppressed.

For TRAILER1, the running count is the same as the count, so SUBCOUNT
produces the same value as COUNT.

SUBCOUNT counts input records, not data records. However, unless slash
(/) is used in OUTREC to produce multiple records, the running count will
also represent the number of data records.

SUBCOUNT15
same as SUBCOUNT except that the running count appears as 15 digits.

SUBCOUNT=(edit)
same as SUBCOUNT except that the 15–digit running count appears edited
as specified. See p,m,f,edit under OUTREC for further details on the edit
fields you can use.

TOTAL
specifies that an edited total, for the values of a numeric input field in all
data records of the report, is to appear in the report record.

TOT can be used instead of TOTAL.

OUTFIL Control Statements

248 DFSORT R14 Application Programming Guide

|
|

p,m,f,edit
specifies the numeric input field for which the total is to be produced
and how the output field (that is, the total) is to be edited.

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3 and TM4 are not allowed for
TOTAL and that for TOTAL, the number of digits needed with Mn edit
masks is the maximum for that format type rather than the actual length
of the field, as follows:

Table 43. Digits Needed for TOTAL Fields

Format Digits Needed

ZD 15

PD 15

BI 10

FI 10

CSF or FS 15

MIN
specifies that an edited minimum, for the values of a numeric input field in
all data records of the report, is to appear in the report record.

p,m,f,edit
specifies the numeric input field for which the minimum is to be
produced and how the output field (that is, the minimum) is to be
edited.

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3, and TM4 are not allowed for
MIN.

MAX
specifies that an edited maximum, for the values of a numeric input field in
all data records of the report, is to appear in the report record.

p,m,f,edit
specifies the numeric input field for which the maximum is to be
produced and how the output field (that is, the maximum) is to be
edited.

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3, and TM4 are not allowed for
MAX.

AVG
specifies that an edited average, for the values of a numeric input field in all
data records of the report, is to appear in the report record. The average (or
mean) is calculated by dividing the total by the count and rounding down to
the nearest integer. For example:
+2305 / 152 = +15
-2305 / 152 = -15

p,m,f,edit
specifies the numeric input field for which the average is to be produced
and how the output field (that is, the average) is to be edited.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 249

|
|
|
|
|

|
|
|

|
|
|

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3, and TM4 are not allowed for
AVG.

SUBTOTAL
specifies that an edited running total, for the values of a numeric input field
in all data records of the report, is to appear in the report record.

SUBTOT or SUB can be used instead of SUBTOTAL.

For TRAILER1, the running total is the same as the total, so SUBTOTAL
produces the same value as TOTAL.

p,m,f,edit
specifies the numeric input field for which the running total is to be
produced and how the output field (that is, the running total) is to be
edited.

See p,m,f,edit under TOTAL for further details.

SUBMIN
specifies that an edited running minimum, for the values of a numeric input
field in all data records of the report, is to appear in the report record.

For TRAILER1, the running minimum is the same as the minimum, so
SUBMIN produces the same value as MIN.

p,m,f,edit
specifies the numeric input field for which the running minimum is to be
produced and how the output field (that is, the running minimum) is to
be edited.

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3, and TM4 are not allowed for
SUBMIN.

SUBMAX
specifies that an edited running maximum, for the values of a numeric input
field in all data records of the report, is to appear in the report record.

For TRAILER1, the running maximum is the same as the maximum, so
SUBMAX produces the same value as MAX.

p,m,f,edit
specifies the numeric input field for which the running maximum is to be
produced and how the output field (that is, the running maximum) is to
be edited.

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3, and TM4 are not allowed for
SUBMAX.

SUBAVG
specifies that an edited running average, for the values of a numeric input
field in all data records of the report, is to appear in the report record.

For TRAILER1, the running average is the same as the average, so
SUBAVG produces the same value as AVG.

p,m,f,edit
specifies the numeric input field for which the running average is to be
produced and how the output field (that is, the running average) is to be
edited.

OUTFIL Control Statements

250 DFSORT R14 Application Programming Guide

|
|
|

|
|
|

|
|
|

See p,m,f,edit under OUTREC for further details. However, note that
PD0, DT1, DT2, DT3, TM1, TM2, TM3, and TM4 are not allowed for
SUBAVG.

Sample Syntax:
OUTFIL FNAMES=RPT,

TRAILER1=(5/,
10:’Summary of Report for Division Revenues’,3/,
10:’Number of divisions reporting: ’,COUNT,2/,
10:’Total revenue: ’,TOTAL=(25,5,PD,M5),2/,
10:’Lowest revenue: ’,MIN=(25,5,PD,M5),2/,
10:’Highest revenue: ’,MAX=(25,5,PD,M5),2/,
10:’Average revenue: ’,AVG=(25,5,PD,M5))

Default for TRAILER1: None; must be specified.

HEADER2

Specifies the page header to be used for the reports produced for this OUTFIL
group. The page header appears at the top of each page of the report, except
for the report header page (if any) and report trailer page (if any). DFSORT
uses ANSI carriage control characters to control pageejects and the placement
of the lines in your report, according to your specifications.

You can choose to include any or all of the following report elements in your
page header:

v Blanks and character strings

v Unedited input fields from the first OUTFIL input record for which a data
record appears on the page

v Current date

v Current time

v Page number.

The page header consists of the elements you select, in the order in which you
specify them, and in the columns or lines you specify.

c: See c: under HEADER1.

r See r under HEADER1.

�� E

,

HEADER2= (r)
c: p,m

DATE
&DATE
DATE=(abcd)
&DATE=(abcd)
DATENS=(abc)
TIME
&TIME
TIME=(abc)
&TIME=(abc)
TIMENS=(ab)
PAGE
&PAGE

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 251

|
|
|

p,m
specifies that an unedited input field, from the first OUTFIL input record for
which a data record appears on the page, is to appear in the report record.
See p,m under HEADER1 for further details.

DATE
See DATE under HEADER1.

&DATE
&DATE can be used instead of DATE. See &DATE under HEADER1.

DATE=(abcd)
See DATE=(abcd) under HEADER1.

&DATE=(abcd)
&DATE=(abcd) can be used instead of DATE=(abcd). See &DATE=(abcd)
under HEADER1.

DATENS=(abc)
See DATENS=(abc) under HEADER1.

TIME
See TIME under HEADER1.

&TIME
&TIME can be used instead of TIME. See &TIME under HEADER1.

TIME=(abc)
See TIME=(abc) under HEADER1.

&TIME=(abc)
&TIME=(abc) can be used instead of TIME=(abc). See &TIME=(abc) under
HEADER1.

TIMENS=(ab)
See TIMENS=(ab) under HEADER1.

PAGE
specifies that the current page number is to appear in the OUTFIL report
record. The page number for the header appears as 6 digits, right-justified,
with leading zeros suppressed. For example, if the page is numbered 3, it
appears as ’ 3’.

&PAGE
&PAGE can be used instead of PAGE.

If HEADER1 is specified with PAGE and HEADER2 is specified with PAGE,
the page number for the first page header will be ’ 2’. If HEADER1 is
not specified or is specified without PAGE and HEADER2 is specified with
PAGE, the page number for the first page header will be ’ 1’.

Sample Syntax:
OUTFIL FNAMES=STATUS,

HEADER2=(5:’Page ’,PAGE,’ of Status Report for ’,DATE=(MD4/),
’ at ’,TIME=(12:),2/,
10:’Item ’,20:’Status ’,35:’Count’,/,
10:’-----’,20:’------------’,35:’-----’),

OUTREC=(10:6,5,
20:14,1,CHANGE=(12,

C’S’,C’Ship’,
C’H’,C’Hold’,

OUTFIL Control Statements

252 DFSORT R14 Application Programming Guide

|
|

|
|

C’T’,C’Transfer’),
NOMATCH=(C’*Check Code*’),

36:39,4,ZD,M10,
132:X)

Default for HEADER2: None; must be specified.

TRAILER2

Specifies the page trailer to be used for the reports produced for this OUTFIL
group. The page trailer appears at the very bottom of each page of the report
(as specified or defaulted by the LINES value), except for the report header
page (if any) and report trailer page (if any). DFSORT uses ANSI carriage
control characters to control page ejects and the placement of the lines in your
report, according to your specifications.

You can choose to include any or all of the following report elements in your
page trailer:

v Blanks and character strings

�� E

,

TRAILER2= (r)
c: p,m

DATE
&DATE
DATE=(abcd)
&DATE=(abcd)
DATENS=(abc)
TIME
&TIME
TIME=(abc)
&TIME=(abc)
TIMENS=(ab)
PAGE
&PAGE

COUNT
COUNT15
COUNT=(edit)
SUBCOUNT
SUBCOUNT15
SUBCOUNT=(edit)

TOTAL= (p,m,f)
TOT= ,edit

MIN= (p,m,f)
,edit

MAX= (p,m,f)
,edit

AVG= (p,m,f)
,edit

SUBTOTAL= (p,m,f)
SUBTOT= ,edit
SUB=

SUBMIN= (p,m,f)
,edit

SUBMAX= (p,m,f)
,edit

SUBAVG= (p,m,f)
,edit

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 253

v Unedited input fields from the last OUTFIL input record for which a data
record appears on the page

v Current date

v Current time

v Page number

v Any or all of the following statistics:

– Count of data records on the page

– Total, minimum, maximum, or average for each specified ZD, PD, BI, FI,
or CSF/FS numeric input field in the data records on the page, edited to
contain signs, decimal points, leading zeros or no leading zeros, and so
on

– Running total, minimum, maximum, or average for each specified ZD, PD,
BI, FI, or CSF/FS numeric input field in the data records up to this point,
edited to contain signs, decimal points, leading zeros or no leading zeros,
and so on.

The page trailer consists of the elements you select, in the order in which you
specify them, and in the columns or lines you specify.

c: See c: under HEADER1.

r See r under TRAILER1.

p,m
specifies that an unedited input field, from the last OUTFIL input record for
which a data record appears on the page, is to appear in the report record.
See p,m under TRAILER1 for further details.

DATE
See DATE under HEADER1.

&DATE
&DATE can be used instead of DATE. See &DATE under HEADER1.

DATE=(abcd)
See DATE=(abcd) under HEADER1.

&DATE=(abcd)
&DATE=(abcd) can be used instead of DATE=(abcd). See &DATE=(abcd)
under HEADER1.

DATENS=(abc)
See DATENS=(abc) under HEADER1.

TIME
See TIME under HEADER1.

&TIME
&TIME can be used instead of TIME. See &TIME under HEADER1.

TIME=(abc)
See TIME=(abc) under HEADER1.

&TIME=(abc)
&TIME=(abc) can be used instead of TIME=(abc). See &TIME=(abc) under
HEADER1.

TIMENS=(ab)
See TIMENS=(ab) under HEADER1.

OUTFIL Control Statements

254 DFSORT R14 Application Programming Guide

|
|

|
|

PAGE
See PAGE under TRAILER1.

&PAGE
&PAGE can be used instead of PAGE. See &PAGE under TRAILER1.

COUNT
specifies that the count of data records on the page is to appear in the
report record as 8 digits, right-justified, with leading zeros suppressed. For
example, if page 1 has 40 input records, page 2 has 40 input records, and
page 3 has 26 input records, COUNT will show ' 40' for page 1,
' 40' for page 2, and ' 26' for page 3.

COUNT counts input records, not data records. However, unless slash (/) is
used to produce multiple records, the count will also represent the number
of data records.

COUNT15
same as COUNT except that the count appears as 15 digits.

COUNT=(edit)
same as COUNT except that the 15–digit count appears edited as
specified. See p,m,f,edit under OUTREC for further details on the edit fields
you can use.

SUBCOUNT
specifies that the count of input records up to this point in the report is to
appear in the report record as 8 digits, right-justified, with leading zeros
suppressed. The running count accumulates the count for all pages up to
and including the current page. For example, if page 1 has 40 input
records, page 2 has 40 input records, and page 3 has 26 input records,
SUBCOUNT will show ' 40' for page 1, ' 80' for page 2, and
' 106' for page 3.

SUBCOUNT counts input records, not data records. However, unless slash
(/) is used to produce multiple records, the running count will also represent
the number of data records.

SUBCOUNT15
same as SUBCOUNT except that the running count appears as 15 digits.

SUBCOUNT=(edit)
same as SUBCOUNT except that the 15–digit running count appears edited
as specified. See p,m,f,edit under OUTREC for further details on the edit
fields you can use.

TOTAL
specifies that an edited total, for the values of a numeric input field in the
data records on the page, is to appear in the report record.

TOT can be used instead of TOTAL.

p,m,f,edit
See p,m,f,edit under TOTAL for TRAILER1.

MIN
specifies that an edited minimum, for the values of a numeric input field in
the data records on the page, is to appear in the report record.

p,m,f,edit
See p,m,f,edit under MIN for TRAILER1.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 255

MAX
specifies that an edited maximum, for the values of a numeric input field in
the data records on the page, is to appear in the report record.

p,m,f,edit
See p,m,f,edit under MAX for TRAILER1.

AVG
specifies that an edited average, for the values of a numeric input field in
the data records on the page, is to appear in the report record.

p,m,f,edit
See p,m,f,edit under AVG for TRAILER1.

SUBTOTAL
specifies that an edited running total, for the values of a numeric input field
in the data records up to this point in the report, is to appear in the report
record. The running total accumulates the total for all pages up to and
including the current page. For example, if the total for a selected numeric
field is +200 for page 1, -250 for page 2, and +90 for page 3, SUBTOTAL
will be +200 for page 1, -50 for page 2, and +40 for page 3.

SUBTOT or SUB can be used instead of SUBTOTAL.

p,m,f,edit
See p,m,f,edit under SUBTOTAL for TRAILER1.

SUBMIN
specifies that an edited running minimum, for the values of a numeric input
field in the data records up to this point in the report, is to appear in the
report record. The running minimum selects the minimum from all pages up
to and including the current page. For example, if the minimum for a
selected numeric field is +200 for page 1, -250 for page 2, and +90 for
page 3, SUBMIN will be +200 for page 1, -250 for page 2, and -250 for
page 3.

p,m,f,edit
See p,m,f,edit under SUBMIN for TRAILER1.

SUBMAX
specifies that an edited running maximum, for the values of a numeric input
field in the data records up to this point in the report, is to appear in the
report record. The running maximum selects the maximum from all pages
up to and including the current page. For example, if the maximum for a
selected numeric field is -100 for page 1, +250 for page 2, and +90 for
page 3, SUBMAX will be -100 for page 1, +250 for page 2, and +250 for
page 3.

p,m,f,edit
See p,m,f,edit under SUBMAX for TRAILER1.

SUBAVG
specifies that an edited running average, for the values of a numeric input
field in the data records up to this point in the report, is to appear in the
report record. The running average computes the average for all pages up
to and including the current page. For example, if the count of data records
and total for a selected numeric field are 60 and +2205 for page 1,
respectively, 60 and -6252 for page 2, respectively, and 23 and -320 for
page 3, respectively, SUBAVG will be +36 for page 1, -33 for page 2, and
-30 for page 3.

OUTFIL Control Statements

256 DFSORT R14 Application Programming Guide

p,m,f,edit
See p,m,f,edit under SUBAVG for TRAILER1.

Sample Syntax:
OUTFIL FNAMES=STATS,

STARTREC=3,
OUTREC=(20:23,3,PD,M16,

30:40,3,PD,M16,
80:X),

TRAILER2=(/,2:’Average on page:’,
20:AVG=(23,3,PD,M16),
30:AVG=(40,3,PD,M16),/,
2:’Average so far:’,
20:SUBAVG=(23,3,PD,M16),
30:SUBAVG=(40,3,PD,M16))

Default for TRAILER2: None; must be specified.

SECTIONS

Specifies the section break processing to be used for the reports produced for
this OUTFIL group. A section break field divides the report into sets of
sequential OUTFIL input records with the same binary value for that field, which
result in corresponding sets of data records (that is, sections) in the report. A
break is said to occur when the binary value changes. Of course, since a break
can occur in any record, the data records of a section can be split across pages
in your report.

For each section break field you specify, you can choose to include any or all of
the following:

v A page eject between sections.

v Zero, one or more blank lines to appear between sections on the same page.

v A section header to appear before the first data record of each section and
optionally, at the top of each page. When a page header and section header
are both to appear at the top of a page, the section header will follow the
page header.

v A section trailer to appear after the last data record of each section. When a
page trailer and section trailer are both to appear at the bottom of a page,
the page trailer will follow the section trailer.

DFSORT uses ANSI carriage control characters to control page ejects and the
placement of the lines in your report, according to your specifications.

�� SECTIONS= E E

E

E

,
,

(p,m SKIP= P)
L
nL

,

HEADER3= (field)
,PAGEHEAD

,

TRAILER3= (field)

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 257

|

If multiple section break fields are used, they are processed in first-to-last order,
in the same way they would be sorted by these fields. In fact, the input data set
is generally sorted by the section break fields, to group the records with the
same section break values together for the report. This sorting can be done by
the same application that produces the report or by a previous application.

A break in section break field 1 results in a break in section break fields 2
through n. A break in section break 2 results in a break in section break fields 3
through n, and so on. The section headers appear before each section in
first-to-last order, whereas the section trailers appear in last-to-first order. For
example, if section break fields represented by B1 with header H3A and trailer
T3A, B2 with header H3B and trailer T3B, and B3 with header H3C and trailer
T3C are specified in order, the following can appear:
H3A (header for B1=1 section)

H3B (header for B2=1 section)
H3C (header for B3=1 section)

data records for B1=1, B2=1, B3=1 (new B1, B2, and B3 section)
T3C (trailer for B3=1 section)
H3C (header for B3=2 section)

data records for B1=1, B2=1, B3=2 (new B3 section)
T3C (trailer for B3=2 section)

T3B (trailer for B2=1 section)
H3B (header for B2=2 section)

H3C (header for B3=1 section)
data records for B1=1, B2=2, B3=1 (new B2 and B3 section)

T3C (trailer for B3=1 section)
T3B (trailer for B2=2 section)

T3A (trailer for B1=1 section)
H3A (header for B1=2 section)

H3B (header for B2=2 section)
H3C (header for B3=0 section)

data records for B1=2, B2=2, B3=0 (new B1, B2, and B3 section)
T3C (trailer for B3=0 section)
H3C (header for B3=1 section)

data records for B1=2, B2=2, B3=1 (new B3 section)
T3C (trailer for B3=1 section)

T3B (trailer for B2=2 section)
T3A (trailer for B1=2 section)

p,m
specifies a section break field in the OUTFIL input records to be used to divide
the report into sections. Each set of sequential OUTFIL input records, with the
same binary value for the section break field, results in a corresponding set of
data records. Each such set of data records is treated as a section in the
report. A break is said to occur when the binary value changes.

p See p under HEADER1.

m See m under HEADER1.

SKIP

Specifies, for reports produced for this OUTFIL group, that either:

v Each section for the associated section break field is to appear on a new
page, or

�� SKIP= P
L
nL

��

OUTFIL Control Statements

258 DFSORT R14 Application Programming Guide

v Zero, one or more blank lines to appear after each section associated with
this section break field, when it is followed by another section on the same
page.

Thus, you can use SKIP to specify how sections will be separated from each
other.

P specifies that each section is to appear on a new page.

L specifies that one blank line is to appear between sections on the same
page. L is the same as 1L.

nL specifies that n blank lines are to appear between sections on the same
page. You can specify from 0 to 255 for n.

Sample Syntax:
OUTFIL FNAMES=(PRINT,TAPE),

SECTIONS=(10,20,SKIP=P,
42,10,SKIP=3L)

HEADER3

Specifies the section header to be used with the associated section break field
for the reports produced for this OUTFIL group. The section header appears
before the first data record of each section. DFSORT uses ANSI carriage
control characters to control page ejects and the placement of the lines in your
report, according to your specifications.

You can choose to include any or all of the following report elements in your
section header:

v Blanks and character strings

v Unedited input fields from the first OUTFIL input record for which a data
record appears in the section

v Current date

v Current time

v Page number.

The section header consists of the elements you select, in the order in which
you specify them, and in the columns or lines you specify.

c: See c: under HEADER1.

�� E

,

HEADER3= (r)
c: p,m

DATE
&DATE
DATE=(abcd)
&DATE=(abcd)
DATENS=(abc)
TIME
&TIME
TIME=(abc)
&TIME=(abc)
TIMENS=(ab)
PAGE
&PAGE

��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 259

|
|
|

||
|

r See r under HEADER1.

p,m
specifies that an unedited input field, from the first OUTFIL input record for
which a data record appears in the section, is to appear in the report
record. See p,m under HEADER1 for further details.

DATE
See DATE under HEADER1.

&DATE
&DATE can be used instead of DATE. See &DATE under HEADER1.

DATE=(abcd)
See DATE=(abcd) under HEADER1.

&DATE=(abcd)
&DATE=(abcd) can be used instead of DATE=(abcd). See &DATE=(abcd)
under HEADER1.

DATENS=(abc)
See DATENS=(abc) under HEADER1.

TIME
See TIME under HEADER1.

&TIME
&TIME can be used instead of TIME. See &TIME under HEADER1.

TIME=(abc)
See TIME=(abc) under HEADER1.

&TIME=(abc)
&TIME=(abc) can be used instead of TIME=(abc). See &TIME=(abc) under
HEADER1.

TIMENS=(ab)
See TIMENS=(ab) under HEADER1.

PAGE
specifies that the current page number is to appear in the OUTFIL report
record. The page number for the header appears as 6 digits, right-justified,
with leading zeros suppressed. For example, if the page is numbered 3, it
appears as ’ 3’.

&PAGE
&PAGE can be used instead of PAGE.

Sample Syntax:

OUTFIL FNAMES=STATUS1,
HEADER2=(10:’Status Report for all departments’,5X,

’- ’,&PAGE,’ -’),
SECTIONS=(10,8,
HEADER3=(2/,10:’Report for department ’,10,8,’ on ’,&DATE,2/,

10:’ Number’,25:’Average Time’,/,
10:’Completed’,25:’ (in days)’,/,
10:’---------’,25:’------------’)),

OUTREC=(10:21,5,ZD,M10,LENGTH=9,
25:38,4,ZD,EDIT=(III.T),LENGTH=12,
132:X)

PAGEHEAD

OUTFIL Control Statements

260 DFSORT R14 Application Programming Guide

|
|

|
|

Specifies that the section header to be used with the associated section break
field is to appear at the top of each page of the report, except for the report
header page (if any) and report trailer page (if any), as well as before each
section. If you do not specify PAGEHEAD, the section header appears only
before each section; so if a section is split between pages, the section header
appears only in the middle of the page. PAGEHEAD can be used when you
want HEADER3 to be used as a page header as well as a section header.

If PAGEHEAD is specified for a section break field for which HEADER3 is not
also specified, PAGEHEAD will not be used.

Sample Syntax:
OUTFIL FNAMES=STATUS2,

HEADER2=(10:’Status Report for all departments’,5X,
’- ’,&PAGE,’ -’),

SECTIONS=(10,8,
HEADER3=(2/,10:’Report for department ’,10,8,’ on ’,&DATE,2/,

10:’ Number’,25:’Average Time’,/,
10:’Completed’,25:’ (in days)’,/,
10:’---------’,25:’------------’),

PAGEHEAD,SKIP=P),
OUTREC=(10:21,5,ZD,M10,LENGTH=9,

25:38,4,ZD,EDIT=(III.T),LENGTH=12,
132:X)

�� PAGEHEAD ��

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 261

TRAILER3

Specifies the section trailer to be used with the associated section break field
for the reports produced for this OUTFIL group. The section trailer appears after
the last data record of each section. DFSORT uses ANSI carriage control
characters to control page ejects and the placement of the lines in your report,
according to your specifications.

You can choose to include any or all of the following report elements in your
section trailer:

v Blanks and character strings

v Unedited input fields from the last OUTFIL input record for which a data
record appears in the section

v Current date

v Current time

v Page number

v Any or all of the following statistics:

�� E

,

TRAILER3= (r)
c: p,m

DATE
&DATE
DATE=(abcd)
&DATE=(abcd)
DATENS=(abc)
TIME
&TIME
TIME=(abc)
&TIME=(abc)
TIMENS=(ab)
PAGE
&PAGE

COUNT
COUNT15
COUNT=(edit)
SUBCOUNT
SUBCOUNT15
SUBCOUNT=(edit)

TOTAL= (p,m,f)
TOT= ,edit

MIN= (p,m,f)
,edit

MAX= (p,m,f)
,edit

AVG= (p,m,f)
,edit

SUBTOTAL= (p,m,f)
SUBTOT= ,edit
SUB=

SUBMIN= (p,m,f)
,edit

SUBMAX= (p,m,f)
,edit

SUBAVG= (p,m,f)
,edit

��

OUTFIL Control Statements

262 DFSORT R14 Application Programming Guide

– Count of data records in the section

– Total, minimum, maximum, or average for each specified ZD, PD, BI, FI,
or CSF/FS numeric input field in the data records in the section, edited to
contain signs, decimal points, leading zeros or no leading zeros, and so
on

– Running total, minimum, maximum, or average for each specified ZD, PD,
BI, FI, or CSF/FS numeric input field in the data records up to this point,
edited to contain signs, decimal points, leading zeros or no leading zeros,
and so on.

The section trailer consists of the elements you select, in the order in which you
specify them, and in the columns or lines you specify.

c: See c: under HEADER1.

r See r under TRAILER1.

p,m
specifies that an unedited input field, from the last OUTFIL input record for
which a data record appears in the section, is to appear in the report
record. See p,m under TRAILER1 for further details.

DATE
See DATE under HEADER1.

&DATE
&DATE can be used instead of DATE. See &DATE under HEADER1.

DATE=(abcd)
See DATE=(abcd) under HEADER1.

&DATE=(abcd)
&DATE=(abcd) can be used instead of DATE=(abcd). See &DATE=(abcd)
under HEADER1.

DATENS=(abc)
See DATENS=(abc) under HEADER1.

TIME
See TIME under HEADER1.

&TIME
&TIME can be used instead of TIME. See &TIME under HEADER1.

TIME=(abc)
See TIME=(abc) under HEADER1.

&TIME=(abc)
&TIME=(abc) can be used instead of TIME=(abc). See &TIME=(abc) under
HEADER1.

TIMENS=(ab)
See TIMENS=(ab) under HEADER1.

PAGE
See PAGE under TRAILER1.

&PAGE
&PAGE can be used instead of PAGE. See &PAGE under TRAILER1.

COUNT
specifies that the count of data records in the section is to appear in the
report record as 8 digits, right-justified, with leading zeros suppressed. For

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 263

|
|

|
|

example, if the first section has 40 input records, the second section has 40
input records, and the third section has 26 input records, COUNT will show
' 40' for the first section, ' 40' for the second section, and
' 26' for the third section.

COUNT counts input records, not data records. However, unless slash (/) is
used to produce multiple records, the count will also represent the number
of data records.

COUNT15
same as COUNT except that the count appears as 15 digits.

COUNT=(edit)
same as COUNT except that the 15–digit count appears editied as
specified. See p,m,f,edit under OUTREC for further details on the edit fields
you can use.

SUBCOUNT
specifies that the running count of input records up to this point in the report
is to appear in the report record 8 digits, right-justified, with leading zeros
suppressed. The running count accumulates the count for all sections up to
and including the current section. For example, if the first section has 40
input records, the second section has 40 input records, and the third
section has 26 input records, SUBCOUNT will show ' 40' for the first
section, ' 80' for the second section, and ' 106' for the third
section.

SUBCOUNT counts input records, not data records. However, unless slash
(/) is used to produce multiple records, the count will also represent the
number of data records.

SUBCOUNT15
same as SUBCOUNT except that the running count appears as 15 digits.

SUBCOUNT=(edit)
same as SUBCOUNT except that the 15–digit running count appears
editied as specified. See p,m,f,edit under OUTREC for further details on the
edit fields you can use.

TOTAL
specifies that an edited total, for the values of a numeric input field in the
data records in the section, is to appear in the report record.

TOT can be used instead of TOTAL.

p,m,f,edit
See p,m,f,edit under TOTAL for TRAILER1.

MIN
specifies that an edited minimum, for the values of a numeric input field in
the data records in the section, is to appear in the report record.

p,m,f,edit
See p,m,f,edit under MIN for TRAILER1.

MAX
specifies that an edited maximum, for the values of a numeric input field in
the data records in the section, is to appear in the report record.

p,m,f,edit
See p,m,f,edit under MAX for TRAILER1.

OUTFIL Control Statements

264 DFSORT R14 Application Programming Guide

AVG
specifies that an edited average, for the values of a numeric input field in
the data records in the section, is to appear in the report record.

p,m,f,edit
See p,m,f,edit under AVG for TRAILER1.

SUBTOTAL
specifies that an edited running total, for the values of a numeric input field
in the data records up to this point in the report, is to appear in the report
record. The running total accumulates the total for all sections up to and
including the current section. For example, if the total for a selected
numeric field is +200 for the first section, -250 for the second section and
+90 for the third section, SUBTOTAL will be +200 for the first section, -50
for the second section and +40 for the third section.

SUBTOT or SUB can be used instead of SUBTOTAL.

p,m,f,edit
See p,m,f,edit under SUBTOTAL for TRAILER1.

SUBMIN
specifies that an edited running minimum, for the values of a numeric input
field in the data records up to this point in the report, is to appear in the
report record. The running minimum selects the minimum from all sections
up to and including the current section. For example, if the minimum for a
selected numeric field is +200 for the first section, -250 for the second
section and +90 for the third section, SUBMIN will be +200 for the first
section, -250 for the second section and -250 for the third section.

p,m,f,edit
See p,m,f,edit under SUBMIN for TRAILER1.

SUBMAX
specifies that an edited running maximum, for the values of a numeric input
field in the data records up to this point in the report, is to appear in the
report record. The running maximum selects the maximum from all sections
up to and including the current section. For example, if the maximum for a
selected numeric field is -100 for the first section, +250 for the second
section and +90 for the third section, SUBMAX will be -100 for the first
section, +250 for the second section and +250 for the third section.

p,m,f,edit
See p,m,f,edit under SUBMAX for TRAILER1.

SUBAVG
specifies that an edited running average, for the values of a numeric input
field in the data records up to this point in the report, is to appear in the
report record. The running average computes the average for all sections
up to and including the current section. For example, if the count of data
records and total for a selected numeric field are 60 and +2205 for the first
section, respectively, 60 and -6252 for the second section, respectively, and
23 and -320 for the third section, respectively, SUBAVG will be +36 for the
first section, -33 for the second section and -30 for the third section.

p,m,f,edit
See p,m,f,edit under SUBAVG for TRAILER1.

Sample Syntax:

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 265

OUTFIL FNAMES=SECRPT,
INCLUDE=(11,4,CH,EQ,C’SSD’),
SECTIONS=(3,5,SKIP=P,
HEADER3=(2:’Department: ’,3,5,4X,’Date: ’,&DATE,2/),
TRAILER3=(2/,2:’The average for ’,3,5,’ is ’,

AVG=(40,3,PD,M12),/,
2:’The overall average so far is ’,

SUBAVG=(40,3,PD,M12)),
45,8,SKIP=3L,
HEADER3=(4:’Week Ending ’,45,8,2/,

4:’Item Number’,20:’Completed’,/,
4:’-’,20:’-’),

TRAILER3=(4:’The item count for week ending ’,45,8,
’ is ’,COUNT=(EDIT=(II,IIT)))),

OUTREC=(11:16,4,22:40,3,PD,M12,120:X)

Default for SECTIONS: None; must be specified.

NODETAIL

Specifies that data records are not to be output for the reports produced for this
OUTFIL group. With NODETAIL, the data records are completely processed
with respect to input fields, statistics, counts, sections breaks, and so on, but
are not written to the OUTFIL data set and are not included in line counts for
determining the end of a page. You can use NODETAIL to summarize the data
records without actually showing them.

Sample Syntax:
OUTFIL FNAMES=SUMMARY,NODETAIL,

HEADER2=(’ Date: ’,DATENS=(DMY.),4X,’Page: ’,PAGE,2/,
10:’Division’,25:’ Total Revenue’,/,
10:’--------’,25:’-----------------’),

SECTIONS=(3,5,
TRAILER3=(10:3,5,

25:TOTAL=(25,4,FI,M19,
LENGTH=17))),

TRAILER1=(5/,10:’Summary of Revenue ’,4/,
12:’Number of divisions reporting is ’,

COUNT,/,
12:’Total revenue is ’,

TOTAL=(25,4,FI,M19))

Default for NODETAIL: None; must be specified.

Default for OUTFIL Statements: None; must be specified. Multiple OUTFIL
statements can be specified in the same and different sources; override is at
the ddname level.

Applicable Functions for OUTFIL Statements: Sort, merge, and copy.

REMOVECC

�� NODETAIL ��

�� REMOVECC ��

OUTFIL Control Statements

266 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Specifies that the ANSI carriage control character is to be removed from
OUTFIL output records for this OUTFIL group before the records are written. In
addition, blank lines are not used to position the page trailer (TRAILER2) at the
bottom of the page.

If REMOVECC is specified without any report parameters, it will not be used.
The report parameters are LINES, HEADER1, TRAILER1, HEADER2,
TRAILER2, SECTIONS, and NODETAIL.

Sample Syntax:
OUTFIL FNAMES=RPTWOCC,

TRAILER1=(3/,’Number of records is ’,
COUNT=(M11,LENGTH=6)),

REMOVECC

Default for REMOVECC: None; must be specified.

OUTFIL Statements Notes
v OUTFIL processing is supported for sort, merge, and copy applications, but only

by the Blockset technique.

v The ODMAXBF value in effect specifies the maximum buffer spaceto be used for
each OUTFIL data set. The ODMAXBF value can be specified as an installation
or run-time parameter, or in an ICEIEXIT routine. The default value of 2M is
recommended for the ODMAXBF option in effect. Lowering ODMAXBF can
cause performance degradation for the application,but might be necessary if you
consider the amount of storage used for OUTFIL processing to be a problem.
Raising ODMAXBF can improve EXCPs for the application, but can also increase
the amount of storage needed.

v The storage used for OUTFIL processing will be adjusted automatically according
to the total storage available, the storage needed for non-OUTFIL processing,
and the number of OUTFIL data sets and their attributes (for example, block
size). OUTFIL processing will be subject to the ODMAXBF limit in effect and the
system storage limits(for example, IEFUSI), but not to the DFSORT storage limits
(that is, SIZE, MAXLIM, and TMAXLIM). DFSORT attempts to use storage above
16MB virtual for OUTFIL processing whenever possible.

v The VSAMBSP option applies to SORTOUT data sets, but not to OUTFIL data
sets. The NOBLKSET option will be ignored if OUTFIL data sets are being
processed. An E39 exit routine is entered for the SORTOUT data set, but not for
OUTFIL data sets.

v For fixed-format OUTFIL data sets: DFSORT will determine each OUTFIL data
set LRECL based on the length of the OUTREC records for the group, or the
length of the OUTFIL input records (if OUTREC is not specified for the group).
For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL.

If an OUTFIL data set LRECL is not specified or available, DFSORT will set it to
the determined LRECL. If an OUTFIL data set LRECL is specified or available, it
must not be less than the determined LRECL, or more than the determined
LRECL if the OUTREC parameter is specified. In other words, the LRECL value
cannot be used to pad the output records, or to truncate the records produced by
OUTREC parameter processing.

In general, OUTREC processing should be used to pad or truncate the records,
and the LRECL should either not be specified or set to the length of the
reformatted records.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 267

|
|
|
|

|
|
|

|

|
|
|
|

|

v For variable-format OUTFIL data sets: DFSORT will determine each OUTFIL data
set maximum LRECL based on the length of the OUTREC records for the group,
or the length of the OUTFIL input records (if OUTREC is not specified for the
group). If an OUTFIL data set maximum LRECL is not specified or available,
DFSORT will set it to the determined maximum LRECL. For VSAM data sets, the
maximum record size defined in the cluster is four bytes more than the maximum
LRECL.

v When you create an OUTFIL report, the length for the longest or onlydata record
must be equal to or greater than the maximum report record length. You can use
the OUTREC parameter to force a length for the data records that is longer than
any report record; you can then either let DFSORT compute and set the LRECL,
or ensure that the computed LRECL is equal to the existing or specified LRECL.
Remember to allow an extra byte in the LRECL for the ANSI carriage control
character.

For example, if your data records are 40 bytes, but your longest report record is
60 bytes, you can use an OUTREC parameter such as:

OUTREC=(1,40,80:X)

DFSORT will then set the LRECL to 81 (1 byte for the ANSI carriage control
character plus 80 bytes for the length of the data records), and pad the data
records with blanks on the right.

If you don’t want the ANSI carriage control characters to appear in the output
data set, use the REMOVECC parameter to remove them. For example, if you
specify:

OUTREC=(1,40,80:X),REMOVECC

DFSORT will set the LRECL to 80 instead of 81 and remove the ANSI carriage
control character from each record before it is written.

System errors can result if you print an OUTFIL report containing records longer
than your printer can handle.

v DFSORT uses appropriate ANSI carriage controls (for example, C'-' for triple
space) in header and trailer records when possible to reduce the number of
report records written. DFSORT always uses the single space carriage control (C'
') in data records. Although these carriage control characters may not be shown
when you view an OUTFIL data set (depending on how you view it), they will be
used if you print the report. If you are creating a report for viewing and want
blank lines to appear in headers and trailers, specify a line of blanks instead of
using n/. For example, instead of specifying:

OUTFIL FNAMES=RPT,
HEADER2=(2/,’start of header’,2/,’next line’)

which will result in blank lines for the printer, but not for viewing, specify:
OUTFIL FNAMES=RPT,
HEADER2=(X,/,X,/,’start of header’,/,X,/,’next line’)

If you don’t want the ANSI carriage control characters to appear in the output
data set, use the REMOVECC parameter to remove them.

v When defining variable-length OUTFIL output or data records with OUTREC, you
must explicitly specify the 4-byte RDW at the beginning of each record. When
using / in OUTREC, you must explicitly specify the 4-byte RDW at the beginning
of each new output or data record.

OUTFIL Control Statements

268 DFSORT R14 Application Programming Guide

|
|
|

|

|
|

|
|

When defining variable-length OUTFIL header or trailer records, you must not
specify the 4-byte RDW at the beginning of the record.

v For variable-length OUTFIL records, if the variable part of the record is specified
as the last field of an INREC or OUTREC statement, then the variable part of the
record must be specified as the last field of all OUTFIL OUTREC records. If the
variable part of the record is not specified as the last field of an INREC or
OUTREC statement, then the variable part of the record must not be specified for
any OUTFIL OUTREC record. If INREC and OUTREC statements are not
specified, then the variable part of the record can be specified or not specified
independently for OUTFIL OUTREC records.

v If there are no OUTFIL input records for an OUTFIL group, the headers and
trailers appear without any data records. Blanks will be used for any specified
unedited input fields, and zero values will be used for any specified statistics
fields.

v If a variable-length OUTFIL input record is too short to contain a specified
unedited input field for a report header or trailer, blanks will be used for the
missing bytes. If a variable-length OUTFIL input record is too short to contain a
specified section break field or statistics field, zeros will be used for the missing
bytes, intentionally or unintentionally.

v If a variable-length OUTFIL input record is too short to contain an OUTFIL
INCLUDE or OMIT compare field, the action DFSORT takes depends on the
settings for VLSCMP/NOVLSCMP and VLSHRT/NOVLSHRT. For details, see the
discussion of the VLSCMP and NOVLSCMP options in “OPTION Control
Statement” on page 155.

v If a variable-length OUTFIL input record is too short to contain an OUTFIL
OUTREC field, DFSORT will terminate unless the VLFILL=byte parameter is
specified.

v If a variable-length OUTFIL output data record is longer than the LRECL of its
OUTFIL data set, the action DFSORT takes depends on the settings for
VLLONG/NOVLLONG. For details, see the discussion of the VLLONG and
NOVLLONG options in “OPTION Control Statement” on page 155. Note that
VLLONG can be used to truncate long OUTFIL data records, but has no effect
on long OUTFIL header or trailer records.

v If a page number overflows 6 digits (PAGE, &PAGE), a count or running count
overflows 15 digits (COUNT, COUNT15, SUBCOUNT, SUBCOUNT15, AVG,
SUBAVG), or a total or running total overflows 15 digits (TOTAL, SUBTOTAL,
AVG, SUBAVG), the overflowing value will be truncated to the number of digits
allowed, intentionally or unintentionally.

v Multiple OUTFIL statements can be specified in the same and different sources.
If a ddname occurs more than once in the same source, the ddname is
associated with the first OUTFIL group in which it appears. For example, if the
following is specified in SYSIN:

OUTFIL FNAMES=(OUT1,OUT2),INCLUDE=(1,1,CH,EQ,C’A’)
OUTFIL FNAMES=(OUT3,OUT1),SAVE

OUT1 and OUT2 are processed as part of the first OUTFIL group, that is, with
INCLUDE. OUT3 is processed as part of the second OUTFIL group, that is, with
SAVE; but OUT1 is not because it is a duplicate ddname.

If a ddname occurs in more than one source, the ddname is associated with the
highest source OUTFIL group in which it appears. For example, if the following is
specified in DFSPARM:

OUTFIL FNAMES=(OUT1,OUT2),INCLUDE=(1,1,CH,EQ,C’A’)

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 269

and the following is specified in SYSIN:
OUTFIL FNAMES=(OUT3,OUT1),SAVE

OUT1 and OUT2 are processed as part of the DFSPARM OUTFIL group, that is,
with INCLUDE. OUT3 is processed as part of the SYSIN OUTFIL group, that is,
with SAVE; but OUT1 is not because it is an overridden ddname.

v OUTFIL statements cannot be passed to or returned from an EFS program. The
D2 format cannot be specified in the INCLUDE or OMIT parameter of an OUTFIL
statement.

v If SZERO is in effect, -0 compares as less than +0 when numeric fields and
constants are used. If NOSZERO is in effect, -0 compares as equal to +0 when
numeric fields and constants are used.

Note: OPTION SZERO or OPTION NOSZERO is ignored for OUTFIL
INCLUDE=(...) or OUTFIL OMIT=(...) if the OPTION statement is ″found″
before the OUTFIL statement in the same source. For example:
//SYSIN DD *
OPTION NOSZERO,COPY
OUTFIL INCLUDE=(...)
/*

OUTFIL Features—Examples

Example 1

OPTION COPY
OUTFIL INCLUDE=(15,6,CH,EQ,C’MSG005’),FNAMES=M005
OUTFIL INCLUDE=(15,6,CH,EQ,C’MSG022’),FNAMES=M022
OUTFIL INCLUDE=(15,6,CH,EQ,C’MSG028’),FNAMES=M028
OUTFIL INCLUDE=(15,6,CH,EQ,C’MSG115’),FNAMES=M115
OUTFIL SAVE,FNAMES=UNKNOWN

This example illustrates how records can be distributed to different OUTFIL data
sets based on criteria you specify:

v Input records with MSG005 in bytes 15 through 20 will be written to the OUTFIL
data set associated with ddname M005.

v Input records with MSG022 in bytes 15 through 20 will be written to the OUTFIL
data set associated with ddname M022.

v Input records with MSG028 in bytes 15 through 20 will be written to the OUTFIL
data set associated with ddname M028.

v Input records with MSG115 in bytes 15 through 20 will be written to the OUTFIL
data set associated with ddname M115.

v Input records with anything else in bytes 15 through 20 will be written to the
OUTFIL data set associated with ddname UNKNOWN

Example 2

SORT FIELDS=(18,5,ZD,D)
OUTFIL FNAMES=(V,VBU1,VBU2)
OUTFIL FNAMES=(F,FBU1),

CONVERT,OUTREC=(11,3,X,18,5,X,X’0000000F’)
OUTFIL FNAMES=VINF,OUTREC=(1,4,C’*’,5,20,C’*’,25)

OUTFIL Control Statements

270 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|

This example illustrates how multiple sorted output data sets can be created and
how a variable-length record data set can be converted to a fixed-length record
data set:

v The first OUTFIL statement writes the variable-length input records to the
variable-length OUTFIL data sets associated with ddnames V, VBU1, and VBU2.

v The second OUTFIL statement reformats the variable-length input records to
fixed-length output records and writes them to the fixed-length OUTFIL data sets
associated with ddnames F and FBU1. CONVERT is used to indicate that a
variable-length data set is to be converted to a fixed-length data set; OUTREC is
used to describe how the variable-length input records are to be reformatted as
fixed-length output records.

v The third OUTFIL statement reformats the variable-length input records and
writes them to the variable-length OUTFIL data set associated with ddname
VINF. OUTREC is used to insert asterisks between fields. 1,4 represents the
RDW. 25 represents the variable part at the end of the input record.

Example 3

SORT FIELDS=(15,6,ZD,A)
OUTFIL FNAMES=USA,

HEADER2=(5:’Parts Completion Report for USA’,2/,
5:’Printed on ’,DATE,

’ at ’,TIME=(12:),3/,
5:’Part ’,20:’Completed’,35:’ Value ($)’,/,
5:’------’,20:’---------’,35:’------------’),

OUTREC=(5:15,6,ZD,M11,
20:3,4,ZD,M12,LENGTH=9,
35:38,8,ZD,M18,LENGTH=12,
132:X)

OUTFIL FNAMES=FRANCE,
HEADER2=(5:’Parts Completion Report for France’,2/,

5:’Printed on ’,DATE=(DM4/),
’ at ’,TIME,3/,

5:’Part ’,20:’Completed’,35:’ Value (F)’,/,
5:’------’,20:’---------’,35:’------------’),

OUTREC=(5:15,6,ZD,M11,
20:3,4,ZD,M16,LENGTH=9,
35:38,8,ZD,M22,LENGTH=12,
132:X)

OUTFIL FNAMES=DENMARK,
HEADER2=(5:’Parts Completion Report for Denmark’,2/,

5:’Printed on ’,DATE=(DMY-),
’ at ’,TIME=(24.),3/,

5:’Part ’,20:’Completed’,35:’ Value (kr)’,/,
5:’------’,20:’---------’,35:’------------’),

OUTREC=(5:15,6,ZD,M11,
20:3,4,ZD,M13,LENGTH=9,
35:38,8,ZD,M19,LENGTH=12,
132:X)

This example illustrates how reports for three different countries can be produced
from sorted fixed-length input records. The reports differ only in the way that date,
time, and numeric formats are specified:

1. The first OUTFIL statement produces a report that has the date, time, and
numeric formats commonly used in the United States.

2. The second OUTFIL statement produces a report that has the date, time, and
numeric formats commonly used in France.

3. The third OUTFIL statement produces a report that has the date, time, and
numeric formats commonly used in Denmark.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 271

|
|
|

|
|
|
|

Of course, any one of the three reports can be produced by itself using a single
OUTFIL statement instead of three OUTFIL statements. (This may be necessary if
you are sorting character data according to a specified locale for that country.)

The FNAMES parameter specifies the ddname (USA, FRANCE, DENMARK)
associated with the fixed-length data set for that report.

The HEADER2 parameter specifies the page header to appear at the top of each
page for that report, which will consist of:

v A line of text identifying the report. Note that all English text in the report can be
replaced by text in the language of that country.

v A blank line (2/).

v A line of text showing the date and time. Note that variations of the DATE,
DATE=(abcd), TIME, and TIME=(abc) operands are used to specify the date and
time in the format commonly used in that country.

v Two blank lines (3/).

v Two lines of text showing headings for the columns of data. Note that the
appropriate currency symbol can be included in the text.

The OUTREC parameter specifies the three columns of data to appear for each
input record as follows:

v A 6-byte edited numeric value produced by transforming the ZD value in bytes 15
through 20 according to the pattern specified by M11. M11 is a pattern for
showing integers with leading zeros.

v A 9-byte (LENGTH=9) edited numeric value produced by transforming the ZD
value in bytes 3 through 6 according to the pattern for integer values with
thousands separators commonly used in that country. M12 uses a comma for the
thousands separator. M16 uses a blank for the thousands separator. M13 uses a
period for the thousands separator.

v A 12-byte (LENGTH=12) edited numeric value produced by transforming the ZD
value in bytes 38 through 45 according to the pattern for decimal values with
thousands separators and decimal separators commonly used in that country.
M18 uses a comma for the thousands separator and a period for the decimal
separator. M22 uses a blank for the thousands separator and a comma for the
decimal separator. M19 uses a period for the thousands separator and a comma
for the decimal separator.

Table 38 on page 224 shows the twenty-seven pre-defined edit masks (M0-M26)
from which you can choose.

132:X is used at the end of the OUTREC parameter to ensure that the data records
are longer than the report records. This will result in an LRECL of 132 for the
fixed-length OUTFIL data sets (1 byte for the ANSI control character and 131 bytes
for the data).

The three reports might look as follows:

OUTFIL Control Statements

272 DFSORT R14 Application Programming Guide

|
|

Parts Completion Report for USA

Printed on 03/25/95 at 01:56:20 pm

Part Completed Value ($)
------ --------- ------------
000310 562 8,317.53
001184 1,234 23,456.78
029633 35 642.10
192199 3,150 121,934.65
821356 233 2,212.34

Parts Completion Report for France

Printed on 25/03/1995 at 13:56:20

Part Completed Value (F)
------ --------- ------------
000310 562 8 317,53
001184 1 234 23 456,78
029633 35 642,10
192199 3 150 121 934,65
821356 233 2 212,34

Parts Completion Report for Denmark

Printed on 25-03-95 at 13.56.20

Part Completed Value (kr)
------ --------- ------------
000310 562 8.317,53
001184 1.234 23.456,78
029633 35 642,10
192199 3.150 121.934,65
821356 233 2.212,34

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 273

Example 4

SORT FIELDS=(3,10,A,16,13,A),FORMAT=CH
OUTFIL FNAMES=WEST,

INCLUDE=(42,6,CH,EQ,C’West’),
HEADER1=(5/,18:’ Western Region’,3/,

18:’Profit and Loss Report’,3/,
18:’ for ’,&DATE,3/,
18:’ Page’,&PAGE),

OUTREC=(6:16,13,24:31,10,ZD,M5,LENGTH=20,75:X),
SECTIONS=(3,10,SKIP=P,

HEADER3=(2:’Division: ’,3,10,5X,’Page:’,&PAGE,2/,
6:’Branch Office’,24:’ Profit/(Loss)’,/,
6:’-------------’,24:’--------------------’),

TRAILER3=(6:’=============’,24:’====================’,/,
6:’Total’,24:TOTAL=(31,10,ZD,M5,LENGTH=20),/,
6:’Lowest’,24:MIN=(31,10,ZD,M5,LENGTH=20),/,
6:’Highest’,24:MAX=(31,10,ZD,M5,LENGTH=20),/,
6:’Average’,24:AVG=(31,10,ZD,M5,LENGTH=20),/,
3/,2:’Average for all Branch Offices so far:’,

X,SUBAVG=(31,10,ZD,M5))),
TRAILER1=(8:’Page ’,&PAGE,5X,’Date: ’,&DATE,5/,

8:’Total Number of Branch Offices Reporting: ’,
COUNT,2/,

8:’Summary of Profit/(Loss) for all’,
’ Western Division Branch Offices’,2/,

12:’Total:’,
22:TOTAL=(31,10,ZD,M5,LENGTH=20),/,

12:’Lowest:’,
22:MIN=(31,10,ZD,M5,LENGTH=20),/,

12:’Highest:’,
22:MAX=(31,10,ZD,M5,LENGTH=20),/,

12:’Average:’,
22:AVG=(31,10,ZD,M5,LENGTH=20))

This example illustrates how a report can be produced with a header and trailer
page and sections of columns of data, from a sorted subset of fixed-length input
records.

The FNAMES parameter specifies the ddname (WEST) associated with the
fixed-length data set for the report.

The INCLUDE parameter specifies the records to be selected for the report.

The HEADER1 parameter specifies the report header to appear as the first page of
the report, which will consist of five blank lines (5/) followed by four lines of text,
each separated by 2 blank lines (3/). The last two lines of text will show the date
(&DATE) and page number (&PAGE), respectively.

The OUTREC parameter specifies the two columns of data to appear for each
selected input record as follows:

v The character string from bytes 16 through 28 of the input record.

v A 20-byte (LENGTH=20) edited numeric value produced by transforming the ZD
value in bytes 31 through 40 according to the pattern specified by M5.

The SECTIONS parameter specifies the section break field (3,10), page ejects
between sections (SKIP=P), the header (HEADER3) to appear before each section
and the trailer (TRAILER3) to appear after each section. The section header will
consist of a line of text showing the page number, a blank line (2/) and two lines of
text showing the headings for the columns of data. The section trailer will consist of

OUTFIL Control Statements

274 DFSORT R14 Application Programming Guide

a line of text separating the data from the trailer, lines of text showing the total
(TOTAL), minimum (MIN), maximum (MAX) and average (AVG) for the data in the
section as edited numeric values, two blank lines, and a line of text showing the
running average (SUBAVG) for all of the data records in the report up to this point.

The TRAILER1 parameter specifies the report trailer to appear as the last page of
the report, which will consist of a line of text showing the page and date, four blank
lines (5/), a text line showing the count of data records in the report, a blank line, a
line of text, a blank line, and lines of text showing the total, minimum maximum and
average for all of the data in the report as edited numeric values.

75:X is used at the end of the OUTREC parameter to ensure that the data records
are longer than the report records. This will result in an LRECL of 76 for the
fixed-length OUTFIL data set (1 byte for the ANSI control character and 75 bytes for
the data).

The report might look as follows:

Western Region

Profit and Loss Report

for 05/11/95

Page 1

Division: Chips Page: 2

Branch Office Profit/(Loss)
------------- --------------------
Gilroy 554,843.42
Los Angeles (22,340.14)
Morgan Hill 987,322.32
Oakland 234,124.32
San Francisco (32,434.31)
San Jose 1,232,133.35
San Martin 889,022.03
============= ====================
Total 3,842,670.99
Lowest (32,434.31)
Highest 1,232,133.35
Average 548,952.99

Average for all Branch Offices so far: 548,952.99

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 275

Division: Ice Cream Page: 3

Branch Office Profit/(Loss)
------------- --------------------
Marin 542,341.23
Napa 857,342.83
San Francisco 922,312.45
San Jose (234.55)
San Martin 1,003,467.30
============= ====================
Total 3,325,229.26
Lowest (234.55)
Highest 1,003,467.30
Average 665,045.85

Average for all Branch Offices so far: 597,325.02

Division: Pretzels Page: 4

Branch Office Profit/(Loss)
------------- --------------------
Marin 5,343,323.44
Morgan Hill 843,843.40
Napa 5,312,348.56
San Francisco 5,412,300.05
San Jose 1,234,885.34
San Martin (2,343.82)
============= ====================
Total 18,144,356.97
Lowest (2,343.82)
Highest 5,412,300.05
Average 3,024,059.49

Average for all Branch Offices so far: 1,406,236.51

Page 5 Date: 05/11/95

Total Number of Branch Offices Reporting: 18

Summary of Profit/(Loss) for all Western Division Branch Offices

Total: 25,312,257.22
Lowest: (32,434.31)
Highest: 5,412,300.05
Average: 1,406,236.51

OUTFIL Control Statements

276 DFSORT R14 Application Programming Guide

Example 5

SORT FIELDS=(6,5,CH,A)
OUTFIL FNAMES=STATUS,

HEADER2=(1:C’PAGE ’,&PAGE,C’ OF STATUS REPORT FOR ’,&DATE,2/,
6:C’ITEM ’,16:C’STATUS ’,31:C’PARTS’,/,
6:C’-----’,16:C’------------’,31:C’-----’),

OUTREC=(1,4,
10:6,5,
20:14,1,CHANGE=(12,

C’1’,C’SHIP’,
C’2’,C’HOLD’,
C’3’,C’TRANSFER’),

NOMATCH=(C’*CHECK CODE*’),
37:39,1,BI,M10,
120:X)

This example illustrates how a report can be produced with a page header and
columns of data from sorted variable-length input records, using a lookup table.

The FNAMES parameter specifies the ddname (STATUS) associated with the
variable-length data set for the report.

The HEADER2 parameter specifies the page header to appear at the top of each
page, which will consist of a line of text showing the page number (&PAGE) and
date (&DATE), a blank line (2/), and two lines of text showing headings for the
columns of data.

The OUTREC parameter specifies the RDW and three columns of data to appear
for each input record as follows (remember that byte 5 is the first byte of data for
variable-length records):

v The character string from bytes 6 through 10 of the input record

v A character string produced by finding a match for byte 14 of the input record in
the table defined by CHANGE (lookup and change). NOMATCH indicates the
character string to be used if byte 14 does not match any of the entries in the
CHANGE table.

v An edited numeric value produced by transforming the BI value in byte 39
according to the pattern specified by M10.

With variable-length input records, you must account for the RDW when specifying
the c: values for OUTREC, but not for headers or trailers. The 1: used for the first
line of HEADER2 causes it to start in the first data byte (by contrast, 5: must be
used to specify the first OUTREC data byte for variable-length records). Also, since
6: is used for the ITEM heading, 10: must be used for the ITEM data to get the
heading and data to line up in columns.

120:X is used at the end of the OUTREC parameter to ensure that the data records
are longer than the report records. This will result in a maximum LRECL of 121 for
the variable-length OUTFIL data set (1 byte for the ANSI control character and a
maximum of 120 bytes for the data).

The first page of the printed report might start as follows:

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 277

PAGE 1 OF STATUS REPORT FOR 05/12/95

ITEM STATUS PARTS
----- ------------ -----
00082 HOLD 36
00123 SHIP 106
00300 *CHECK CODE* 95
10321 TRANSFER 18
12140 SHIP 120

Example 6

OPTION COPY
OUTFIL FNAMES=(PIPE1,PIPE2,PIPE3,PIPE4,PIPE5),SPLIT

This example illustrates how output records can be split as evenlyas possible
among a set of SmartBatch pipes. The first record will be written to the writer
associated with PIPE1, the second to PIPE2, the third to PIPE3, the fourth to
PIPE4, the fifth to PIPE5, the sixth to PIPE1, and so on until all of the records have
been written.

Of course, the records can be written to data sets as well as pipes.

Example 7

OPTION COPY
OUTFIL FNAMES=RANGE1,ENDREC=1000000
OUTFIL FNAMES=RANGE2,STARTREC=1000001,ENDREC=2000000
OUTFIL FNAMES=RANGE3,STARTREC=2000001,ENDREC=3000000
OUTFIL FNAMES=RANGE4,STARTREC=3000001,ENDREC=4000000
OUTFIL FNAMES=(RANGE5,EXTRA),STARTREC=4000001

This example illustrates how specific ranges of output records can be written to
different output data sets. A typical application might be database partitioning.

The first 1 million records will be written to the data set associated with RANGE1,
the second million to RANGE2, the third million to RANGE3, and the fourth million
to RANGE4. The remaining records will be written to both the data set associated
with RANGE5 and the data set associated with EXTRA (SAVE or
STARTREC=4000001 will accomplish the same purpose in this case).

Note that the INCLUDE, OMIT, and SAVE parameters of OUTFIL can also be used
to select records to be written to different output data sets, based on criteria you
specify.

Example 8

OPTION COPY,Y2PAST
OUTFIL FNAMES=Y4,

OUTREC=(1,19,
21,2,PD0,M11,C’/’, transform mm
22,2,PD0,M11,C’/’, transform dd
20,2,Y2P, transform yy to yyyy
24,57)

OUTFIL Control Statements

278 DFSORT R14 Application Programming Guide

This example illustrates how to transform an existing data set with a packed
decimal date field of the form P’yymmdd’ (X’0yymmddC’) in bytes 20-23 into a new
data set with a character date field of the form C’mm/dd/yyyy’ in bytes 20-29. yy
represents the two-digit year, yyyy represents the four-digit year, mm represents the
month, dd represents the day, and C represents a positive sign.

The input data set has an LRECL of 80 and the Y4 data set will have an LRECL of
86.

The Y2PAST=26 option sets the century window to be used to transform two-digit
years into four-digit years. If the current year is 1996, the century window will be
1970 to 2069. Using this century window, the input and output fields might be as
follows:
Input Field (HEX) Output Field (CH)

20 20
| |
0020505F 05/05/2002
0950823C 08/23/1995
0980316C 03/16/1998
0000316F 03/16/2000

Example 9

OPTION COPY,Y2PAST=1996
OUTFIL FNAMES=SPCL,

OUTREC=(1,14, copy positions 1-14
15,6,Y2T, transform yy to yyyy - allow blanks
21,20) copy positions 21 - 40

This example illustrates how to transform an existing data set with a character date
field of the form C’yymmdd’ and blank special indicators in bytes 15-20, into a new
date set with a character date field of the form C’yyyymmdd’ and blank special
indicators in bytes 15-22.

The input data set has an LRECL of 40 and the SPCL data set will have an LRECL
of 42.

The Y2PAST=1996 option sets the century window to 1996-2095. The century
window will be used to transform the two-digit years into four-digit years, but will not
be used for the special blank indicators.

The input records might be as follows:
MORGAN HILL CA
SAN JOSE 960512 CA
BOCA RATON 000628 FL
DENVER 951115 CO

The output records would be as follows:
MORGAN HILL CA
SAN JOSE 19960512 CA
BOCA RATON 20000628 FL
DENVER 20951115 CO

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 279

Example 10

OPTION COPY
OUTFIL FNAMES=ALL,OUTREC=(C’US ’,1,10,C’ is in ’,11,15,/,

C’WW ’,1,10,C’ is in ’,26,20,2/)
OUTFIL FNAMES=(US,WW),SPLIT,

OUTREC=(1,10,C’ is in ’,11,15,/,
1,10,C’ is in ’,26,20)

This example illustrates how multiple OUTFIL output and blank records can be
produced from each OUTFIL input record. The input data set has an LRECL of 50
and contains the following three records:
Finance San Francisco Buenos Aires
Research New York Amsterdam
Marketing Los Angeles Mexico City

The first OUTFIL statement creates the data set associated with ddname ALL. This
data set will have an LRECL of 40 (the length of the longest output record; the one
that includes the 26,20 input field). Each input record will result in two data records
followed by two blank records as follows:

ALL data set
US Finance is in San Francisco
WW Finance is in Buenos Aires

US Research is in New York
WW Research is in Amsterdam

US Marketing is in Los Angeles
WW Marketing is in Mexico City

The second OUTFIL statement creates the two data sets associated with ddnames
US and WW. These data sets will have an LRECL of 37 (the length of the longest
output record; the one that includes the 26,20 input field). Each input record will
result in two data records. SPLIT will cause the first data record to be written to the
US data set and the second data record to be written to the WW data set. Thus,
each input record will create one record in each OUTFIL data set as follows:

US data set
Finance is in San Francisco
Research is in New York
Marketing is in Los Angeles

WW data set
Finance is in Buenos Aires
Research is in Amsterdam
Marketing is in Mexico City

Example 11

SORT FIELDS=(6,3,CH,D)
OUTFIL FNAMES=SET60,OUTREC=(1,60),VLFILL=C' '
OUTFIL FNAMES=VARFIX,VTOF,OUTREC=(5,20,5X,28,20),VLFILL=C'*'

OUTFIL Control Statements

280 DFSORT R14 Application Programming Guide

|
|
|

This example illustrates how variable-length records that are too short to contain all
OUTFIL OUTREC fields can be processed successfully.

The input data set has RECFM=VB and LRECL=80. The records in this data set
have lengths that vary from 15 bytes to 75 bytes.

The first OUTFIL statement creates the data set associated with ddname SET60.
This data set will have RECFM=VB and LRECL=60. Every record in this data set
will have a length of 60. The 1,60 field truncates records longer than 60 bytes to 60
bytes. Because VLFILL=C' ' is specified, the 1,60 field pads records shorter than 60
bytes to 60 bytes using a blank (C' ') as the fill byte.

Note: Without VLFILL=byte, this OUTFIL statement would terminate with an
ICE218A message because some of the input records are too short to
contain the OUTREC field.

The second OUTFIL statement creates the data set associated with ddname
VARFIX. This data set will have RECFM=FB and LRECL=45. VTOF changes the
variable-length input records to fixed-length output records according to the fields
specified by OUTREC. VLFILL=C'*' allows short input records to be processed.
Each missing byte in an OUTFIL OUTREC field is replaced with an asterisk (C'*') fill
byte.

Notes:

1. CONVERT can be used instead of VTOF.

2. VLFILL=C’*’ overrides the default of VLFILL=X’40’ for VTOF or CONVERT.

Example 12

OPTION COPY
OUTFIL OUTREC=(SEQNUM,4,BI,Z,8,5,ZD,TO=PD,Z,

31,2,PD,TO=FI,LENGTH=2)

This example illustrates how a sequence number can be generated and how values
in one numeric format can be converted to another numeric format.

The input data set has an LRECL of 50 and the SORTOUT data set will have an
LRECL of 11.

The OUTFIL statement creates output records with the following fields:

v A binary sequence number in bytes 1-4 that starts at 1 and increments by 1.

v X’00’ in byte 5.

v A PD field in bytes 6-8 containing the converted ZD field from input bytes 8-12

v X’00’ in position 9.

v An FI field in bytes 10-11 containing the converted PD field from input bytes
31-32.

Example 13

SORT FIELDS=COPY
OUTFIL FNAMES=VAROUT1,FTOV
OUTFIL FNAMES=VAROUT2,FTOV,

OUTREC=(20,8,35,10)
OUTFIL FNAMES=VAROUT3,FTOV,VLTRIM=X’40’

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 281

|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|

This example illustrates several ways to convert a fixed-length record data set to a
variable-length record data set using the FTOV parameter of OUTFIL.

The input data set has an RECFM=FB and LRECL=60.

v The first OUTFIL statement converts the fixed-length input data set to a
variable-length OUTFIL data set associated with ddname VAROUT1. VAROUT1
will have RECFM=VB and LRECL=64. All of its records will be 64 bytes long
(4-byte RDW plus 60-byte input record).

v The second OUTFIL statement converts the fixed-length input data set to a
variable-length OUTFIL data set associated with ddname VAROUT2. OUTREC is
used to select two input fields for the output records, bytes 20-27 and bytes
35-44. VAROUT2 will have RECFM=VB and LRECL=22. All of its records will be
22 bytes long (4-byte RDW plus 8-byte input field plus 10-byte input field).

v The third OUTFIL statement converts the fixed-length input data set to a
variable-length OUTFIL data set associated with ddname VAROUT3. VAROUT3
will have RECFM=VB and LRECL=64. VLTRIM=X’40’ is used to remove the
trailing blanks from the variable-length output records. The records can vary from
5 bytes long to 64 bytes long depending on the number of trailing blanks in each
record.

Example 14

OPTION COPY
OUTFIL FNAMES=OUT1,OUTREC=(DATE1(/),X,TIME1(:),X,1,80)
OUTFIL FNAMES=OUT2,OUTREC=(DATE2P,TIME3P,1,80)
OUTFIL FNAMES=OUT3,OUTREC=(DATE3(.),X,TIME2,X,1,80)

This example illustrates several different ways to insert timestamps into your
records.

The input data set has RECFM=FB and LRECL=80.

The first OUTFIL statement creates the data set associated with ddname OUT1.
This data set will have LRECL=100. Each output record will have a timestamp
consisting of the date and time of the run in the form C'yyyy/mm/dd hh:mm:ss ' (20
bytes), followed by the original input record (80 bytes).

The second OUTFIL statement creates the data set associated with ddname OUT2.
This data set will have LRECL=86. Each output record will have a timestamp
consisting of the date of the run in the form P'yyyymm’ (4 bytes) and the time of the
run in the form P'hh' (2 bytes), followed by the original input record (80 bytes).

The third OUTFIL statement creates the data set associated with ddname OUT3.
This data set will have LRECL=94. Each output record will have a timestamp
consisting of the date and time of the run in the form C'yyyy.ddd hhmm ' (14 bytes),
followed by the original input record (80 bytes).

OUTFIL Control Statements

282 DFSORT R14 Application Programming Guide

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|
|
|

Example 15

OPTION COPY
OUTREC FIELDS=(1,4,11,4,DT1,7,4,TM1,60:X)
OUTFIL NODETAIL,
TRAILER1=(//,
3:’Earliest SMF timestamp is ’,

MIN=(5,14,ZD,EDIT=(’TTTT/TT/TT TT:TT:TT’)),/,
3:’Latest SMF timestamp is ’

MAX=(5,14,ZD,EDIT=(’TTTT/TT/TT TT:TT:TT’)))

This example illustrates how the earliest and latest timestamps from a set of SMF
records can be displayed.

The OUTREC statement uses the DT1 format to convert the SMF date in input
bytes 11-15 to a Z'yyyymmdd' value in bytes 5-12, and uses the TM1 format to
convert the SMF time in input bytes 7-10 to a Z'hhmmss' value in bytes 13-18.

The OUTFIL statement uses the Z'yyyymmddhhmmss' value created by OUTREC in
bytes 5-18 to determine the minimum (earliest) and maximum (latest) timestamp,
and displays those timestamps in a trailer record in the form C'yyyy/mm/dd
hh:mm:ss'.

The report might look as follows:
Earliest SMF timestamp is 2001/01/09 10:27:04
Latest SMF timestamp is 2001/04/24 06:13:22

Example 16

SORT FIELDS=(1,20,BI,A)
OUTFIL FNAMES=FUPPER,OUTREC=(1,80,TRAN=LTOU)
OUTFIL FNAMES=FHEX,OUTREC=(1,80,HEX)
OUTFIL FNAMES=FTR,OUTREC=(1,80,TRAN=ALTSEQ)
ALTSEQ CODE=(005C)

This example illustrates three types of conversion for fixed length records:
lowercase to uppercase conversion, hex conversion, and conversion using an
ALTSEQ table.

The input data set has RECFM = FB and LRECL = 80.

The first OUTFIL statement creates the data set associated with ddname FUPPER.
This data set will have RECFM = FB and LRECL = 80. All of the lowercase
EBCDIC characters (a-z) from byte 1 to byte 80 will be converted to uppercase
EBCDIC characters (A-Z). Other characters will remain unchanged. For example,
the characters ’san jose, ca 95193’ will be converted to ’SAN JOSE, CA 95193’.

The second OUTFIL statement creates the data set associated with ddname FHEX.
This data set will have RECFM = FB and LRECL = 160 (2 * 80 data bytes). Each
byte from 1 to 80 will be converted to the two bytes representing its hex value. For
example, the three characters ’A12’ will be converted to the six characters
’C1F1F2’.

OUTFIL Control Statements

Chapter 3. Using DFSORT Program Control Statements 283

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

The third OUTFIL statement creates the data set associated with ddname FTR. This
data set will have RECFM = FB and LRECL = 80. Each binary zero (X’00’) from
byte 1 to byte 80 will be converted to an ’*’ (X’5C’). Other characters will remain
unchanged.

Note: The ALTSEQ table is not used for the SORT field because its format is BI
and not AQ.

Example 17

OPTION COPY
OUTFIL FNAMES=VUPPER,OUTREC=(1,4,5,TRAN=UTOL)
OUTFIL FNAMES=VHEX,OUTREC=(1,4,5,HEX)
OUTFIL FNAMES=VTR,OUTREC=(1,4,5,TRAN=ALTSEQ)
ALTSEQ CODE=(F040,5C40)

This example illustrates three types of conversion for variable-length records:
uppercase to lowercase conversion, hex conversion, and conversion using an
ALTSEQ table.

The input data set has RECFM = VB and LRECL = 5000.

The first OUTFIL statement creates the data set associated with ddname VUPPER.
This data set will have RECFM = VB and LRECL = 5000. All of the uppercase
EBCDIC characters (A-Z) from bytes 5 (after the RDW) to the end of each record
will be converted to lowercase EBCDIC characters (a-z). Other characters will
remain unchanged. For example, the characters ’SAN JOSE, CA 95193’ will be
converted to ’san jose, ca 95193’.

The second OUTFIL statement creates the data set associated with ddname VHEX.
This data set will have RECFM = VB and LRECL = 9996 (4 for RDW plus 2 * 4996
data bytes). Each byte from 5 (after the RDW) to the end of each record will be
converted to the two bytes representing its hex value. For example, the three
characters ’A12’ will be converted to the six characters ’C1F1F2’.

The third OUTFIL statement creates the data set associated with ddname VTR.
This data set will have RECFM = VB and LRECL = 5000. Each ’0’ (X’F0’) and ’*’
(X’5C’) character from bytes 5 (after the RDW) to the end of each record will be
converted to a space (X’40’). Other characters will remain unchanged.

OUTFIL Control Statements

284 DFSORT R14 Application Programming Guide

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

OUTREC Control Statement

The OUTREC control statement allows you to reformat the input records before
they are output. That is, to define which parts of the input record are included in the
reformatted output record, in what order they are to appear, and how they are to be
aligned.

You do this by defining one or more fields from the input record. The reformatted
output record consists of those fields only, in the order in which you have specified
them, and aligned on the boundaries or in the columns you have indicated.

The OUTREC control statement also provides for:

v Insertion of blanks, zeros, strings, current date, current time, and sequence
numbers before, between, and after the input fields in the reformatted records.

v Sophisticated conversion capabilities, such as hexadecimal display, conversion of
EBCDIC letters from lowercase to uppercase or uppercase to lowercase,
conversion of characters using the ALTSEQ translation table, and conversion of
numeric values from one format to another.

v Sophisticated editing capabilities, such as control of the way numeric fields are
presented with respect to length, leading or suppressed zeros, thousands
separators, decimal points, leading and trailing positive and negative signs, and
so on.

Twenty-seven pre-defined editing masks are available for commonly used
numeric editing patterns, encompassing many of the numeric notations used
throughout the world. In addition, a virtually unlimited number of numeric editing
patterns are available via the user-defined editing masks.

v Transformation of SMF date and time values to more usable forms.

v Transformation of various forms of two-digit year dates to various forms of
four-digit year dates using a specified fixed or sliding century window.

�� OUTREC FIELDS= (E

,

s
c: p,m

,a
p
p,m,HEX
p,HEX
p,m,TRAN=LTOU
p,TRAN=LTOU
p,m,TRAN=UTOL
p,TRAN=UTOL
p,m,TRAN=ALTSEQ
p,TRAN=ALTSEQ
p,m,Y2x
p,m,Y2x(c)
p,m,Y2xP
p,m,f

,edit
p,m,f,to
p,m,Y2x,edit
p,m,Y2x,to
p,m,lookup
seqnum

) ��

OUTREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 285

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

v Selection of a character or hexadecimal string from a lookup table, based on a
character, hexadecimal, or bit string as input (that is, lookup and change).

For information concerning the interaction of INREC and OUTREC, see “INREC
Statement Notes” on page 140 and “OUTREC Statement Notes” on page 292.

The OUTREC statement differs from the OUTREC parameter of the OUTFIL
statement in the following ways:

v The OUTREC statement applies to all input records; the OUTREC parameter
applies only to the OUTFIL input records for its OUTFIL group.

v The OUTREC parameter supports the slash (/) separator for creating blank
records and new records, whereas the OUTREC statement does not.

See “OUTFIL Control Statements” on page 204 for complete details on the OUTFIL
OUTREC parameter.

FIELDS

Specifies the order and alignment of separation fields (blanks, zeros, strings,
current date and current time), unedited and edited input fields, and sequence
numbers in the reformatted output records.

c: specifies the position (column) for a separation field, input field or sequence
number, relative to the start of the reformatted output record. Unused space
preceding the specified column is padded with EBCDIC blanks. The
following rules apply:

v c must be a number between 1 and 32752.

v c: must be followed by an input field or a separation field.

v c must not overlap the previous input field or separation field in the
reformatted output record.

�� FIELDS= (E

,

s
c: p,m

,a
p
p,m,HEX
p,HEX
p,m,TRAN=LTOU
p,TRAN=LTOU
p,m,TRAN=UTOL
p,TRAN=UTOL
p,m,TRAN=ALTSEQ
p,TRAN=ALTSEQ
p,m,Y2x
p,m,Y2x(c)
p,m,Y2xP
p,m,f

,edit
p,m,f,to
p,m,Y2x,edit
p,m,Y2x,to
p,m,lookup
seqnum

) ��

OUTREC Control Statement

286 DFSORT R14 Application Programming Guide

|
|
|

v For variable-length records, c: must not be specified before the first input
field (the record descriptor word) nor after the variable part of the input
record.

v The colon (:) is treated like the comma (,) or semicolon (;) for
continuation to another line.

See Table 21 on page 133 for examples of valid and invalid column
alignment.

s specifies that a separation field (blanks, zeros, character string,
hexadecimal string, current date, or current time) is to appear in the
reformatted output record. It can be specified before or after any input field.
Consecutive separation fields may be specified. For variable-length records,
separation fields must not be specified before the first input field (the record
descriptor word) or after the variable part of the input record. Permissible
values are nX, nZ, nC'xx...x', and nX'yy...yy', DATE1, DATE1(c), DATE1P,
DATE2, DATE2(c), DATE2P, DATE3, DATE3(c), DATE3P, TIME1, TIME1(c),
TIME1P, TIME2, TIME2(c), TIME2P, TIME3 and TIME3P.

nX Blank separation. n bytes of EBCDIC blanks (X'40') are to appear in
the reformatted output records. n can range from 1 to 4095. If n is
omitted, 1 is used.

See Table 22 on page 133 for examples of valid and invalid blank
separation.

nZ Binary zero separation. n bytes of binary zeros (X'00') are to appear
in the reformatted output records. n can range from 1 to 4095. If n
is omitted, 1 is used.

See Table 23 on page 134 for examples of valid and invalid binary
zero separation.

nC'xx...x'
Character string separation. n repetitions of the character string
constant (C'xx...x') are to appear in the reformatted output records.
n can range from 1 to 4095. If n is omitted, 1 is used. x can be any
EBCDIC character. You can specify from 1 to 256 characters.

If you want to include a single apostrophe in the character string,
you must specify it as two single apostrophes:

Required: O’NEILL Specify: C’O’’NEILL’

See Table 24 on page 134 for examples of valid and invalid
character string separation.

nX'yy...yy'
Hexadecimal string separation. n repetitions of the hexadecimal
string constant (X'yy...yy') are to appear in the reformatted output
records. n can range from 1 to 4095. If n is omitted, 1 is used.

The value yy represents any pair of hexadecimal digits. You can
specify from 1 to 256 pairs of hexadecimal digits.

See Table 25 on page 135 for examples of valid and invalid
hexadecimal string separation.

DATEn, DATEn(c), DATEnP
Constant for current date. The date of the run is to appear in the
reformatted output records. Table 44 on page 288 shows the

OUTREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 287

|
|
|
|
|
|
|
|
|

|
|
|

constant generated for each separation field you can specify along
with its length and an example using (/) for (c) where relevant. yyyy
represents the year, mm represents the month (01-12), dd
represents the day (01-31), ddd represents the day of the year
(001-366), and c can be any character except a blank.

Table 44. Current date constants

Separation
Field

Constant Length
(bytes)

April 19, 2001

DATE1 C'yyyymmdd' 8 C'20010419'

DATE1(c) C'yyyycmmcdd' 10 C'2001/04/19'

DATE1P P'yyyymmdd' 5 P'20010419'

DATE2 C'yyyymm' 6 C'200104'

DATE2(c) C'yyyycmm' 7 C'2001/04 '

DATE2P P'yyyymm' 4 P'200104'

DATE3 C'yyyyddd' 7 C'2001109'

DATE3(c) C'yyyycddd' 8 C'2001/109'

DATE3P P'yyyyddd' 4 P'2001109'

TIMEn, TIMEn(c), TIMEnP
Constant for current time. The time of the run is to appear in the
reformatted output records. Table 45 shows the constant generated
for each separation field you can specify along with its length and
an example using (:) for (c) where relevant. hh represents the hour
(00-23), mm represents the minutes (00-59), ss represents the
seconds (00-59), and c can be any character except a blank.

Table 45. Current time constants

Separation
Field

Constant Length
(bytes)

01:55:43 PM

TIME1 C'hhmmss' 6 C'135543'

TIME1(c) C'hhcmmcss' 8 C'13:55:43'

TIME1P P'hhmmss' 4 P'135543'

TIME2 C'hhmm' 4 C'1355'

TIME2(c) C'hhcmm ' 5 C'13:55'

TIME2P P'hhmm' 3 P'1355'

TIME3 C'hh' 2 C'13'

TIME3P P'hh' 2 P'13'

p,m,a
specifies that an unedited input field is to appear in the reformatted output
record.

p specifies the first byte of the input field relative to the beginning of the input
record.14 The first data byte of a fixed-length record has relative position 1.
The first data byte of a variable-length record has relative position 5,
because the first four bytes are occupied by the RDW. All fields must start

14. If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 user exit reformats the record, and INREC
is not specified, p must refer to the record as reformatted by your E15 user exit.

OUTREC Control Statement

288 DFSORT R14 Application Programming Guide

|
|
|
|
|

||

|
|
||
|
|

||||

||||

||||

||||

||||

||||

||||

||||

||||

|
|
|
|
|
|
|

||

|
|
||
|
|

||||

||||

||||

||||

||||

||||

||||

||||
|

on a byte boundary, and no field may extend beyond byte 32752. See
“OUTREC Statement Notes” on page 292 for special rules concerning
variable-length records.

m specifies the length of the input field. It must include the sign if the data is
signed and must be a whole number of bytes. See “OUTREC Statement
Notes” on page 292 for more information.

a specifies the alignment (displacement) of the input field in the reformatted
output record relative to the start of the reformatted output record.

The permissible values of a are:

H Halfword aligned. The displacement (p-1) of the field from the
beginning of the reformatted input record, in bytes, is a multiple of 2
(that is, position 1, 3, 5, and so forth).

F Fullword aligned. The displacement is a multiple of 4 (that is,
position 1, 5, 9, and so forth).

D Doubleword aligned. The displacement is a multiple of 8 (that is,
position 1, 9, 17, and so forth).

Alignment can be necessary if, for example, the data is to be used in a
COBOL application program where COMPUTATIONAL items are aligned
through the SYNCHRONIZED clause. Unused space preceding aligned
fields are always padded with binary zeros.

p specifies that the unedited part of the input record (that part beyond the
minimum record length), is to appear in the reformatted output record, as the
last field. Note that if the reformatted output record includes only the RDW and
the variable part of the input record, “null” records containing only an RDW may
result.

A value must be specified for p that is less than or equal to the minimum record
length (RECORD statement L4 value) plus 1 byte.

p,m,HEX
specifies that the hexadecimal representation of an input field is to appear in
the reformatted output record.

See p,m,HEX under OUTFIL OUTREC for details.

p,HEX
specifies that the hexadecimal representation of the variable part of the input
record (that part beyond the minimum record length), is to appear in the
reformatted output record, as the last field. Note that if the reformatted output
record includes only the RDW and the variable part of the input record, ″null″
records containing only an RDW may result.

See p,HEX under OUTFIL OUTREC for details.

p,m,TRAN=LTOU
specifies that lowercase EBCDIC letters (that is, a-z) in an input field are to
appear as uppercase EBCDIC letters (that is, A-Z) in the reformatted output
record.

See p,m,TRAN=LTOU under OUTFIL OUTREC for details.

p,TRAN=LTOU
specifies that lowercase EBCDIC letters (that is, a-z) in the variable part of the
input record (that part beyond the minimum record length), are to appear as
uppercase EBCDIC letters (that is, A-Z) in the reformatted output record, as the

OUTREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 289

|
|
|
|

|

|
|
|
|

last field. Note that if the reformatted output record includes only the RDW and
the variable part of the input record, ″null″ records containing only an RDW may
result.

See p,TRAN=LTOU under OUTFIL OUTREC for details.

p,m,TRAN=UTOL
specifies that uppercase EBCDIC letters (that is, A-Z) in an input field are to
appear as lowercase EBCDIC letters (that is, a-z) in the reformatted output
record.

See p,m,TRAN=UTOL under OUTFIL OUTREC for details.

p,TRAN=UTOL
specifies that uppercase EBCDIC letters (that is, A-Z) in the variable part of the
input record (that part beyond the minimum record length), are to appear as
lowercase EBCDIC letters (that is, a-z) in the reformatted output record, as the
last field. Note that if the reformatted output record includes only the RDW and
the variable part of the input record, ″null″ records containing only an RDW may
result.

See p,TRAN=UTOL under OUTFIL OUTREC for details.

p,m,TRAN=ALTSEQ
specifies that the characters in an input field are to be changed according to the
ALTSEQ translation table in effect in the reformatted output record.

See p,m,TRAN=ALTSEQ under OUTFIL OUTREC for details.

p,TRAN=ALTSEQ
specifies that the characters in the variable part of the input record (that part
beyond the minimum record length), are to be changed according to the
ALTSEQ translation table in effect in the reformatted output record, as the last
field. Note that if the reformatted input record includes only the RDW and the
variable part of the input record, ″null″ records containing only an RDW may
result.

See p,TRAN=ALTSEQ under OUTFIL OUTREC for details.

p,m,Y2x
specifies that the four-digit CH date representation of a two-digit year input date
field is to appear in the reformatted output record. Real dates are transformed
using the century window established by the Y2PAST option in effect. The
century window is not used for special indicators; they are just expanded
appropriately (for example, p,6,Y2T transforms C’000000’ to C’00000000’).

See p,m,Y2x under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(21,3,Y2V,X,12,5,Y2W)

p,m,Y2x(c)
specifies that the four-digit CH date representation with separators of a two-digit
year input date field is to appear in the reformatted output record. Real dates

Sample Syntax:
Fixed input records

OUTREC FIELDS=(1:5,10,15:8C’0’,
25:20,15,TRAN=LTOU,80:X)

Variable input records
OUTREC FIELDS=(1,4,C’ RDW=’,1,4,HEX,C’ FIXED=’,

5,20,HEX,C’ VARIABLE=’,21,HEX)

OUTREC Control Statement

290 DFSORT R14 Application Programming Guide

|

|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|

|

are transformed using the century window established by the Y2PAST option in
effect. The century window is not used for special indicators; they are just
expanded appropriately (for example, p,6,Y2T(/) transforms C’000000’ to
C’0000/00/00’).

See p,m,Y2x(c) under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(25,6,Y2T(-),X,14,2,Y2U(/))

p,m,Y2xP
specifies that the four-digit PD date representation of a two-digit year input date
field is to appear in the reformatted output record. Real dates are transformed
using the century window established by the Y2PAST option in effect. The
century window is not used for special indicators; they are just expanded
appropriately (for example, p,6,Y2TP transforms C’000000’ to P’00000000’).

See p,m,Y2xP under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(11,3,Y2XP,X,21,4,Y2WP)

p,m,f,edit
specifies that an edited numeric input field is to appear in the reformatted output
record. You can edit BI, FI, PD, PD0, ZD, CSF/FS, DT1, DT2, DT3, TM1, TM2,
TM3 or TM4 fields using either pre-defined edit masks (M0-M26) or specific edit
patterns you define. You can control the way the edited fields look with respect
to length, leading or suppressed zeros, thousands separators, decimal points,
leading and trailing positive and negative signs, and so on.

See p,m,f,edit under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(5:21,8,ZD,M19,X,46,5,ZD,M13,

31:35,6,FS,SIGNS=(,,+,-),LENGTH=10,
51:8,4,PD,EDIT=(**II,IIT.TTXS),SIGNS=(,,+,-))

p,m,f,to
specifies that a converted numeric input field is to appear in the reformatted
output record. You can convert BI, FI, PD, PD0, ZD, CSF/FS, DT1, DT2, DT3,
TM1, TM2, TM3, or TM4 fields to BI, FI, PD, ZD, or CSF/FS fields.

See p,m,f,to under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(21,5,ZD,TO=PD,X,8,4,ZD,FI,LENGTH=2)

,

p,m,Y2x,edit
specifies that an edited four-digit year CH date representation of a two-digit
year input date field is to appear in the reformatted output record.

See p,m,Y2x,edit under OUTFIL OUTREC for details.

p,m,Y2x,to
specifies that a converted four-digit year date representation of a two-digit year
input date field is to appear in the reformatted output record.

See p,m,Y2x,to under OUTFIL OUTREC for details.

p,m,lookup
specifies that a character or hexadecimal string from a lookup table is to appear
in the reformatted output record. You can use p,m,lookup to select a specified

OUTREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 291

|
|
|
|
|
|

|
|
|

|

character or hexadecimal string based on matching an input value against
character, hexadecimal, or bit constants.

See p,m,lookup under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(11,1,

CHANGE=(6,
C’R’,C’READ’,
C’U’,C’UPDATE’,
X’FF’,C’EMPTY’,
C’A’,C’ALTER’),

NOMATCH=(11,6),
4X,
21,1,
CHANGE=(10,

B’.1......’,C’VSAM’,
B’.0......’,C’NON-VSAM’))

seqnum
specifies that a sequence number is to appear in the reformatted output record.
The sequence numbers are assigned in the order in which the records are
received for OUTREC processing. You can create BI, PD, ZD or CSF/FS
sequence numbers and control their lengths, starting values and increment
values.

See seqnum under OUTFIL OUTREC for details.

Sample Syntax:
OUTREC FIELDS=(SEQNUM,6,ZD,START=1000,INCR=50,1,60)

Default: None; must be specified. See Appendix B, “Specification/Override of
DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

OUTREC Statement Notes
v If input records are reformatted by INREC or E15, OUTREC must refer to fields

in the appropriate reformatted record (see “INREC Statement Notes” on
page 140).

v When you specify OUTREC, you must be aware of the change in record size
and layout of the resulting reformatted output records.

v If the SORTOUT LRECL is specified or available, DFSORT will use it even if it
does not match the reformatted OUTREC record length; this can cause padding
or truncation of the reformatted OUTREC records, or termination. If the
SORTOUT LRECL is not specified or available, DFSORT can automatically use
the reformatted OUTREC record length as the SORTOUT LRECL, when
appropriate. See the discussion of the SOLRF and NOSOLRF options in
“OPTION Control Statement” on page 155 for details.

For VSAM data sets, the maximum record size defined in the cluster is
equivalent to the LRECL when processing fixed-length records, and is four bytes
more than the LRECL when processing variable-length records. See “VSAM
Considerations” on page 14 for more information.

v For variable-length records, the first entry in the FIELDS parameter must specify
or include the 4-byte RDW. DFSORT sets the length of the reformatted record in
the RDW.

OUTREC Control Statement

292 DFSORT R14 Application Programming Guide

If the first field in the data portion of the input record is to appear in the
reformatted output record immediately following the RDW, the entry in the
FIELDS parameter can specify both RDW and data field in one. Otherwise, the
RDW must be specifically included in the reformatted output record.

v The variable part of the input record (that part beyond the minimum record
length) can be included in the reformatted output record as the last part. In this
case, a value must be specified for pn that is less than or equal to the minimum
record length (RECORD statement L4 value) plus 1 byte, and mn and an must
be omitted. If INREC and OUTREC are both specified, either both must specify
position-only for the last part, or neither must specify position-only for the last
part.

Note that, if the reformatted input includes only the RDW and the variable part of
the input record, “null” records containing only an RDW might result.

v The reformatted output records are in the format specified by OUTREC
regardless of whether INREC was specified.

v Fields referenced in OUTREC statements can overlap each other or control
fields.

v If input is variable records, the output is also variable. This means that each
record is given the correct RDW by DFSORT before output.

v When OUTREC is specified, your E35 user exit routine must refer to fields in the
reformatted output record.

v DFSORT issues a message and terminates processing if an OUTREC statement
is specified for a tape work data set sort or conventional merge application.

v When you specify OUTREC, VLSHRT is not used. If VLSHRT is specified, it is
ignored.

v If SZERO is in effect, -0 is treated as negative and +0 is treated as positive for
edited or converted input fields. If NOSZERO is in effect, -0 and +0 are treated
as positive for edited or converted input fields.

Reformatting the Output Record—Examples
See “Reformatting Records Before Processing — Examples” on page 141. Example
1, Example 3, and Example 4 show applications in which both INREC and
OUTREC statements are used in the same application.

Example 1

OUTREC FIELDS=(11,32)

This statement specifies that the output record is to contain 32 bytes beginning with
byte 11 of the input record. This statement can be used only with fixed-length input
records, because it does not include the first 4 bytes.

Example 2

OUTREC FIELDS=(1,4,11,32,D,101)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record is to contain an RDW plus 32 bytes of the input
record starting at byte 11 (aligned on a doubleword boundary, relative to the start of
the record) plus the entire variable portion of the input record.

OUTREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 293

Note that no extra comma is coded to indicate the omission of the first alignment
parameter. If you do include an extra comma, DFSORT issues a message and
terminates processing.

Example 3

OUTREC FIELDS=(1,42,D,101)

This statement is for variable-length records of minimum length 100 bytes, and
specifies that the output record should contain an RDW plus the first 38 data bytes
of the input record plus the entire variable portion of the input record.

The 'D' parameter has no effect because the first field is always placed at the
beginning of the output record.

Example 4

SORT FIELDS=(20,4,CH,D,10,3,CH,D)
OUTREC FIELDS=(7:20,4,C’ FUTURE ’,20,2,10,3,1Z,1,9,13,7,

24,57,TRAN=LTOU,6X’FF’)

This example illustrates how a fixed-length input data set can be sorted and
reformatted for output. The SORTIN LRECL is 80 bytes.

The reformatted output records are fixed length with a record size of 103 bytes.
SOLRF (the IBM-supplied default) is in effect, so unless the SORTOUT LRECL is
specified or available, it will automatically be set to the reformatted record length of
103. The reformatted records look as follows:

Position Contents
1-6 EBCDIC blanks for column alignment
7-10 Input positions 20 through 23
11-18 Character string: C' FUTURE '
19-20 Input positions 20 through 21
21-23 Input positions 10 through 12
24 Binary zero
25-33 Input positions 1 through 9
34-40 Input positions 13 through 19
41-97 Input positions 24 through 80 with lowercase EBCDIC letters

converted to uppercase EBCDIC letters
98-103 Hexadecimal string: X'FFFFFFFFFFFF'

Example 5

SORT FIELDS=(12,4,PD,D)
RECORD TYPE=V,LENGTH=(,,,100)
OUTREC FIELDS=(1,7,5Z,5X,28,8,6X,101)

This example illustrates how a variable-length input data set can be sorted and
reformatted for output. The variable part of the input records is included in the
output records. The minimum input record size is 100 bytes and the maximum input
record size (SORTIN LRECL or maximum record size for VSAM) is 200 bytes.

The reformatted output records are variable-length with a maximum record size of
131 bytes. The reformatted records look as follows:

OUTREC Control Statement

294 DFSORT R14 Application Programming Guide

|
|
|

|
|

Position Contents
1-4 RDW (input positions 1 through 4)
5-7 Input positions 5 through 7
8-12 Binary zeros
13-17 EBCDIC blanks
18-25 Input positions 28 through 35
26-31 EBCDIC blanks
32-n Input positions 101 through n (variable part of input records)

Example 6

MERGE FIELDS=(28,4,BI,A)
OUTREC FIELDS=(1,4,5Z,5X,5,3,28,8,6Z,DATE3,TIME1)

This example illustrates how input files can be merged and reformatted for output,
with the current date and current time included. The variable part of the input
records is not to be included in the output records. The SORTINnn LRECL is 50
bytes.

The reformatted output records are variable-length with a maximum record size of
44 bytes. The reformatted records look as follows:

Position Contents
1-4 RDW (input positions 1 through 4)
5-9 Binary zeros
10-14 EBCDIC blanks
15-17 Input positions 5 through 7
18-25 Input positions 28 through 35
26-31 Binary zeros
32-38 The current date in the form C'yyyyddd'
39-44 The current time in the form C'hhmmss'

Example 7

OPTION COPY,Y2PAST=1985
OUTREC FIELDS=(SEQNUM,8,ZD,START=1000,INCR=100,

11:8,4,PD,M12,
31:15,4,Y2V(/),
51:2,1,CHANGE=(3,

X’01’,C’L92’,X’02’,C’M72’,X’03’,C’J42’),
NOMATCH=(C’???’))

This example illustrates how a sequence number can be generated, how numeric
and date values can be edited, and how a lookup table can be used.

The reformatted output records look as follows:

Position Contents
1-8 A zoned decimal sequence number that starts at 1000 and

increments by 100.
11–20 A CH field containing the PD field from input positions 8 through 11

edited according to the M12 edit mask.
31-40 A C’yyyy/mm/dd’ date field containing the P’yymmdd’ date field from

input positions 15-18 transformed according to the specified century
window of 1985-2084.

51–53 A CH field containing C’L92’, C’M72’, C’J42’ or C’???’ as
determined by using a lookup table for the input field in position 2.

OUTREC Control Statement

Chapter 3. Using DFSORT Program Control Statements 295

|

|
|
|
|

|
|
|
|

|
|

||
||
||
||
||
||
||
||
||

|

RECORD Control Statement

The RECORD control statement can be used to specify the type and lengths of the
records being processed, and the minimum and average record lengths for a
variable-length sort.

The RECORD control statement is required when:

v A user exit changes record lengths.

v A user exit supplies all of the input records.

v A Conventional merge or tape work data set sort uses VSAM input.

TYPE

Can be used to specify the record type when input is VSAM, or an E15 or E32
exit supplies all of the input records. The record type can be:

v Fixed-length (F). The records are processed without an RDW, so the data
starts in position 1. Control statement positions should be specified
accordingly.

An RRDS can always be processed as fixed-length. A KSDS, ESDS or
VRRDS used for input should only be processed as fixed-length if all of its
records have a length equal to the maximum record size defined for the
cluster. Otherwise, input records which are shorter than the maximum record
size are padded with bytes that may or may not be zeros (that is, ″garbage″
bytes).

RECORD TYPE= F

V
D

D

TYPE =F,

TYPE= V

LENGTH=(L1

LENGTH=(L1

)

)

L1

L1

L1

L1

L1

L1

L1

L1

L3

L3

L3

L3

L5

L5

,

,

L2

L2

L3

L2

L2

L2

L2

L2

L2

L4

L4

L4

L6

L3

L7

L4

L5

L6

,

,

, ,

,

, ,

, ,

, , , ,

, , , ,

, , , , , ,

�� TYPE=x ��

RECORD Control Statement

296 DFSORT R14 Application Programming Guide

v Variable-length (V). The records are processed with an RDW in positions
1-4, so the data starts in position 5. Control statement positions should be
specified accordingly.

An RRDS, KSDS, ESDS or VRRDS can always be processed as
variable-length. For VSAM input, DFSORT reads each record and prepends
an RDW to it. For VSAM output, DFSORT removes the RDW before writing
each record.

TYPE is only required for a Conventional merge or tape work data set sort that
uses VSAM input or an E15 or E32 exit that supplies all of the input records.

If input is non-VSAM, DFSORT determines the record type from the RECFM of
the input data set and ignores TYPE.

If input is VSAM, or an E15 or E32 exit supplies all of the input records,
DFSORT determines or assigns the record type as follows, using the
information in the order listed:

1. F or V from RECORD TYPE if specified.

2. F or V from SORTOUT RECFM if available.

3. V if OUTFIL VTOF, CONVERT or VLFILL is specified, or F if OUTFIL FTOV
is specified..

4. F or V from OUTFIL RECFM if available.

5. V if SORTIN is VSAM and SORTOUT is VSAM; otherwise F.

Notes:

a. If the selected record type is not what you want DFSORT to use, specify
RECORD TYPE=F or RECORD TYPE=V as appropriate.

b. For a Conventional merge or tape work data set sort, you must specify
RECORD TYPE=F or RECORD TYPE=V as appropriate.

x can be one of the following:

F fixed-length record processing.

Note: FB can be used instead of F.

V variable-length record processing.

Note: VB can be used instead of V.

D ISCII/ASCII variable-length record processing.

Note: DB can be used instead of D.

Default: F or V as described above. See Appendix B, “Specification/Override of
DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

LENGTH

RECORD Control Statement

Chapter 3. Using DFSORT Program Control Statements 297

|
|

Can be used to specify various record lengths. L1 through L3 apply to
fixed-length and variable-length record processing. L4 and L5 apply to
variable-length record processing. L6 and L7 are accepted, but not used.

LENGTH is required only if:

v A user exit changes record lengths.

v A user exit supplies all of the input records.

L1
Input record length. For variable-length records, maximum input record
length.

Notes:
1. L1 is ignored if the input record length is available from SORTIN.
2. L1 is required if there is no SORTIN or SORTINnn data set, unless L2

is specified.

Default: The SORTIN or SORTINnn record length. For VSAM data sets, the
maximum record size (RECSZ value).

L2
Record length after E15. For variable-length records, maximum record
length after E15.

Notes:

1. L2 is ignored if E15 is not used.

2. An accurate value for L2 must be specified if E15 changes the record
length.

3. L2 must be at least 18 bytes if tape work data sets are used.

4. L2 is ignored if there is no SORTIN or SORTINnn data set, unless L1 is
not specified.

Default: L1.

L3
Output record length. For variable—length records, maximum output record
length.

Note: L3 is ignored if the record length (LRECL or VSAM RECSZ) is
available from SORTOUT, or if NOSOLRF is in effect and E35,
INREC, OUTREC, and OUTFIL are not used.

�� LENGTH= (�

� L1
, L2

L1
, , L3

L1 L2
, , , L4

L1 L2 L3
, , , , L5

L1 L2 L3 L4
, , , , , L6

L1 L2 L3 L4 L5
, , , , , , L7

L1 L2 L3 L4 L5 L6

) ��

RECORD Control Statement

298 DFSORT R14 Application Programming Guide

Default: One of the following, in the order listed:
1. SORTOUT record length if available
2. OUTREC record length if SOLRF is in effect
3. INREC record length if SOLRF is in effect
4. L2 if specified providing an E15 is used
5. SORTIN or SORTINnn record length if available
6. L1

L4
Minimum record length.

Notes:

1. L4 is not used if the Blockset technique is selected

2. L4 is only used for variable-length record sort applications.

3. Specifying L4 may improve performance, but if L4 is too large, DFSORT
could fail with message ICE015A.

Default: The minimum length needed to contain all control fields. This
number must be at least 18 bytes if the maximum input record length is
greater than 18 bytes; otherwise, DFSORT sets L4 to 18 bytes.

L5
Average record length.

Notes:

1. L5 is not used if the Blockset technique is selected

2. L5 is overridden by the AVGRLEN parameter if both are specified

3. L5 is only used for variable-length sorts.

Default: None; optional.

L6, L7
Record lengths that are accepted but are reserved for future use.

Notes:

1. You can drop values from the right. For example, LENGTH=(80,70,70,70).

2. You can omit values from the middle or left, provided you indicate their omission
by a comma or semicolon. For example, LENGTH=(,,,30,80).

3. Parentheses are optional when L1 alone is specified. If any of L2 through L7 is
specified, with or without L1, parentheses are required.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT Options”
on page 603.

Describing the Record Format and Length—Examples

Example 1

MODS E15=(INEX,1000,EXIT),E35=(OUTEX,2000,EXIT)
RECORD LENGTH=(,175,180)

This example illustrates how the RECORD statement can be used to indicate that
E15 and E35 exits change the record length. The record type (F) and input record
length (200) are obtained automatically from the RECFM and LRECL of the input
data set, respectively.

RECORD Control Statement

Chapter 3. Using DFSORT Program Control Statements 299

LENGTH
L2 specifies that the E15 exit passes back 175 byte records. L3 specifies
that the E35 exit passes back 180 byte records.

Example 2

MODS E15=(E15ONLY,1000,EXIT)
RECORD TYPE=V,LENGTH=60

This example illustrates how the RECORD statement can be used to set the record
type and maximum input record length when an E15 exit supplies all of the input as
variable-length records.

TYPE
V specifies that the E15 exit inserts variable-length records, that is, the inserted
records contain an RDW in positions 1-4 and the data starts in position 5.

LENGTH
L1 specifies that the E15 exit inserts records with a maximum length of 60
bytes.

SORT Control Statement

�� SORT FIELDS= E

E

,

(p,m,f,s)
,

(p,m,s) , FORMAT=f
COPY
(COPY)

�

�

E

,

, CKPT
DYNALLOC

= d
(d)
(,n)
(d,n)
OFF
(OFF)

EQUALS
NOEQUALS
FILSZ= x

Ex
Ux

SIZE= y
Ey
Uy

SKIPREC=z
STOPAFT=n
Y2PAST= s

f

��

RECORD Control Statement

300 DFSORT R14 Application Programming Guide

The SORT control statement must be used when a sorting application is performed;
this statement describes the control fields in the input records on which the program
sorts. A SORT statement can also be used to specify a copy application. User
labels will not be copied to the output data sets.

The way in which DFSORT processes short SORT control fields depends on the
setting for VLSHRT/NOVLSHRT. A short field is one where the variable-length
record is too short to contain the entire field, that is, the field extends beyond the
record. For details about sorting short records, see the discussion of the VLSHRT
and NOVLSHRT options in “OPTION Control Statement” on page 155.

The options available on the SORT statement can be specified in other sources as
well. A table showing all possible sources for these options and the order of
override is given in Appendix B, “Specification/Override of DFSORT Options” on
page 603.

When an option can be specified on either the SORT or OPTION statement, it is
preferable to specify it on the OPTION statement.

DFSORT accepts but does not process the following SORT operands:
WORK=value and ORDER=value.

DFSORT’s collating behavior can be modified according to your cultural
environment. The cultural environment is established by selecting the active locale.
The active locale’s collating rules affect SORT processing as follows:

v DFSORT produces sorted records for output according to the collating rules
defined in the active locale. This provides sorting for single- or multi-byte
character data, based on defined collating rules that retain the cultural and local
characteristics of a language.

If locale processing is to be used, the active locale will only be used to process
character (CH) control fields.

For more information on locale processing, see “Cultural Environment
Considerations” on page 6 or LOCALE in “OPTION Control Statement” on
page 155.

FIELDS

Requires four facts about each control field in the input records: the position of
the field within the record, the length of the field, the format of the data in the
field, and the sequence into which the field is to be sorted. These facts are
communicated to DFSORT by the values of the FIELDS operand, represented
by p, m, f, and s.

All control fields must be located within the first 32752 bytes of a record.

Control fields must not extend beyond the shortest record to be sorted unless
VLSHRT is in effect. The collected control fields (comprising the control word)
must not exceed 4092 bytes (or 4088 bytes when EQUALS is in effect). The
FIELDS operand can be written in two ways.

�� FIELDS=(E

,

p,m,f,s) ��

SORT Control Statement

Chapter 3. Using DFSORT Program Control Statements 301

|

Use the first FIELDS operand format to describe control fields that contain
different data formats; use the second format (explained in the discussion of the
FORMAT parameter later in this section) to describe SORT fields that contain
data of the same format. The second format is optional; if you prefer, you can
always use the first format.

The program examines the major control field first, and it must be specified first.
The minor control fields are specified following the major control field. p, m, f,
and s describe the control fields. The text that follows gives specifications in
detail.

p specifies the first byte of a control field relative to the beginning of the input
record. 15

The first data byte of a fixed-length record has relative position 1. The first
data byte of a variable-length record has relative position 5. The first 4
bytes contain the record descriptor word. All control fields, except binary,
must begin on a byte boundary. The first byte of a floating-point field is
interpreted as a signed exponent; the rest of the field is interpreted as the
fraction.

Note that the beginning of a variable-length record must include a 4-byte
RDW that precedes the actual record. This is also true for VSAM input
records, for which DFSORT supplies the necessary RDW on input to the
program and removes it again at output (if output is to a VSAM data set).
You should therefore always add four to the byte position in variable-length
records.

Fields containing binary values are described in a “bytes.bits” notation as
follows:

1. First, specify the byte location relative to the beginning of the record
and follow it with a period.

2. Then, specify the bit location relative to the beginning of that byte.
Remember that the first (high-order) bit of a byte is bit 0 (not bit 1); the
remaining bits are numbered 1 through 7.

Thus, 1.0 represents the beginning of a record. A binary field beginning on
the third bit of the third byte of a record is represented as 3.2. When the
beginning of a binary field falls on a byte boundary (say, for example, on
the fourth byte), you can write it in one of three ways:

4.0
4.
4

Other examples of this notation are shown in Figure 16 on page 303:

15. If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 user exit reformats the record, and INREC
is not specified, p must refer to the record as reformatted by your E15 user exit.

SORT Control Statement

302 DFSORT R14 Application Programming Guide

m specifies the length of the control field. Values for all control fields except
binary fields must be expressed in integer numbers of bytes. Binary fields
can be expressed in the notation “bytes.bits”. The length of a binary control
field that is an integer value (d) can be expressed in one of three ways:

d.0
d.
d

The number of bits specified must not exceed 7. A control field 2 bits long
would be represented as 0.2.

The total number of bytes occupied by all control fields must not exceed
4092 (or, when the EQUALS option is in operation, 4088 bytes). When you
determine the total, count a binary field as occupying an entire byte if it
occupies any part of it. For example, a binary field that begins on byte 2.6
and is 3 bits long occupies two bytes. All fields must be completely
contained within the first 32752 bytes of the record.

f specifies the format of the data in the control field. Acceptable control field
lengths (in bytes) and available formats are shown in Table 46.

Table 46. Control Field Formats and Lengths

Format Length Description

CH 1 to 4092 bytes Character 16

AQ 1 to 4092 bytes Character with alternate
collating sequence

ZD 1 to 32 bytes Signed zoned decimal

PD 1 to 32 bytes Signed packed decimal

16. If CHALT is in effect, CH is treated as AQ.

byte 1
bits 0 - 7

byte 2
bits 0 - 7

byte 3
bits 0 - 7

1.0
1.
1

3.0
3.
3

3.12.21.6

Figure 16. Examples of Notation for Binary Fields

SORT Control Statement

Chapter 3. Using DFSORT Program Control Statements 303

|
|
|
|
|
|

|||
|

Table 46. Control Field Formats and Lengths (continued)

Format Length Description

PD0 2 to 8 bytes Packed decimal with sign and
first digit ignored

FI 1 to 256 bytes Signed fixed-point

BI 1 bit to 4092 bytes Unsigned binary

FL 1 to 256 bytes Signed floating-point

AC 1 to 4092 bytes ISCII/ASCII character

CSF or FS 1 to 16 bytes Signed numeric with optional
leading floating sign

CSL or LS 2 to 256 bytes Signed numeric with leading
separate sign

CST or TS 2 to 256 bytes Signed numeric with trailing
separate sign

CLO or OL 1 to 256 bytes Signed numeric with leading
overpunch sign

CTO or OT 1 to 256 bytes Signed numeric with trailing
overpunch sign

ASL 2 to 256 bytes Signed ISCII/ASCII numeric
with leading separate sign

AST 2 to 256 bytes Signed ISCII/ASCII numeric
with trailing separate sign

D1 1 to 4092 bytes User-defined data type
(requires an EFS program)

Y2T 3 to 6 bytes Character or zoned yyx...x full
date format with special
indicators

Y2U 2 or 3 bytes Packed decimal yyx and
yyxxx full date format with
special indicators

Y2V 3 or 4 bytes Packed decimal yyxx and
yyxxxx full date format with
special indicators

Y2W 3 to 6 bytes Character or zoned x...xyy full
date format with special
indicators

Y2X 2 or 3 bytes Packed decimal xyy and
xxxyy full date format with
special indicators

Y2Y 3 or 4 bytes Packed decimal xxyy and
xxxxyy full date format with
special indicators

Y2C or Y2Z 2 bytes Two-digit character or
zoned-decimal year data

Y2P 2 bytes Two-digit packed-decimal
year data

Y2D 1 byte Two-digit decimal year data

Y2S 2 bytes Two-digit character or
zoned-decimal year data with
special indicators

SORT Control Statement

304 DFSORT R14 Application Programming Guide

|||

Table 46. Control Field Formats and Lengths (continued)

Format Length Description

Y2B 1 byte Two-digit binary year data

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

CSF/FS, Y2 and PD0 format fields can only be used if Blockset is selected.

For Y2 format fields, real dates are collated using the century window
established by the Y2PAST option in effect, but the century window is not used
for special indicators. Thus the Y2 formats will collate real dates and special
indicators as follows:

v Y2T and Y2W:

Ascending:
BI zeros, blanks, CH/ZD zeros, lower century dates (for example,
19yy), upper century dates (for example, 20yy), CH/ZD nines, BI
ones.

Descending:
BI ones, CH/ZD nines, upper century dates (for example, 20yy),
lower century dates (for example, 19yy), CH/ZD zeros, blanks, BI
zeros.

v Y2U, Y2V, Y2X and Y2Y:

Ascending:
PD zeros, lower century dates (for example, 19yy), upper century
dates (for example, 20yy), PD nines.

Descending:
PD nines, upper century dates (for example, 20yy), lower century
dates (for example, 19yy), PD zeros.

v Y2C, Y2Z, Y2P, Y2D and Y2B:

Ascending:
Lower century years (for example, 19yy), upper century years (for
example, 20yy).

Descending:
Upper century years (for example, 20yy), lower century years (for
example, 19yy).

v Y2S:

Ascending:
BI zeros, blanks, lower century years (for example, 19yy), upper
century years (for example, 20yy), BI ones.

Descending:
BI ones, upper century years (for example, 20yy), lower century
years (for example, 19yy), blanks, BI zeros.

The AC format sequences EBCDIC data using the ISCII/ASCII collating
sequence.

If you specify more than one control field and all the control fields contain the
same type of data, you can omit the f parameters and use the optional
FORMAT operand, described below.

SORT Control Statement

Chapter 3. Using DFSORT Program Control Statements 305

All floating-point data must be normalized before the program can collate it
properly. You can use an E15 or E61 user exit to do this during processing. If
you use E61, specify the E option for the value of s in the FIELDS operand for
each control field you are going to modify with this user exit.

s specifies how the control field is to be ordered. The valid codes are:

A ascending order

D descending order

E control fields to be modified

Specify E if you include an E61 user exit to modify control fields before the
program sorts them. After an E61 user exit modifies the control fields,
DFSORT collates the records in ascending order using the formats
specified. 17

For information on how to add a user exit, see Chapter 4, “Using Your Own
User Exit Routines” on page 315.

Default: None; must be specified. See Appendix B, “Specification/Override of
DFSORT Options” on page 603 for full override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

FORMAT

FORMAT=f can be used only when all the control fields in the entire FIELDS
expression have the same format. The permissible field formats are shown
under the description of 'f' for fields.

If you have specified the COPY operand, FORMAT=f cannot be specified.

Default: None; must be specified if not included in FIELDS parameter. See
Appendix B, “Specification/Override of DFSORT Options” on page 603 for full
override details.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Note: If format values are specified in both FORMAT and FIELDS, DFSORT
issues an information message, uses the format values from FIELDS (f
must be specified for each control field), and does not use the format
values from FORMAT.

FIELDS=COPY or FIELDS=(COPY)

17. With a conventional merge or a tape work data set sort, control fields for which E is specified are treated as binary byte format
regardless of the actual format(s) specified.

�� FORMAT=f ��

SORT Control Statement

306 DFSORT R14 Application Programming Guide

See the discussion of the COPY option discussed in “OPTION Control
Statement” on page 155.

CKPT

See the discussion of this option discussed in “OPTION Control Statement” on
page 155.

DYNALLOC

See the discussion of this option in “OPTION Control Statement” on page 155.

EQUALS or NOEQUALS

See the discussion of these options in “OPTION Control Statement” on
page 155.

FILSZ or SIZE

See the discussion of these options in “OPTION Control Statement” on
page 155.

SKIPREC

See the discussion of this option in “OPTION Control Statement” on page 155.

STOPAFT

�� FIELDS= COPY
(COPY)

��

�� CKPT ��

�� DYNALLOC
= d

(d)
(,n)
(d,n)
OFF
(OFF)

��

�� EQUALS
NOEQUALS

��

�� FILSZ= x
Ex
Ux

SIZE= y
Ey
Uy

��

�� SKIPREC=z ��

SORT Control Statement

Chapter 3. Using DFSORT Program Control Statements 307

See the discussion of this option in “OPTION Control Statement” on page 155.

Y2PAST

See the discussion of this option in “OPTION Control Statement” on page 155.

Note: CENTURY=value and CENTWIN=value can be used instead of
Y2PAST=value.

SORT/MERGE Statement Notes
v If records are reformatted by INREC (SORT and MERGE) or E15 (SORT),

FIELDS must refer to fields in the appropriate reformatted records.

v If SZERO is in effect, −0 collates before +0 in ascending order and after +0 in
descending order when numeric fields are sorted or merged. If NOSZERO is in
effect, −0 collates equally with +0 when numeric fields are sorted or merged.
However, SZERO is always used for a conventional merge or tape work data set
sort application.

Specifying a SORT or COPY—Examples

Example 1

SORT FIELDS=(2,5,FS,A),FILSZ=29483

FIELDS
The control field begins on the second byte of each record in the input data set,
is five bytes long, and contains floating sign data. It is to be sorted in ascending
order.

FILSZ
The data set to be sorted contains exactly 29483 records.

Example 2

SORT FIELDS=(7,3,CH,D,1,5,FI,A,398.4,7.6,BI,D,99.0,230.2,
BI,A,452,8,FL,A),DYNALLOC=(3390,4)

FIELDS
The first four values describe the major control field. It begins on byte 7 of each
record, is 3 bytes long, and contains character (EBCDIC) data. It is to be sorted
in descending order.

The next four values describe the second control field. It begins on byte 1, is 5
bytes long, contains fixed-point data, and is to be sorted in ascending order.

The third control field begins on the fifth bit (bits are numbered 0 through 7) of
byte 398. The field is 7 bytes and 6 bits long (occupies 9 bytes), and contains
binary data to be placed in descending order.

�� STOPAFT=n ��

�� Y2PAST= s
f

��

SORT Control Statement

308 DFSORT R14 Application Programming Guide

The fourth control field begins on byte 99, is 230 bytes and 2 bits long, and
contains binary data. It is to be sorted in ascending order.

The fifth control field begins on byte 452, is 8 bytes long, contains normalized
floating-point data, which is to be sorted in ascending order. If the data in this
field were not normalized, you could specify E instead of A and include your
own E61 user exit routine to normalize the field before the program examined it.

DYNALLOC
Four work data sets are allocated on 3390. The space on each data set is
calculated using the FILSZ value.

Example 3

SORT FIELDS=(3,8,ZD,E,40,6,CH,D)

FIELDS
The first four values describe the major control field. It begins on byte 3 of each
record, is 8 bytes long, and contains zoned decimal data that is modified by
your routine before sort examines the field.

The second field begins on byte 40, is 6 bytes long, contains character
(EBCDIC) data, and is sorted in descending sequence.

Example 4

SORT FIELDS=(7025,4,A,5048,8,A),FORMAT=ZD,EQUALS

FIELDS
The major control field begins on byte 7025 of each record, is 4 bytes long,
contains zoned decimal data (FORMAT=ZD), and is to be sorted in ascending
sequence.

The second control field begins on byte 5048, is 8 bytes long, has the same
data format as the first field, and is also to be sorted in ascending order.

FORMAT
The FORMAT=f option can be used because both control fields have the same
data format. It would also be correct to write this SORT statement as follows:

SORT FIELDS=(7025,4,ZD,A,5048,8,ZD,A),EQUALS

EQUALS
specifies that the sequence of equal collating records is to be preserved from
input to output.

Example 5

SORT FIELDS=COPY

FIELDS
The input data set is copied to the output data set without sorting or merging.

Example 6

OPTION Y2PAST=1950
SORT FIELDS=(21,6,Y2T,A,13,3,Y2X,D)

SORT Control Statement

Chapter 3. Using DFSORT Program Control Statements 309

|

|
|
|

|
|

|

Y2PAST
Sets a century window of 1950–2049.

FIELDS
Sorts on a C’yymmdd’ (or Z’yymmdd’) date in positions 21-26 in ascending
order, and on a P’dddyy’ date in positions 13-15 in descending order. ″Real″
dates are sorted using the century window of 1950-2049. Special indicators are
sorted correctly relative to the ″real″ dates.

SUM Control Statement

The SUM control statement specifies that, whenever two records are found with
equal sort or merge control fields, the contents of their summary fields are to be
added, the sum is to be placed in one of the records, and the other record is to be
deleted. If the EQUALS option is in effect the first record of summed records is
kept. If the NOEQUALS option is in effect, the record to be kept is unpredictable.
For further details, see “SUM Statement Notes” on page 312.

If the ZDPRINT option is in effect, positive summed ZD values are printable. If the
NZDPRINT option is in effect, positive summed ZD values are not printable. For
further details, see “SUM Statement Notes” on page 312.

The way in which DFSORT processes short SUM summary fields depends on
whether the VLSHRT or NOVLSHRT option is in effect. A short field is one where
the variable-length record is too short to contain the entire field; that is, the field
extends beyond the record. For details about sorting, merging and summing short
records, see the discussion of the VLSHRT and NOVLSHRT options in “OPTION
Control Statement” on page 155.

FIELDS

Designates numeric fields in the input record as summary fields.

p specifies the first byte of the field relative to the beginning of the input
record. 18 The first data byte of a fixed-length record has relative position 1.
The first data byte of a variable-length record has relative position 5, as the
first four bytes are occupied by the RDW. All fields must start on a byte
boundary. All fields must be located within the first 4092 bytes of a record.

�� SUM FIELDS= E

E

,

(p,m,f)
,

(p,m), FORMAT=f
NONE
(NONE)

��

�� FIELDS= E

,

(p,m,f) ��

SORT Control Statement

310 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

However, INREC and OUTREC can be used to rearrange the records such
that fields beyond the first 4092 bytes can be summed as illustrated by
“Example 4” on page 143.

m specifies the length in bytes of the summary fields to be added. See below
for permissible length values.

f specifies the format of the data in the summary field:

Table 47. Summary Field Formats and Lengths

Format Code Length Description

BI 2, 4, or 8 bytes Unsigned binary

FI 2, 4, or 8 bytes Signed fixed-point

FL 4, 8, or 16 bytes Signed floating-point

PD 1 to 16 bytes Signed packed decimal

ZD 1 to 18 bytes Signed zoned decimal

Note: See Appendix C, “Data Format Descriptions” on page 633 for
detailed format descriptions.

NONE or (NONE)
eliminates records with duplicate keys. Only one record with each key is
kept and no summing is performed.

Note: The FIRST operand of ICETOOL’s SELECT operator can be used to
perform the same function as SUM FIELDS=NONE with OPTION
EQUALS. Additionally, SELECT’s ALLDUPS, NODUPS, HIGHER(x),
LOWER(y), EQUAL(v) and LAST operands can be used to select
records based on other criteria related to duplicate and non-duplicate
keys. SELECT’s DISCARD(savedd) operand can be used to save the
records discarded by FIRST, ALLDUPS, NODUPS, HIGHER(x),
LOWER(y), EQUAL(v) or LAST. See “SELECT Operator” on page 461 for
complete details on the SELECT operator.

Default: None; must be specified.

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

FORMAT

FORMAT=f can be used only when all the summary fields in the entire FIELDS
expression have the same format. The permissible field formats are shown
under the description of 'f' for FIELDS.

Default: None. Must be specified if not included in the FIELDS parameter. See
Appendix B, “Specification/Override of DFSORT Options” on page 603 for full
override details.

18. If INREC is specified, p must refer to the record as reformatted by INREC. If your E15 user exit reformats the record, and INREC
is not specified, p must refer to the record as reformatted by your E15 user exit.

�� FORMAT=f ��

SUM Control Statement

Chapter 3. Using DFSORT Program Control Statements 311

|||||||
|
|

|
|
|

Applicable Functions: See Appendix B, “Specification/Override of DFSORT
Options” on page 603.

Note: If format values are specified in both FORMAT and FIELDS, DFSORT issues
an information message, uses the format values from FIELDS (f must be
specified for each summary field), and does not use the format values from
FORMAT.

SUM Statement Notes
v An invalid PD or ZD sign or digit results in a data exception (0C7 ABEND); 0-9

are invalid for the sign and A-F are invalid for the digit. For example, a ZD value
such as 3.5 (X'F34BF5') results in an 0C7 because ″.″ (X'4B') is treated as an
invalid digit. ICETOOL’s DISPLAY or VERIFY operator can be used to identify
decimal values with invalid digits. ICETOOL’s VERIFY operator can be used to
identify decimal values with invalid signs.

v Whether or not positive summed ZD results have printable numbers depends on
whether NZDPRINT or ZDPRINT is in effect (as set by the ZDPRINT option of
ICEMAC and the NZDPRINT and ZDPRINT parameters of the OPTION
statement):

– If NZDPRINT is in effect, positive summed ZD results do not consist of
printable numbers, regardless of whether the original values consisted of
printable numbers or not. For example, if X'F2F3F1' (prints as '231') and
X'F3F0F6' (prints as '306') are summed, the result with NZDPRINT in effect is
X'F5F3C7' (prints as '53G').

– If ZDPRINT is in effect, positive summed ZD results consist of printable
numbers, regardless of whether the original values consisted of printable
numbers or not. For example, if X'F2F3C1' (prints as '23A') and X'F3F0F6'
(prints as '306') are summed, the result with ZDPRINT in effect is X'F5F3F7'
(prints as '537').

Thus, ZDPRINT must be in effect to ensure that positive summed ZD results are
printable.

Unsummed positive ZD values retain their original signs, regardless of whether
NZDPRINT or ZDPRINT is in effect. For example, if X'F2F8C5' is not summed, it
remains X'F2F8C5' (prints as '28E'). OUTFIL’s OUTREC parameter can be used
to ensure that all summed or unsummed ZD values are printable, as illustrated
by Example 4 below.

v If input records are reformatted by INREC or E15, SUM must refer to fields in the
appropriate reformatted record (see the preceding description of p).

v Summary fields must not be control fields. They must not overlap control fields,
or each other, and must not overlap the RDW.

v FL values to be summed can be normalized or unnormalized. However, the
resulting FL values are always normalized. Normalization processing by the
hardware can produce different sums for FL values summed in different orders.

v Exponent overflow for summed FL values results in an exponent overflow
exception (0CC ABEND)

v Exponent underflow for summed FL values results in a true zero result.

v When records are summed, you can predict which record is to receive the sum
(and be retained) and which record is to be deleted only when EQUALS is in
effect, overflow does not occur, and the BLOCKSET technique is used. In this

SUM Control Statement

312 DFSORT R14 Application Programming Guide

case, the first record (based on the sequence described under the discussion of
the EQUALS or NOEQUALS parameter of the “OPTION Control Statement” on
page 155) is chosen to contain the sum.

v Fields other than summary fields remain unchanged and are taken from the
record that receives the sum.

v You can control the action that DFSORT takes when overflow occurs for BI, FI,
PD or ZD values with the OVFLO parameter as described in “OPTION Control
Statement” on page 155.

v DFSORT issues a message and terminates processing if a SUM statement is
specified for a tape work data set sort or Conventional merge.

v DFSORT does not support the XSUM parameter provided by a competitive sort
product to write records deleted by SUM processing to a SORTXSUM DD data
set. However, ICETOOL’s SELECT operator can perform the same function as
XSUM with FIELDS=NONE. For example, this ICETOOL job:
//S1EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//SORTIN DD DSN=...
//SORTOUT DD DSN=...
//SORTXSUM DD DSN=...
//TOOLIN DD *
SELECT FROM(SORTIN) TO(SORTOUT)-

ON(5,4,CH) FIRST DISCARD(SORTXSUM)
/*

is equivalent to this XSUM job:
//S1 EXEC PGM=ICEMAN
//SYSOUT DD SYSOUT=*
//SORTIN DD DSN=...
//SORTOUT DD DSN=...
//SORTXSUM DD DSN=...
//SYSIN DD *

SORT FIELDS=(5,4,CH,A)
SUM FIELDS=NONE,XSUM

/*

Note that you can also perform additional functions with ICETOOL’s SELECT
operator that are not available with XSUM. See Chapter 6, “Using ICETOOL” on
page 385 for complete details of ICETOOL’s SELECT operator.

Adding Summary Fields—Examples

Example 1

SUM FIELDS=(21,8,PD,11,4,FI)

This statement designates an 8-byte packed decimal field at byte 21, and a 4-byte
fixed-integer field at byte 11, as summary fields.

Example 2

SUM FIELDS=NONE

This statement illustrates the elimination of duplicate records.

SUM Control Statement

Chapter 3. Using DFSORT Program Control Statements 313

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|

Example 3

SUM FIELDS=(41,8,49,4),FORMAT=ZD
OPTION ZDPRINT

These statements illustrate the use of the FORMAT operand and the ZDPRINT
option. The SUM statement designates two zoned decimal fields, one 8 bytes long
starting at byte 41, and the other 4 bytes long starting at byte 49. As a result of the
ZDPRINT option, the positive summed ZD values will be printable. Note, however,
that the ZDPRINT option does not affect ZD values which are not summed due to
overflow or unique keys. The next example shows how to use OUTFIL to make all
summary fields printable.

Example 4

SUM FIELDS=(41,8,49,4),FORMAT=ZD
OUTFIL OUTREC=(1,40,41,8,ZD,M11,49,4,ZD,M11,53,28)

These statements illustrate the use of the OUTFIL statement to ensure that all
positive ZD summary fields in the output data set are printable. Whereas the
ZDPRINT option affects only positive summed ZD fields, OUTFIL can be used to
edit positive or negative BI, FI, PD, or ZD values, whether they are summed or not.
OUTFIL can also be used to produce multiple output data sets, reports, and so on.
See “OUTFIL Control Statements” on page 204 for complete details about OUTFIL
processing.

Note: For purposes of illustration, this example assumes that the input records are
80 bytes long.

SUM Control Statement

314 DFSORT R14 Application Programming Guide

Chapter 4. Using Your Own User Exit Routines

User Exit Routine Overview. 316
DFSORT Program Phases . 317
Functions of Routines at User Exits 319

DFSORT Input/User Exit/Output Logic Examples 319
Opening and Initializing Data Sets 320
Modifying Control Fields . 320
Inserting, Deleting, and Altering Records 321
Summing Records . 321
Handling Special I/O . 321

Routines for Read Errors. 321
Routines for Write Errors 321

VSAM User Exit Functions 322
Determining Action when Intermediate Storage Is Insufficient 322
Closing Data Sets . 322
Terminating DFSORT . 322

Addressing and Residence Modes for User Exits 322
How User Exit Routines Affect DFSORT Performance 323
Summary of Rules for User Exit Routines 323

Loading User Exit Routines 324
User Exit Linkage Conventions 324

Linkage Examples . 325
Dynamically Link-Editing User Exit Routines. 325

Assembler User Exit Routines (Input Phase User Exits) 326
E11 User Exit: Opening Data Sets/Initializing Routines 326
E15 User Exit: Passing or Changing Records for Sort and Copy Applications 326

Information DFSORT Passes to Your Routine at E15 User Exit. 327
E15 Return Codes . 328
Storage Usage for E15 User Exit 329

E16 User Exit: Handling Intermediate Storage Miscalculation 329
E16 Return Codes . 329

E17 User Exit: Closing Data Sets 330
E18 User Exit: Handling Input Data Sets 330

Using E18 User Exit with QSAM/BSAM 330
Using E18 User Exit with VSAM 331

E19 User Exit: Handling Output to Work Data Sets 333
Using E19 User Exit with QSAM/BSAM 333

E61 User Exit: Modifying Control Fields 334
Some Uses of E61 User Exit 334
Information DFSORT Passes to Your Routine at E61 User Exit. 335

Assembler User Exit Routines (Output Phase User Exits) 336
E31 User Exit: Opening Data Sets/Initializing Routines 336
E32 User Exit: Handling Input to a Merge Only 336

Information DFSORT Passes to Your Routine at E32 User Exit. 336
E32 Return Codes . 337

E35 User Exit: Changing Records 337
Information DFSORT Passes to Your Routine at E35 User Exit. 338
E35 Return Codes . 339
Storage Usage for E35 User Exit 340

E37 User Exit: Closing Data Sets 341
E38 User Exit: Handling Input Data Sets 341

Using E38 User Exit with VSAM 341
E39 User Exit: Handling Output Data Sets 341

Using E39 User Exit with QSAM/BSAM 341

© Copyright IBM Corp. 1973, 2002 315

Using E39 User Exit with VSAM 341
Sample Routines Written in Assembler. 342

E15 User Exit: Altering Record Length 342
E16 User Exit: Sorting Current Records When NMAX Is Exceeded 343
E35 User Exit: Altering Record Length 344
E61 User Exit: Altering Control Fields 344

COBOL User Exit Routines . 345
COBOL User Exit Requirements 345

COBOL Requirements for Copy Processing 347
COBOL Storage Requirements 347

COBOL User Exit Routines (Input Phase User Exit) 348
COBOL E15 User Exit: Passing or Changing Records for Sort 348

E15 Interface with COBOL 348
E15 LINKAGE SECTION Fields for Fixed-Length and Variable-Length

Records . 351
E15 Return Codes . 352
E15 Procedure Division Requirements 354

COBOL User Exit Routines (Output Phase User Exit) 354
COBOL E35 User Exit: Changing Records 354

E35 Interface with COBOL 355
E35 LINKAGE SECTION Fields for Fixed-Length and Variable-Length

Records . 357
E35 Return Codes . 358
E35 Procedure Division Requirements 360

Sample Routines Written in COBOL. 360
COBOL E15 User Exit: Altering Records 360
COBOL E35 User Exit: Inserting Records 361

E15/E35 Return Codes and EXITCK 363

User Exit Routine Overview
DFSORT can pass program control to your own routines at points in the executable
code called user exits. Your user exit routines can perform a variety of functions
including deleting, inserting, altering, and summarizing records.

If you need to perform these tasks, you should be aware that DFSORT already
provides extensive facilities for working with your data in the various DFSORT
program control statements. See the discussions of the INCLUDE, OMIT, INREC,
OUTFIL, OUTREC, and SUM program control statements in Chapter 3, “Using
DFSORT Program Control Statements” on page 95. You might decide that using a
program control statement to work with your records is more appropriate to your
needs.

Although this chapter discusses only routines written in assembleror COBOL, you
can write your exit routines in any language that can:
v Pass and accept the address into general register 1 of a:

– Record
– Full word of zeros
– Parameter list.

v Pass a return code in register 15.

You can easily activateuser exit routines at run-time with the MODS program control
statement (see “MODS Control Statement” on page 148). Alternatively, under certain
circumstances you can also activate a user exit routine by passing the address of
your exit routine in the invocation parameter list. See Chapter 5, “Invoking DFSORT
from a Program” on page 367 for details.

Using Your Own User Exit Routines

316 DFSORT R14 Application Programming Guide

Parameters that affect the way user exit routines are handled include:

v The MODS statement, explained in “MODS Control Statement” on page 148

v The COBEXIT option of the ICEMAC installation macro, explained in “Installation
Defaults” on page 16

v The E15=COB and E35=COB PARM options of the EXEC statement, explained
in “Specifying EXEC/DFSPARM PARM Options” on page 29

v The COBEXIT option of the OPTION statement, explained in “OPTION Control
Statement” on page 155

v The ICEMAC installation option EXITCK, explained in “Installation Defaults” on
page 16

v The EXITCK option of the OPTION statement, explained in “OPTION Control
Statement” on page 155.

Note: To avoid ambiguity in this chapter, it is assumed that the IBM default,
EXITCK=STRONG, was selected at your site.

Certain user exit routines can be written in COBOL, using a special interface. If you
write your exit routines in PL/I, you must use the PL/I subroutine facilities.

You might need to reserve space to be used by your exits. See “Use Main Storage
Efficiently” on page 549 for more information about storage.

DFSORT Program Phases
A DFSORT program phase is a large DFSORT component designed to perform a
specific task such as writing the output file. Various user exits are contained in the
input and output phases and are activated at a particular time during DFSORT
processing. The input phase is used only for a sort or copy. When the output phase
is completed, DFSORT returns control to the operating system or invoking program.
Figure 17 on page 318 is a representation of DFSORT input/output logic.

User Exit Routine Overview

Chapter 4. Using Your Own User Exit Routines 317

INPUT/EXIT/OUTPUT LOGIC
FOR MERGE APPLICATION

INPUT
PHASE

READ RECORD
FROM SORTIN

E15

E15

RETURNS
RC=8

SORT THE
RECORDS

GET SORTED
RECORD

E35

MORE INPUT
RECORDS?

YES

NO

A

OUTPUT
PHASE

B

B
MORE SORTED
RECORDS?

YES

NO

INPUT/
OUTPUT
PHASE

READ RECORD
FROM SORTIN

E15

RETURNS
RC=8

MORE INPUT
RECORDS?

WRITE
RECORD

TO SORTOUT
AND/OR
OUTFIL

DATA SETS

YES

NO

A

EXIT

OUPUT
PHASE

READ RECORD
FROM EACH

SORTINnn

E35

MORE INPUT
RECORDS?

NO

CHOOSE A
RECORD

A

E35

START START START

A A

A

INPUT/EXIT/OUTPUT LOGIC
FOR COPY APPLICATION

INPUT/EXIT/OUTPUT LOGIC
FOR SORT APPLICATION

E35

READ
RECORD
FROM

SORTINnn

RETURNS
RC=8

WRITE
RECORD

TO SORTOUT
AND/OR
OUTFIL

DATA SETS

WRITE
RECORD

TO SORTOUT
AND/OR
OUTFIL

DATA SETS

E15

EXIT

RETURNS
RC=8

E35

YES

E35

RETURNS
RC=8

EXIT

Figure 17. Examples of DFSORT Input/User Exit/Output Logic

DFSORT Program Phases

318 DFSORT R14 Application Programming Guide

Functions of Routines at User Exits
You can use exit routines to accomplish a variety of tasks:
v Open and initialize data sets
v Modify control fields
v Insert, delete, or alter records
v Sum records
v Handle special I/O conditions
v Determine action when intermediate storage is insufficient
v Close data sets
v Terminate DFSORT.

Figure 17 on page 318, Table 48, and Table 49 on page 320 summarize the
functions of user exit routines and the exits and phases with which they can be
associated.

DFSORT Input/User Exit/Output Logic Examples
Figure 17 on page 318 gives examples of the logic flow for sort, copy, and merge
applications as it relates to SORTINnn, E15 or E35 user exits, and SORTOUT. The
intent is to show how your E15 and E35 user exits fit into the logic of an
application. All possible paths are not covered. For simplicity, it is assumed that all
of the applicable data sets and exits are present and that records are not inserted
or deleted. (For a merge, similar logic would be used if an E32 user exit supplied
the records rather than SORTINnn data sets.)

Figure 17 on page 318 illustrates the following logic:

v E15 and E35 user exits continue to be entered until they pass back a return code
of 8. If your user exit passes a return code of 8 to DFSORT when input records
still remain to be processed, the records are processed by DFSORT without
being passed to your exit.

v During a sort, each record is read from SORTIN and passed to E15 user exit.
When all of the records have been processed in this manner, they are sorted by
DFSORT, then each sorted record is passed to E35 and written to the output
data sets.

v During a copy, each record is read from SORTIN, passed to E15 and E35 user
exits, and written to the output data sets.

v During a merge, one record is initially read from each SORTINnn data set. The
record to be output is chosen, passed to E35, and written to the output data sets.
The chosen record is then replaced by reading a record from the same
SORTINnn data set and the process continues.

Note: For a merge application, records deleted during an E35 user exit routine
are not sequence-checked. If you use an E35 user exit routine without an
output data set, sequence checking is not performed at the time the
records are passed to the E35 user exit; therefore, you must ensure that
input records are in correct sequence.

Table 48. Functions of Routines at Program User Exits (Sort)

Functions Sort Input Phase Sort Output Phase

Open/Initialize E11, E15 user exits E31 user exit

Modify control fields E61 user exit N/A

Insert, Delete/Alter E15 user exit E35 user exit

Sum records E35 user exit1

Functions of Routines at User Exits

Chapter 4. Using Your Own User Exit Routines 319

Table 48. Functions of Routines at Program User Exits (Sort) (continued)

Functions Sort Input Phase Sort Output Phase

Handle special I/O conditions:
QSAM/BSAM and VSAM SORTIN
QSAM/BSAM SORTOUT
VSAM SORTOUT

E18 user exit
E19 user exit2

N/A

E38 user exit2

E39 user exit3

E39 user exit3

Determine action when intermediate storage
is insufficient

E16 user exit4 N/A

Close/housekeeping E15, E17 user exits E35, E37 user exits

Terminate DFSORT E15 user exit E35 user exit

Notes:
1. The SUM control statement can be used instead of your own routine to sum records.
2. Applies only to a tape work data set sort.
3. E39 can be used for SORTOUT, but not for OUTFIL data sets.
4. Applies only to a tape work data set sort or a Peerage/Vale sort without work data sets.

Table 49. Functions of Routines at Program User Exits (Copy and Merge)

Functions Copy Merge

Open/Initialize E15, E31 user exits E31 user exit

Modify control fields N/A E61 user exit

Insert E15, E35 user exits E32, E35 user exits

Delete/alter E15, E35 user exits E35 user exit

Sum records E35 user exit E35 user exit1

Handle special I/O conditions:
QSAM/BSAM and VSAM SORTIN(nn)
QSAM/BSAM and VSAM SORTOUT

E38 user exit
E39 user exit

E38 user exit
E39 user exit

Close/housekeeping E35, E37 user exits E35, E37 user exits

Terminate DFSORT E15, E35 user exits E32, E35 user exits

Note:

1. The SUM control statement can be used instead of your own routine to sum records.

Opening and Initializing Data Sets
You can write your own routines to open data sets and perform other forms of
initialization; you must associate these routines with the E11, E15, E31 and E35
user exits.

To check labels on input files, use the E18 and E38 user exits.

Modifying Control Fields
You can write a routine to alter control fields before DFSORT compares them. This
allows you, for example, to normalize floating-point control fields. It also allows you
to modify the order in which the records are finally sorted or merged, a function for
which you would usually use DFSORT’s ALTSEQ program control statement. You
must associate this routine with the E61 user exit.

When an E61 user exit is used, the subsequent comparisons always arrange the
modified control fields in ascending order.

Functions of Routines at User Exits

320 DFSORT R14 Application Programming Guide

Note: Although you are altering control fields before a compare, your original
records are not altered.

Inserting, Deleting, and Altering Records
You can write your own routines to delete, insert, or alter records. You must
associate these routines with the E15, E32, and E35 user exits.

Note: DFSORT also provides INCLUDE and OMIT statements, and OUTFIL
INCLUDE and OMIT parameters that automatically include or delete records
based on your field criteria. For more information on these control
statements, refer to Chapter 3, “Using DFSORT Program Control
Statements” on page 95.

Summing Records
You can sum records for output by using the E35 user exit. However, you can also
use DFSORT’s SUM program control statement to accomplish this without a user
exit. See “SUM Control Statement” on page 310.

Handling Special I/O
DFSORT contains four exits to handle special I/O conditions: E18 and E38 user
exits for SORTIN and SORTINnn, and E19 and E39 user exits for SORTOUT (but
not for OUTFIL data sets). They are particularly useful for a tape work data set sort.
With all DASD work data set sorts, E19 and E38 user exits are ignored.

You can use these exits to incorporateyour own or your site’s I/O error recovery
routines into DFSORT. Your read and write error routines must reside in a
partitioned data set (library). Your library routines are brought into main storage with
their associated phases. When DFSORT encounters an uncorrectable I/O error, it
passes the same parameters as those passed by QSAM/BSAM or VSAM. If no
user routines are supplied and an uncorrectable read or write error is encountered,
DFSORT issues an error message and then terminates.

With QSAM/BSAM, the following information is passed to your synchronous error
routine:

v General registers 0 and 1 are unchanged; they contain the information passed by
QSAM/BSAM, as documented in the data management publications.

v General register 14 contains the return address of DFSORT.

v General register 15 contains the address of your error routine.

VSAM will go directly to any routine specified in the EXLST macro you passed to
DFSORT via the E18, E38, or E39 user exit, as appropriate. Your routine must
return to VSAM via register 14. For details, see z/OS DFSMS Macro Instructions for
Data Sets or z/OS DFSMS: Using Data Sets

Routines for Read Errors
You must associate these routines with the E18 and E38 user exits. They must
pass certain control block information back to DFSORT to tell it whether to accept
the record as it is, skip the block, or request termination. They can also attempt to
correct the error.

Routines for Write Errors
You must associate these routines with the E19 and E39 user exits. These routines
can perform any necessary abnormal end-of-task operations for SORTOUT before
DFSORT is terminated.

Functions of Routines at User Exits

Chapter 4. Using Your Own User Exit Routines 321

VSAM User Exit Functions
There are three user exits that can be used with VSAM SORTIN, SORTINnn, and
SORTOUT data sets (but not with OUTFIL data sets), to supply passwords or a
user exit list to journal a VSAM data set. They can carry out other VSAM exit
functions except EODAD. The user exits are E18 for sort SORTIN, E38 for merge
SORTINnn or copy SORTIN, and E39 for SORTOUT.

Determining Action when Intermediate Storage Is Insufficient
You can write a routine to direct DFSORT program action if DFSORT determines
that insufficient intermediate storage is available to handle the input data set. You
must associate this routine with the E16 user exit for sorts using tape work data
sets. For a sort that uses tape data sets, you can choose between sorting current
records only, trying to complete the sort, or terminating DFSORT. For more details,
see “Exceeding Tape Work Space Capacity” on page 601.

Closing Data Sets
You can write your own routines to close data sets and perform any necessary
housekeeping; you must associate these routines with the E15, E17, E35, and E37
user exits. To write SORTOUT labels, use the E19 and E39 user exits. If you have
an end-of-file routine you want to use for SORTIN, include it at the E18 user exit.

Terminating DFSORT
You can write an exit routine to terminate DFSORT before all records have been
processed. You must associate these routines with the E15, E16, E32, and E35
user exits.

Note: If a user exit requests termination for an application using a SmartBatch pipe
data set, DFSORT will terminate with user abend zero. This allows for
appropriate error propagation by the system to other applications that may
be accessing the same SmartBatch pipe data set.

Addressing and Residence Modes for User Exits
To allow user exits called by Blockset or Peerage/Vale to reside above or below
16MB virtual, use either 24-bit or 31-bit addressing, and use a user exit address
constant, DFSORT supplies these features:

v To ensure that DFSORT enters your user exit with the correct addressing mode,
you must observe these rules:

– If the user exit name is specified in a MODS control statement, the user exit is
entered with the addressing mode indicated by the linkage editor attributes of
the routine (for example, 31-bit addressing in effect if AMODE 31 is specified).

– If the address of the exit is passed to DFSORT (preloaded exit) via the 24-bit
list, the user exit is entered with 24-bit addressing in effect.

– If the address of the user exit is passed to DFSORT via the extended
parameter list (preloaded exit), the user exit is entered with 24-bit addressing
in effect if bit 0 of the user exit address in the list is 0 or with 31-bit
addressing in effect if bit 0 of the user exit address in the list is 1.

v User exits can return to DFSORT with either 24-bit or 31-bit addressing in effect.
The return address that DFSORT placed in register 14 must be used.

v Except for the user exit address constant (which is passed to either the
assembler E15, E32, or E35 user exit unchanged), DFSORT handles the user

Functions of Routines at User Exits

322 DFSORT R14 Application Programming Guide

exit parameter list addresses (that is, the pointer to the parameter list and the
addresses in the parameter list) as follows:

– If the user exit is entered with 24-bit addressing in effect, DFSORT passes
clean (zeros in the first 8 bits) 24-bit addresses to the user exit. Such a user
exit must pass 24-bit addresses back to DFSORT. These must be clean 24-bit
addresses if the user exit returns to DFSORT with 31-bit addressing in effect.

– If the user exit is entered with 31-bit addressing in effect, DFSORT passes
clean 24-bit addresses to the user exit. Such a user exit must pass 31-bit
addresses or clean 24-bit addresses back to DFSORT. The only exception is
when the high-order byte is used to identify an optional address being passed
(for example, E18 SYNAD address). In this case, DFSORT cleans the 24-bit
address.

Note: For a conventional merge or tape work data set sort application, user
exits:

– must reside below 16MB virtual

– must use 24-bit addressing mode

– must not use a user exit address constant.

How User Exit Routines Affect DFSORT Performance
Before writing a user exit routine, consider the following factors:

v Your routines occupy main storage that would otherwise be available to DFSORT.
Because its main storage is restricted, DFSORT might need to perform extra
passes to sort the data. This, of course, increases sorting time.

v User exit routines increase the overall run-time. Note that several of the user
exits give your routine control once for each record until you pass a “do not
return” return code to DFSORT. You must remember this when designing your
routines.

v Using INCLUDE, OMIT, INREC, OUTFIL, OUTREC, and SUM instead of user
exit routines allows DFSORT to perform more efficiently.

Summary of Rules for User Exit Routines
When preparing your routines, remember that:

v User-written routines must follow standard linkage conventions and use the
required interfaces. COBOL E15 and E35 user exits must use the special
interface provided.

v To use an E32 user exit, your invoking program must pass its address to
DFSORT in the parameter list.

v To use any other user exit, you must associate your routine with the appropriate
user exits using the MODS control statement. See “MODS Control Statement” on
page 148.

v Your invoking program can alternatively pass the address of an E15, E18, E35,
and E39 user exit to DFSORT in the parameter list.

v When Blockset or Peerage/Vale is used and your user exits are reenterable, the
entire DFSORT program is reenterable.

v If you are using ISCII/ASCII input, remember that data presented to your user
exits at user exits are in EBCDIC format. If the E61 user exit is used to resolve
ISCII/ASCII collating for special alphabetic characters, substituted characters
must be in EBCDIC, but the sequencing result depends on the byte value of the
ISCII/ASCII translation for the substituted character.

Addressing and Residence Modes for User Exits

Chapter 4. Using Your Own User Exit Routines 323

Loading User Exit Routines
You must assemble or compile each user exit as a separateprogram. If your user
exit operates independently, link-edit it separately into a partitioned data set (library)
with the member name to be used in the MODS statement. If your user exit
operates in conjunction with other user exits in the same phase (for example, E11,
E15, and E17 user exits all use the same DCB), you can request DFSORT to
dynamically link-edit them together (see MODS statement). Alternatively, you can
link-edit them together into a partitioned data set following these rules:

1. Specify RENT as a linkage editor parameter.

2. Include an ALIAS statement for each user exit using the external entry name of
the routine (for example, the CSECT name).

3. Specify the appropriate ALIAS name for each user exiton the MODS statement.

DFSORT includes the names and locations of your user exits in the list of modules
to be run during each phase. No user exit is loaded more than once in a program
phase, but the same user exit can appear in different phases. For example, you can
use the same Read Error user exit in both phases, but not twice in one phase.

The length you specify for a user exit must include storage for the user exit itself as
well as any storage used by the user exit outside of the load modules such as I/O
buffers or COBOL library subroutines. If you specify a ddname for a user exit in the
MODS statement, it must match the DD statement that defines the library
containing that user exit. For example:

User Exit Linkage Conventions
To enter a user exit, DFSORT loads the address of the DFSORTreturn point in
register 14 and the address of the user exit routine in register 15. A branch to the
address in register 15 is then performed.

The general registers used by DFSORT for linkage and communication of
parameters observe operating system conventions. When your routine gets control,
the general registers have the following contents:

Register Contents
1 DFSORT places the address of a parameter list in this register.
13 DFSORT places the address of a standard save area in this

register. The area can be used to save contents of registers used
by your user exit. The first word of the area contains the characters
SM1 in its three low-order bytes.

14 Contains the address of DFSORT return point.
15 Contains the address of your user exit. This register can be used as

a base register for your user exit; your user exit can also use it to
pass return codes to DFSORT.

You can return control to DFSORT by performing a branch to the DFSORT return
point address in register 14 or by using a RETURN macro instruction. The
RETURN instruction can also be used to set return codes when multiple actions are
available at a user exit.

//MYLIB DD DSNAME=MYRTN, etc.
.
.
.

MODS E15=(MODNAME,500,MYLIB,N)

Summary of Rules for User Exit Routines

324 DFSORT R14 Application Programming Guide

Your user exit must save all the general registers it uses. You can use the SAVE
macro instruction to do this. If you save registers, you must also restore them; you
can do this with the RETURN macro instruction.

Linkage Examples
When calling your user exit, DFSORT places the return address in general register
14 and your routine’s entry point address in general register 15. DFSORT has
already placed the register’s save area address in general register 13. DFSORT
then makes a branch to your routine.

Your routine for the E15 user exit might incorporate the following assembler
instructions:

ENTRY E15
.
.

E15 SAVE (5,9)
.
.
RETURN (5,9)

This coding saves and restores the contents of general registers 5 through 9. The
macro instructions are expanded into the following assembler language code:

ENTRY E15
.
.

E15 STM 5,9,40(13)
.
.
LM 5,9,40(13)
BR 14

If multiple actions are available at a user exit, your routine sets a return code in
general register 15 to inform DFSORT of the action it is to take. The following
macro instruction can be used to return to DFSORT with a return code of 12 in
register 15:
RETURN RC=12

A full explanation of linkage conventions and the macro instructions discussed in
this section is in Application Development Macro Reference

Dynamically Link-Editing User Exit Routines
You can dynamically link-edit any user exit routine written in anylanguage that has
the ability to pass the location or address of a record or parameter in general
register 1 and a return code in register 15 (see MODS statement). This does not
include E15 and E35 user exits written in COBOL.

Dynamic link-editing does not support AMODE 31 or RMODE 31 for the link-edit
option T. The user exits that are link-edited together by DFSORT are not loaded
above 16MB virtual and cannot be entered in 31-bit addressing mode. User exits
link-edited with the S option retain the AMODE and RMODEattributes of the object
modules and are loaded above or below 16MB virtual depending upon the load
module’s RMODE; they are entered in the addressing mode of the user exit.

Notes:
1. The Blockset technique is not used for dynamic link-editing.
2. Dynamic link-editing cannot be used with copy.

Summary of Rules for User Exit Routines

Chapter 4. Using Your Own User Exit Routines 325

When the link-edit option T is specified for a user exit routine, that routine must
contain an entry point whose name is that of the associated program user exit. This
is to accommodate special DFSORT dynamic link-edit requirements. For example,
when the link-edit option T is specified on the MODS statement for E35, the
following assembler instructions must be included in the user exit routine associated
with the E35 user exit:

ENTRY E35
E35 .

.

or
E35 CSECT

.

.

In all other circumstances, the user exit is not required to have an entry point that
has the same name as that of the associated program user exit.

Assembler User Exit Routines (Input Phase User Exits)
You can use these program user exits in the DFSORTinput phase:

E11
E15
E16
E17
E18
E19
E61

These user exits are discussed in sequence. To determine whether a particular user
exit can be used for your application, refer to Table 48 on page 319 and Table 49 on
page 320.

E11 User Exit: Opening Data Sets/Initializing Routines
You might use routines at this user exit to open data sets needed by yourother
routines in the input phase. It can also be used to initialize your other routines.
Return codes are not used, however.

Note: To avoid special linkage editor requirements (see “Summary of Rules for
User Exit Routines” on page 323), you can include these functions in your
E15 user exit rather than in a separate E11 user exit routine.

E15 User Exit: Passing or Changing Records for Sort and Copy
Applications

If you write your E15 user exit in COBOL, see “COBOL User Exit Routines” on
page 345 and “COBOL E15 User Exit: Passing or Changing Records for Sort” on
page 348.

The EXITCK option affects the way DFSORT interprets certain return codes from
user exit E15. To avoid ambiguity, this section assumes that the IBM default,
EXITCK=STRONG, was selected at your site. For complete information about E15
return codes in various situations with EXITCK=STRONG and EXITCK=WEAK, see
“E15/E35 Return Codes and EXITCK” on page 363.

Summary of Rules for User Exit Routines

326 DFSORT R14 Application Programming Guide

DFSORT enters the E15 user exit routine each time a new record is brought into
the input phase. DFSORT continues to enter E15 (even when there are no input
records) until the user exit tells DFSORT, with a return-code of 8, not to return.

See Figure 17 on page 318 for logic flow details.

Some uses for the E15 user exit are:
v Adding records to an input data set
v Passing an entire input data set to DFSORT
v Deleting records from an input data set
v Changing records in an input data set.

Notes:

1. If your E15 user exit is processing variable-length records, include a 4-byte
RDW at the beginning of each record you change or insert, before you pass it
back to DFSORT. The format of an RDW is described in z/OS DFSMS: Using
Data Sets or System Programming Reference. (Alternatively, you can pad
records to the maximum length and process them as fixed-length.)

2. DFSORT uses the specified or defaulted value for L2 in the RECORD statement
to determine the length of the records your E15 user exit passes back to
DFSORT. For fixed-length records, be sure that the length of each record your
E15 user exit changes or inserts corresponds to the specified or defaulted L2
value. For variable-length records, be sure that the RDW of each record your
E15 user exit changes or inserts indicates a length that is less than or equal to
the specified or defaulted L2 value. Unwanted truncation or abends may occur if
DFSORT uses the wrong length for the records passed to it by your E15 user
exit.

For details of the L2 value, see “RECORD Control Statement” on page 296.

3. If you use the E15 user exit to pass all your records to DFSORT, you can omit
the SORTIN DD statement, in which case you must include a RECORD
statement in the program control statements.

4. If you invoke DFSORT from an assembler program and pass the address of
your E15 user exit in the parameter list, DFSORT ignores the SORTIN data set
and terminates if you specify E15 in a MODS statement.

5. If you omit the SORTIN DD statement, or it is ignored, all input records are
passed to DFSORT through your routine at user exit E15. The address of each
input record in turn is placed in general register 1, and you return to DFSORT
with a return code of 12. When DFSORT returns to the E15 user exit after the
last record has been passed, you return to DFSORT with a return code of 8 in
register 15, which indicates ″do not return.″

6. DFSORT continues to reenter your E15 user exit until a return code of 8 is
received. However, if STOPAFT is in effect, no additional records are inserted to
DFSORT after the STOPAFT count is satisfied (even if you pass back a return
code of 12).

7. An RDW must be built for variable-length VSAM records (see z/OS DFSMS:
Using Data Sets).

Information DFSORT Passes to Your Routine at E15 User Exit
Your E15 user exit routine is entered each time a new record is brought into the
input phase. DFSORT passes two words to your routine each time it is entered:

v The address of the new record. End of input is reached when there are no
more records to pass to your E15 user exit; DFSORT indicates end of input by

Assembler User Exit Routines (Input Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 327

setting this address to zero before entering your E15 user exit. If there are no
records in the input data set (or no input data set), this address is zero the first
time your E15 is entered.

After end of input is reached, DFSORT continues to enter your user exit routine
until you pass back a return code of 8.

Your E15 user exit must not change the address of the new record.

v The user exit address constant. If you invoked DFSORT with a user exit
address constant in the parameter list, the address constant is passed to your
E15 user exit the first time it is entered. This address constant can be changed
by your E15 user exit any time it is entered; the address constant is passed
along on subsequent entries to your E15 user exit and also on the first entry to
your E35 user exit. For example, you can obtain a dynamic storage area, use it
in your E15 user exit, and pass its address to your E35 user exit.

Note: The user exit address constant must not be used for a tape work data set
sort application.

In general register 1, DFSORT places the address of a parameter list that contains
the record address and the user address constant. The list is two fullwords long and
begins on a fullword boundary. The format of the parameter list is:

Table 50. E15 User Exit Parameter List

Bytes 1 through 4 Address of the new record

Bytes 5 through 8 User exit address constant

E15 Return Codes
Your E15 routine must pass a return code to DFSORT. Following are the return
codes for the E15 user exit:

Return Code Description
00 (X'00') No Action/Record Altered
04 (X'04') Delete Record
08 (X'08') Do Not Return
12 (X'0C') Insert Record
16 (X'10') Terminate DFSORT

0: No Action
If you want DFSORT to retain the record unchanged, place the address of the
record in general register 1 and return to DFSORT with a return code of 0
(zero).

0: Record Altered
If you want to change the record before passing it back to DFSORT, your
routine must move the record into a work area, perform whatever modification
you want, place the address of the modified record in general register 1, and
return with a return code of 0 (zero).

4: Delete Record
If you want DFSORT to delete the record from the input data set, return to
DFSORT with a return code of 4. You need not place the address of the record
in general register 1.

8: Do Not Return
DFSORT continues to return control to the user routine until it receives a return
code of 8. After that, the user exit is not used again during the DFSORT
application. You need not place an address in general register 1 when you
return with a return code of 8. Unless you are inserting records after the end of

Assembler User Exit Routines (Input Phase User Exits)

328 DFSORT R14 Application Programming Guide

the data set, you must pass a return code of 8 when the program indicates the
end of the data set. It does this by passing your routine a zero address in the
parameter list.

If your user exit routine passes a return code of 8 to DFSORT when input
records still remain to be processed, the remaining records are processed by
DFSORT, but are not passed to your user exit.

12: Insert Record
To add a record before the record whose address was just passed to your
routine, place the address of the record to be added in general register 1 and
return to DFSORT with a return code of 12. DFSORT keeps returning to your
routine with the same record address as before so that your routine can insert
more records at that point or alter the current record. You can make insertions
after the last record in the input data set (after DFSORT places a zero address
in the parameter list). DFSORT keeps returning to your routine until you pass a
return code of 8.

16: Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program or to the system with a return code of 16.

See “E15/E35 Return Codes and EXITCK” on page 363 for complete details of the
meanings of return codes in various situations.

Storage Usage for E15 User Exit
DFSORT obtains storage (using GETMAIN or STORAGE OBTAIN) for the
parameter list and the records it passes to your E15 user exit routine. You must not
attempt to modify or free the storage obtained by DFSORT.

If you need to obtain storage for use by your E15 user exit routine, such as to pass
altered records to DFSORT, you can use the following strategy:

1. The first time your exit is called, obtain the storage you need

2. Use the storage you obtained each time your exit is called

3. Free the storage before you pass back return code 8 to DFSORT

Note: When you obtain your storage you can save its address in the user exit
address constant and restore it on each subsequent call to your exit.

E16 User Exit: Handling Intermediate Storage Miscalculation
For a tape work data set sort or a Peerage/Vale sort without work data sets,you
would use a routine at this user exit to decide what to do if the sort exceeds its
calculated estimate of the number of records it can handle for a given amount of
main storage and intermediate storage. This user exit is ignored for a sort with work
data sets because DFSORT uses the WRKSEC option to determine whether
secondary allocation is allowed. See “SORTWKdd DD Statement” on page 69. See
also “Exceeding Tape Work Space Capacity” on page 601.

Note: When using magnetic tape, remember that the system uses an assumed
tape length of 2400 feet. If you use tapes of a different length, the Nmax
figure is not accurate; for shorter tapes, capacity can be exceeded before
“NMAX EXCEEDED” is indicated.

E16 Return Codes
Your E16 routine must pass a return code to DFSORT. Following are the return
codes for the E16 user exit:

Assembler User Exit Routines (Input Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 329

Return Code Description
00 (X'00') Sort Current Records Only
04 (X'04') Try to Sort Additional Records
08 (X'08') Terminate DFSORT

0: Sort Current Records Only
If you want DFSORT to continue with only that part of the input data set it
estimates it can handle, return with a return code of 0 (zero). Message ICE054I
contains the number of records with which sort is continuing. You can sort the
remainder of the data set on one or more subsequent runs, using SKIPREC to
skip over the records already sorted. Then you can merge the sort outputs to
complete the operation.

4: Try to Sort Additional Records
If you want DFSORT to continue with all of the input data set, return with a
return code of 4. If tapes are used, enough space might be available for
DFSORT to complete processing. If enough space is not available, DFSORT
generates a message and terminates. Refer to “Exceeding Tape Work Space
Capacity” on page 601.

8: Terminate DFSORT
If you want DFSORT to terminate, return with a return code of 8. DFSORT then
returns to its calling program or to the system with a return code of 16.

E17 User Exit: Closing Data Sets
Your E17 user exit routine is entered once at the end of the input phase.It can be
used to close data sets used by your other routines in the phase or to perform any
housekeeping functions for your routines.

Note: To avoid special linkage editor requirements (see “Summary of Rules for
User Exit Routines” on page 323), you can include these functions in your
E15 user exits rather than in a separate E17 user exit routine.

E18 User Exit: Handling Input Data Sets
You can use this user exit to handle special I/O conditions for QSAM/BSAM and
VSAM input data sets.

Using E18 User Exit with QSAM/BSAM
Your routines at this user exit can pass DFSORTa parameter list containing the
specifications for three data control block (DCB) fields: SYNAD, EXLST, and
EROPT. Your E18 user exit routine can also pass a fourth DCB field (EODAD) to
DFSORT.

Note: If you are using a disk sorting technique, the EROPT option is ignored.

Your routines are entered at the beginning of each phase so that DFSORT can
obtain the parameter lists. The routines are entered again during processing of the
phase at the points indicated in the parameter lists. For example, if you choose the
EXLST option, DFSORT enters your E18 user exit routine early in the sort (input)
phase. DFSORT picks up the parameter list including the EXLST address. Later in
the phase, DFSORT enters your routine again at the EXLST address when the data
set is opened.

Information Your Routine Passes to DFSORT at E18 User Exit: Before
returning control to DFSORT, your routine passes the DCB fields in a parameter list
by placing the parameter list address in general register 1. The parameter list must
begin on a fullword boundary and be a whole number of fullwords long. The

Assembler User Exit Routines (Input Phase User Exits)

330 DFSORT R14 Application Programming Guide

high-order byte of each word must contain a character code that identifies the
parameter. One or more of the words can be omitted. A word of all zeros marks the
end of the list.

If VSAM parameters are specified, they are accepted but ignored.

The format of the list is shown as follows:

Byte 1 Byte 2 Byte 3 Byte 4

01 SYNAD field

02 EXLST field

03 00 00 EROPT code

04 EODAD field

00 00 00 00

SYNAD
Contains the location of yourread synchronous error routine. This routine is
entered only after the operating system has tried unsuccessfully to correct the
error. The routine must be assembled as part of your E18 user exit routine.
When the routine receives control, it must not store registers in the save area
pointed to by register 13.

EXLST
Contains the location of a list of pointers to routines that you want used to
check labels and accomplish other tasks not handled by data management. The
list, and the routines to which it points, must be included in your read error
routine. This parameter can only be used for EXLST routines associated with
opening the first SORTIN data set.

EROPT
Indicates what action DFSORT must take when it encounters an uncorrectable
read error. The three possible actions and the codes associated with them are:
X'80' Accept the record (block) as is
X'40' Skip the record (block)
X'20' Terminate the program.

If you include this parameter in the DCB field list, you must place one of the
above codes in byte 4 of the word. Bytes 2 and 3 of the word must contain
zeros.

When you use the EROPT option, the SYNAD field and the EODAD field must
contain the appropriate address in bytes 2 through 4. Or, if no routine is
available, bytes 2 and 3 must contain zeros, and byte 4 must contain X'01'. You
can use the assembler instruction DC AL3(1) to set up bytes 2 through 4.

EODAD
Contains the address of your end-of-file routine. If you specify EODAD, you
must include the end-of-file routine in your own routine.

A full description of these DCB fields is contained in z/OS DFSMS Macro
Instructions for Data Sets.

Using E18 User Exit with VSAM
If input to DFSORT is a VSAM data set,you can use the E18 user exit to perform
various VSAM user exit functions and to insert passwords in VSAM input ACBs.

Assembler User Exit Routines (Input Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 331

E18 User Exit Restrictions: If passwords are to be entered through a user exit
and Blockset is not selected, the data set cannot be opened during the initialization
phase. This means that MAINSIZE|SIZE=MAX must not be used because the
program cannot make the necessary calculations.

Information Your Routine Passes to DFSORT at E18 User Exit: When you
return to DFSORT, you must place the address of a parameter list in general
register 1:

Byte 1 Bytes 2 through 4

05 Address of VSAM user exit list

06 Address of password list

00 000000

If QSAM parameters are passed instead, they are accepted but ignored.

Either address entry can be omitted; if they both are included, they can be in any
order.

E18 Password List: A password list included in your routine must have the
following format:

Two bytes on a halfword boundary:

Number of entries in list

Followed by the 16-byte entries:

8 bytes: ddname

8 bytes: Password

The last byte of the ddname field is destroyed by DFSORT. This list must not be
altered at any time during the program. MAINSIZE|SIZE=MAX must not be used if
this function is used.

E18 User Exit List: The VSAM user exit list must be built using the VSAM EXLST
macro instruction giving the addresses of your routines handling VSAM user exit
functions. VSAM branches directly to your routines which must return to VSAM via
register 14.

Any VSAM user exit function available for input data sets can be used except
EODAD. If you need to do EODAD processing, write a LERAD user exit and check
for X'04' in the FDBK field of the RPL. This will indicate input EOD. This field must
not be altered when returning to VSAM because it is also needed by DFSORT.

For details, see z/OS DFSMS Macro Instructions for Data Sets.

Assembler User Exit Routines (Input Phase User Exits)

332 DFSORT R14 Application Programming Guide

Figure 18 shows an example of code your program can use to return control to
DFSORT.

1 X'85'= X'80' plus X'05', where:
X'80' means this entry is the LAST ENTRY of the list.
X'05' means this user exit is the data control block user exit.

For more information, refer to z/OS DFSMS: Using Data Sets.

E19 User Exit: Handling Output to Work Data Sets
This user exit is used to handle write error conditions in the input phasewhen
DFSORT is unable to correct a write error to a work data set. It is used only for a
tape work data set sort.

Using E19 User Exit with QSAM/BSAM
Your routines at this user exit can pass DFSORT a parameter listcontaining the
specifications for two DCB fields (SYNAD and EXLST). Your routines are entered
first early in the input phase so that DFSORT can obtain the parameter lists. The
routines are entered again later in the phase at the points indicated by the options
in the parameter lists.

Information Your Routine Passes to DFSORT at E19 User Exit: Before
returning control to DFSORT, your routine passes the DCB fields in a parameter list
by placing the parameter list address in general register 1. The list must begin on a
fullword boundary and must be a whole number of fullwords long. The first byte of

ENTRY E18
.
.

E18 LA 1,PARMLST
RETURN
CNOP 0,4

PARMLST DC X’01’
DC AL3(SER)
DC X’02’
DC AL3(LST)
DC X’03’
DC X’000080’ EROPT CODE
DC A(0)
DC X’04’
DC AL3(QSAMEOD)
DC X’05’
DC AL3(VSAMEXL)
DC X’06’
DC AL3(PWDLST)
DC A(0)
.
.

VSAMEXL EXLST SYNAD=USYNAD,LERAD=ULERAD
PWDLST DC H’1’

DC CL8’SORTIN’ SORTIN DDNAME
DC CL8’INPASS’ SORTIN PASSWORD

USYNAD ... VSAM SYNCH ERROR RTN
ULERAD ... VSAM LOGIC ERROR RTN
SER ... QSAM ERROR RTN
LST DC X’85’,AL3(RTN) EXLST ADDRESS LIST1

RTN ... EXLST ROUTINE
QSAMEOD ... QSAM END OF FILE ROUTINE

Figure 18. E18 User Exit Example

Assembler User Exit Routines (Input Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 333

each word must contain a character code that identifies the parameter. Either word
can be omitted. A word of all zeros indicates the end of the list.

If VSAM parameters are passed, they are accepted but ignored.

The format of the list is shown below.

Byte 1 Byte 2 Byte 3 Byte 4

01 SYNAD field

02 EXLST field

00 00 00 00

SYNAD
This field contains the location of your write synchronous errorroutine. This
routine is entered only after the operating system has unsuccessfully tried to
correct the error. It must be assembled as part of your own routine.

EXLST
The EXLST field contains the location of a list of pointers. These pointers point
to routines that are used to process labels and accomplish other tasks not
handled by data management. This list, and the routines to which it points, must
be included as part of your own routine.

A full description of these DCB fields can be found in z/OS DFSMS Macro
Instructions for Data Sets.

E61 User Exit: Modifying Control Fields
You can use a routine at this user exit to lengthen, shorten, or alter any control field
within a record. The E option for the s parameter on the SORT or MERGE control
statement must be specified for control fields changed by this routine as described
in “MERGE Control Statement” on page 145 and “SORT Control Statement” on
page 300. After your routine modifies the control field, DFSORT collates the records
in ascending order using the format(s) specified.19

Notes:

1. Routine E61 will not be used with EFS fields that have a D1 format.

2. Although your E61 routine alters control fields before a compare, your original
records are not altered.

3. If locale processing is used for SORT or MERGE fields, an E61 user exit must
not be used. DFSORT’s locale processing may eliminate the need for an E61
user exit. See “OPTION Control Statement” on page 155 for information related
to locale processing.

Some Uses of E61 User Exit
Your routine can normalize floating-point control fields or change any other type of
control field in any way that you desire. You need to be familiar with the standard
data formats used by the operating system before modifying control fields.

If you want to modify the collating sequence of EBCDIC data, for example, to permit
the alphabetic collating of national characters, you can do so without the need for

19. With a conventional merge or a tape work data set sort, control fields for which E is specified are treated as binary byte format
regardless of the actual format(s) specified.

Assembler User Exit Routines (Input Phase User Exits)

334 DFSORT R14 Application Programming Guide

an E61 user exit routine by using the ALTSEQ control statement (as described in
“ALTSEQ Control Statement” on page 103).

Information DFSORT Passes to Your Routine at E61 User Exit
DFSORT places the address of a parameter list in general register 1. The list
begins on a fullword boundary and is three fullwords long. The parameter list for the
E61 user exit is as follows:

Byte 1 Byte 2 Byte 3 Byte 4

00 00 00 Control Field No.

00 Address of Control Field Image

Not Used Control Field Length

The control field length allows you to write a more generalized modification routine.

To alter the control field, change the control field image at the indicated address
(changing the address itself will have no effect).

The control field number is relative to all fields in the SORT or MERGE statement.
For example, if you specify:
SORT FIELDS=(4,2,CH,A,8,10,CH,E,25,2,BI,E)

field numbers 2 and 3 will be passed to user exit E61.

For all fields except binary, the total number of bytes DFSORT passes to your
routine is equal to the length specified in the m parameter of the SORT or MERGE
statement.

All binary fields passed to your routine contain a whole number of bytes; all bytes
that contain any bits of the control field are passed. If the control field is longer than
256 bytes, DFSORT splits it into fields of 256 bytes each and passes them one at a
time to your routine.

Your routine cannot physically change the length of the control field. If you must
increase the length for collating purposes, you must previously specify that length in
the m parameter of the SORT or MERGE statement. If you must shorten the control
field, you must pad it to the specified length before returning it to DFSORT. Your
routine must return the field to DFSORT with the same number of bytes that it
contained when your routine was entered.

When user exit E61 is used, records are always ordered into ascending sequence.
If you need some other sequence, you can modify the fields further; for example, if
after carrying out your planned modification for a binary control field, and before
handing back control to DFSORT, you reverse all bits, the field is, in effect, collated
in descending order as illustrated by the E61 example in Figure 24 on page 345.

Note that if E61 is used to resolve ISCII/ASCII collating for special alphabetic
characters, substituted characters must be in EBCDIC, but the sequencing depends
upon the byte value of the ISCII/ASCII translation for the substituted character.

Assembler User Exit Routines (Input Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 335

Assembler User Exit Routines (Output Phase User Exits)
You can use these program user exits located in the DFSORToutput phase:

E31
E32
E35
E37
E38
E39

The functions of these user exits are discussed in sequence.

E31 User Exit: Opening Data Sets/Initializing Routines
You might use routines at this user exit to open data sets neededby your other
routines in the output phase or to initialize your other routines. Return codes are not
used.

Note: To avoid special linkage editor requirements (see “Summary of Rules for
User Exit Routines” on page 323), you can include these functions in your
E35 user exit rather than in a separate E31 routine.

E32 User Exit: Handling Input to a Merge Only
This user exit can be used only in a merge operation invoked from a program and
cannot be specified on the MODS statement. When an E32 user exit is activated, it
must supply all input to the merge. DFSORT ignores SORTINnn data sets when an
E32 user exit is used.

You must indicate the number of input files you want to merge using either (1) the
FILES=n option on the MERGE control statement, or (2) the X'04' entry in the 24-bit
parameter list. Your E32 user exit routine must insert records for these files as
DFSORT requests them.

If input is variable-length records, you must be sure the beginning of each record
contains a 4-byte RDW before merged. The format of an RDW is described in z/OS
DFSMS Macro Instructions for Data Sets (Alternatively, you can declare the records
as fixed-length and pad them to the maximum length.)

See Figure 17 on page 318 for logic flow details.

Information DFSORT Passes to Your Routine at E32 User Exit
Your E32 user exit routine is entered each time the merge program requires a new
input record. DFSORT passes three words to your routine:

v The increment of the next file to be used for input. The file increment is
0,4,8,...,N–4, where N is four times the number of input files. Thus, the increment
0 (zero) represents the first input file, 4 the second file, 8 the third, and so on.

v The address of the next input record. Your routine must provide a separate
input buffer for each input file used. An input buffer containing the first record for
a file must not be altered until you have passed the first record from each file to
DFSORT.

v The user exit address constant. If you invoked DFSORT with a user exit
address constant in the parameter list, the address constant is passed to your
E32 user exit the first time it is entered. This address constant can be changed
by your E32 user exit any time it is entered; the address constant is passed
along on subsequent entries to your E32 user exit and E35 user exit. For

Assembler User Exit Routines (Output Phase User Exits)

336 DFSORT R14 Application Programming Guide

example, you can obtain a dynamic storage area, use it in your E32 user exit,
and pass its address to your E35 user exit.

Note: The user exit address constant must not be used for a Conventional merge
application.

In general register 1, DFSORT places the address of a parameter list that contains
the file increment, the record address and the user address constant. The list is
three fullwords long and begins on a fullword boundary. The format of the
parameter list is:

Table 51. E32 User Exit Parameter List

Bytes 1 through 4 Increment of next file to be used for input

Bytes 5 through 8 Address of next input record

Bytes 9 through 12 User exit address constant

Before returning control to DFSORT, you must:

v Place the address of the next input record from the requested input file in the
second word of the parameter list

v Put the return code in register 15.

E32 Return Codes
Your E32 routine must pass a return code to DFSORT. Following are the return
codes for the E32 user exit:

Return Code Description
08 (X'08') End of input for requested file
12 (X'0C') Insert record
16 (X'10') Terminate DFSORT

8: End of input for requested file
DFSORT continues to return control to the user routine until it receives a return
code of 8 for every input file. After that, the user exit is not used again during
the DFSORT application. You need not place an address in the second word of
the parameter list when you return with a return code of 8.

12: Insert Record
To add a record from the requested input file, place the address of the record to
be added in the second word of the parameter list and return to DFSORT with a
return code of 12. DFSORT keeps returning to your routine until you pass a
return code of 8 for every input file.

16: Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program with a return code of 16.

E35 User Exit: Changing Records
If you write your E35 user exit in COBOL,see “COBOL User Exit Routines” on
page 345 and “COBOL E35 User Exit: Changing Records” on page 354.

The EXITCK option affects the way DFSORT interprets certain return codes from
user exit E35. To avoid ambiguity, this section assumes that the IBM default,
EXITCK=STRONG, was selected at your site. For complete details of the meaning
of E35 return codes in various situations with EXITCK=STRONG and
EXITCK=WEAK, see “E15/E35 Return Codes and EXITCK” on page 363.

Assembler User Exit Routines (Output Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 337

DFSORT enters the E35 user exit routine each time it prepares to place a record in
the output area.

See Figure 17 on page 318 for logic flow details.

Some uses for the E35 user exit are:
v Adding records for output data sets
v Omitting records for output data sets
v Changing records for output data sets

Notes:

1. If your E35 user exit is processing variable-length records, include a 4-byte
RDW at the beginning of each record you change or insert, before you pass it
back to DFSORT. The format of an RDW is described in z/OS DFSMS: Using
Data Sets or System Programming Reference. (Alternatively, you can pad
records to the maximum length and process them as fixed-length.)

2. DFSORT uses the specified or defaulted value for L3 in the RECORD statement
to determine the length of the records your E35 user exit passes back to
DFSORT. For fixed-length records, be sure that the length of each record your
E35 user exit changes or inserts corresponds to the specified or defaulted L3
value. For variable-length records, be sure that the RDW of each record your
E35 user exit changes or inserts indicates a length that is less than or equal to
the specified or defaulted L3 value. Unwanted truncation or abends may occur if
DFSORT uses the wrong length for the records passed to it by your E35 user
exit.

For details of the L3 value, see “RECORD Control Statement” on page 296.

3. If you use the E35 user exit to dispose of all your output records, you can omit
the SORTOUT DD statement.

4. If you invoke DFSORT from a program and you pass the address of your E35
user exit in the parameter list:
v DFSORT ignores the SORTOUT data set (but not any OUTFIL data sets).
v DFSORT terminates if you specify E35 in a MODS statement.

5. If you omit the SORTOUT DD statement or it is ignored, and you do not specify
any OUTFIL data sets, your E35 user exit routine must dispose of each output
record and return to DFSORT with a return code of 4. When DFSORT returns to
your routine after you have disposed of the last record, return to DFSORT with
a return code of 8 to indicate“do not return.”

6. Remember that if input records are variable-length from a VSAM data set, they
will have been prefixed by a 4-byte RDW.

7. After records have been put into the output area, their lengths cannot be
increased.

8. For a merge application, records deleted by an E35 user exit routine are not
sequence-checked. If you use an E35 user exit routine without an output data
set, sequence checking is not performed. In this case, you must ensure that the
records are sequenced correctly.

Information DFSORT Passes to Your Routine at E35 User Exit
Your E35 user exit routine is entered each time DFSORT prepares to place a
record (including the first record) in the output area. DFSORT passes three words
to your routine:

v The address of the record leaving DFSORT, which usually follows the record
in the output area. End of input is reached when there are no more records to
pass to your E35 user exit; DFSORT indicates end of input by setting this
address to zero before entering your E35 user exit.

Assembler User Exit Routines (Output Phase User Exits)

338 DFSORT R14 Application Programming Guide

After end of input is reached, DFSORT continues to enter your user exit routine
until a return code of 8 is passed back.

Your E35 user exit must not change the address of the record leaving DFSORT.

v The address of a record in the output area is zero the first time your routine is
entered because there is no record in the output area at that time. It remains
zero provided you pass a return code of 4 (delete record) to DFSORT.

Note: If the record pointed to is variable-length, it has an RDW at this point even
if output is to a VSAM data set.

v The user exit address constant is passed to your user exit exactly as it was set
by your E15 or E32 user exit or invoking program’s parameter list.

Note: The user exit address constant must not be used for a Conventional merge
or tape work data set sort application.

In general register 1, DFSORT places the address of a parameter list that contains
the two record addresses and the user address constant. The list is three fullwords
long and begins on a fullword boundary. The format of the parameter list is:

Table 52. E35 User Exit Parameter List

Bytes 1 through 4 Address of record leaving DFSORT

Bytes 5 through 8 Address of record in output area

Bytes 9 through 12 User exit address constant

E35 Return Codes
Your E35 routine must pass a return code to DFSORT. Following are the return
codes for the E35 user exit:

Return Code Description
00 (X'00') No Action/Record Altered
04 (X'04') Delete Record
08 (X'08') Do Not Return
12 (X'0C') Insert Record
16 (X'10') Terminate DFSORT

0: No Action
If you want DFSORT to retain the record unchanged, load the address of the
record leaving DFSORT in general register 1 and return to DFSORT with a
return code of 0 (zero).

0: Record Altered
If you want to change the record before having it placed in the output data set,
move the record to a work area, make the change, load the address of the
modified record into general register 1, and return to DFSORT with a return
code of 0 (zero).

4: Delete Record
Your routine can delete the record leaving DFSORT by returning to DFSORT
with a return code of 4. You need not place an address in general register 1.

8: Do Not Return
DFSORT keeps returning to your routine until you pass a return code of 8. After
that, the user exit is not used again during the DFSORT application. When you
return with a return code of 8, you need not place an address in general
register 1. Unless you are inserting records after the end of the data set, you

Assembler User Exit Routines (Output Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 339

must pass a return code of 8 when DFSORT indicates the end of the data set.
This is done by passing a zero as the address of the record leaving DFSORT.

If you do not have an output data set and would usually return with a return
code of 8 before EOF, you can avoid getting the ICE025A message by
specifying NOCHECK on the OPTION control statement (if CHECK=NO had not
already been specified at installation time).

If your user exit routine passes a return code of 8 to DFSORT when input
records still remain to be processed, the remaining records are processed by
DFSORT, but are not passed to your user exit.

12: Insert Record
To add an output record ahead of the record leaving DFSORT, place the
address of the new record in general register 1 and return to DFSORT with a
return code of 12. DFSORT returns to your routine with the same address as
passed on the previous call to the user exit for the record leaving DFSORT.
DFSORT places the address of the inserted record into the output area. You
can make more insertions at that point, or delete the record leaving DFSORT.

DFSORT does not perform sequence checking for DASD work data set sorts.
For tape work data set sorts, DFSORT does not perform sequence checking on
records that you insert unless you delete the record leaving DFSORT and insert
a record to replace it. DFSORT keeps returning to your routine until you pass a
return code of 8.

16: Terminate DFSORT
If you want to terminate DFSORT, return with a code of 16. DFSORT then
returns to its calling program or to the system with a return code of 16.

See “E15/E35 Return Codes and EXITCK” on page 363 for complete details of the
meanings of return codes in various situations.

Summing Records at E35 User Exit: You can use the SUM control statement to
sum records. However, you can sum records for output by changing the record in
the output area and then, if you want, by deleting the record leaving DFSORT.
DFSORT returns to your routine with the address of a new record leaving DFSORT,
and the same record remains in the output area, so that you can continue
summing. If you do not delete the record leaving DFSORT, that record is added to
the output area, and its address replaces the address of the previous record in the
output area. DFSORT returns with the address of a new record leaving DFSORT.

Storage Usage for E35 User Exit
DFSORT obtains storage (using GETMAIN or STORAGE OBTAIN) for the
parameter list and the records it passes to your E35 user exit routine. You must not
attempt to modify or free the storage obtained by DFSORT.

If you need to obtain storage for use by your E35 user exit routine, such as to pass
altered records to DFSORT, you can use the following strategy:

1. The first time your exit is called, obtain the storage you need

2. Use the storage you obtained each time your exit is called

3. Free the storage before you pass back return code 8 to DFSORT.

Note: When you obtain your storage you can save its address in the user exit
address constant and restore it on each subsequent call to your exit.

Assembler User Exit Routines (Output Phase User Exits)

340 DFSORT R14 Application Programming Guide

E37 User Exit: Closing Data Sets
Your E37 user exit routine is entered once at the end ofthe output phase. It can be
used to close data sets used by your other routines in the phase or to perform any
housekeeping functions for your routines.

Note: To avoid special linkage editor requirements (see “Summary of Rules for
User Exit Routines” on page 323), you can include these functions in your
E35 user exit rather than in a separate E37 user exit.

E38 User Exit: Handling Input Data Sets
The routine here is the same as for E18. If the Blockset or Peerage/Vale technique
is selected, I/O error conditions cannot be handled through the E38 user exit.

Using E38 User Exit with VSAM
This user exit can be used during a merge or copy to insert VSAM passwords into
VSAM input ACBs and to perform various VSAM user exit functions. The following
example shows code your program can use to return control to DFSORT.

E39 User Exit: Handling Output Data Sets
Your E39 user exit routine is entered for the SORTOUT data set, but not for
OUTFIL data sets.

Using E39 User Exit with QSAM/BSAM
The technique is the same as for E19 for QSAM/BSAM. See “E19 User Exit:
Handling Output to Work Data Sets” on page 333 for details.

Using E39 User Exit with VSAM
For VSAM, this user exit can be used to insert VSAM passwords intothe VSAM
SORTOUT ACB and to perform various VSAM user exit functions. The example
below shows code your program can use to return control to DFSORT.

ENTRY E38
.
.

E38 LA 1,PARMLST
RETURN
CNOP 0,4

PARMLST DS 0H
DC X’05’
DC AL3(VSAMEXL)
DC X’06’
DC AL3(PWDLST)
DC A(0)
.
.

VSAMEXL EXLST SYNAD=USYNAD,LERAD=ULERAD
PWDLST DC H’2’

DC CL8’SORTIN01’ SORTIN01 DDNAME
DC CL8’INPASS1’ SORTIN01 PASSWORD
DC CL8’SORTIN02’ SORTIN02 DDNAME
DC CL8’INPASS2’ SORTIN02 PASSWORD

USYNAD ... VSAM SYNCH ERROR RTN
ULERAD ... VSAM LOGIC ERROR RTN

Figure 19. E38 User Exit Example

Assembler User Exit Routines (Output Phase User Exits)

Chapter 4. Using Your Own User Exit Routines 341

Sample Routines Written in Assembler
This section provides some sample program user exits written in assembler.

E15 User Exit: Altering Record Length
This routine changes the variable-length input records making them all the same
length.

ENTRY E39
.
.

E39 LA 1,PARMLST
RETURN
CNOP 0,4

PARMLST DS 0H
DC X’05’
DC AL3(VSAMEXL)
DC X’06’
DC AL3(PWDLST)
DC A(0)
.
.

VSAMEXL EXLST SYNAD=USYNAD,LERAD=ULERAD
PWDLST DC H’1’

DC CL8’SORTOUT’ SORTOUT DDNAME
DC CL8’OUTPASS’ SORTOUT PASSWORD

USYNAD ... VSAM SYNCH ERROR RTN
ULERAD ... VSAM LOGIC ERROR RTN

Figure 20. E39 User Exit Example

Sample Routines Written in Assembler

342 DFSORT R14 Application Programming Guide

E16 User Exit: Sorting Current Records When NMAX Is Exceeded
This routine tells DFSORT that, when DFSORT issues the message “NMAX
EXCEEDED”, it must sort only the records already read in.

E15 CSECT
* IF A RECORD IS GREATER THAN 204 BYTES, TRUNCATE IT TO 204 BYTES.
* IF A RECORD IS LESS THAN 204 BYTES, PAD IT OUT TO 204 BYTES.
* ALL OF THE RESULTING RECORDS WILL BE 204 BYTES LONG
* (4 BYTES FOR THE RDW AND 200 BYTES OF DATA).

USING E15,12 SHOW BASE REG
STM 14,12,12(13) SAVE ALL REGS EXCEPT 13
LA 12,0(0,15) SET BASE REG
ST 13,SAVE15+4 SAVE BACKWARD POINTER
LA 14,SAVE15 SET FORWARD POINTER
ST 14,8(13) IN SAVE AREA
LR 13,14 SET OUR SAVE AREA
LR 2,1 SAVE PARM LIST POINTER
L 3,0(,2) LOAD ADDR OF RECORD
LTR 3,3 EOF
BZ EOF YES - DO NOT RETURN
LH 4,0(,3) GET RDW
CH 4,CON204 IS RDW EQ 204
BE ACCEPT YES-ACCEPT IT
BL PAD LESS THAN 204-PAD
LH 4,CON204 LIMIT LENGTH TO 204
B TRUNC MORE THAN 204-TRUNCATE

PAD DS 0H PAD OR TRUNCATE
MVI DATA,X’00’ ZERO OUT THE BUFFER
MVC DATA+1(199),DATA
BCTR 4,0 DECREASE RDW FOR EXECUTE

TRUNC DS 0H PAD OR TRUNCATE
EX 4,MVPAD MOVE RECORD INTO PAD/TRUNCATE BUFFER
MVC NEWRDW(2),CON204 SET NEW RDW TO 204
LA 3,BUFFER POINT TO PADDED/TRUNCATED RECORD

ACCEPT DS 0H
SR 15,15 SET RC=0
LR 1,3 SET RECORD POINTER
B GOBACK

EOF LA 15,8 EOF - SET RC=8
GOBACK L 13,4(,13)

L 14,12(,13)
LM 2,12,28(13) RESTORE REGS
BR 14 RETURN

MVPAD MVC BUFFER(*-*),0(3) FOR EXECUTE
SAVE15 DS 18F
CON204 DC H’204’
BUFFER DS 0H
NEWRDW DS H NEW RDW OF 204

DC H’0’
DATA DC XL200’00’ BUFFER FOR PADDING/TRUNCATING

END

Figure 21. E15 User Exit Example

E16 CSECT
LA 15,0 SET RETURN CODE
BR 14
END

Figure 22. E16 User Exit Example

Sample Routines Written in Assembler

Chapter 4. Using Your Own User Exit Routines 343

E35 User Exit: Altering Record Length
This routine changes the variable-length output records making them all the same
length.

E61 User Exit: Altering Control Fields
This routine can be used to change the order of binary control fields passed to it
(that is, those for which ’E’ is specified) from ascending order to descending order.

E35 CSECT
* IF A RECORD IS GREATER THAN 204 BYTES, TRUNCATE IT TO 204 BYTES.
* IF A RECORD IS LESS THAN 204 BYTES, PAD IT OUT TO 204 BYTES.
* ALL OF THE RESULTING RECORDS WILL BE 204 BYTES LONG
* (4 BYTES FOR THE RDW AND 200 BYTES OF DATA).

USING E35,12 SHOW BASE REG
STM 14,12,12(13) SAVE ALL REGS EXCEPT 13
LA 12,0(0,15) SET BASE REG
ST 13,SAVE15+4 SAVE BACKWARD POINTER
LA 14,SAVE15 SET FORWARD POINTER
ST 14,8(13) IN SAVE AREA
LR 13,14 SET OUR SAVE AREA
LR 2,1 SAVE PARM LIST POINTER
L 3,0(,2) LOAD ADDR OF RECORD
LTR 3,3 EOF
BZ EOF YES - DO NOT RETURN
LH 4,0(,3) GET RDW
CH 4,CON204 IS RDW EQ 204
BE ACCEPT YES-ACCEPT IT
BL PAD LESS THAN 204-PAD
LH 4,CON204 LIMIT LENGTH TO 204
B TRUNC MORE THAN 204-TRUNCATE

PAD DS 0H PAD OR TRUNCATE
MVI DATA,X’00’ ZERO OUT THE BUFFER
MVC DATA+1(199),DATA
BCTR 4,0 DECREASE RDW FOR EXECUTE

TRUNC DS 0H PAD OR TRUNCATE
EX 4,MVPAD MOVE RECORD INTO PAD/TRUNCATE BUFFER
MVC NEWRDW(2),CON204 SET NEW RDW TO 204
LA 3,BUFFER POINT TO PADDED/TRUNCATED RECORD

ACCEPT DS 0H
SR 15,15 SET RC=0
LR 1,3 SET RECORD POINTER
B GOBACK

EOF LA 15,8 EOF - SET RC=8
GOBACK L 13,4(,13)

L 14,12(,13)
LM 2,12,28(13) RESTORE REGS
BR 14 RETURN

MVPAD MVC BUFFER(*-*),0(3) FOR EXECUTE
SAVE15 DS 18F
CON204 DC H’204’
BUFFER DS 0H
NEWRDW DS H NEW RDW OF 204

DC H’0’
DATA DC XL200’00’ BUFFER FOR PADDING/TRUNCATING

END

Figure 23. E35 User Exit Example

Sample Routines Written in Assembler

344 DFSORT R14 Application Programming Guide

COBOL User Exit Routines
You can perform the same tasks with E15 and E35 user exit routineswritten in
COBOL that you can perform with E15 and E35 user exit routines written in
assembler. However, COBOL routines differ from assembler routines in the way
they pass information between themselves and DFSORT.

v COBOL routines must pass information through fields described in the LINKAGE
SECTION of the DATA DIVISION. Assembler uses general register 1 and
pointers in a parameter list.

v COBOL routines must use RETURN-CODE, a COBOL special register.
Assembler uses register 15 for the return code.

v COBOL routines must use return code 20 to alter or replace a record. Assembler
uses return code 0.

v COBOL routines can use the user exit area for E15/E35 communication.
Assembler uses the user address constant.

COBOL User Exit Requirements
The following rules apply to COBOL user exits. Failure to observe these COBOL
user exit rules can result in termination or unpredictable results.

Note: ″VS COBOL II or later″ means VS COBOL II, COBOL for MVS & VM,
COBOL for OS/390 & VM, COBOL for z/OS and OS/390, and Language
Environment.

* E61 PARAMETER LIST DSECT
PARML DSECT

DS 3C
PARMNUM DS C CONTROL FIELD NUMBER
PARMPTR DS A ADDRESS OF CONTROL FIELD

DS 2C
PARMLEN DS H CONTROL FIELD LENGTH
*
E61REV CSECT
* CHANGE THE ORDER OF EACH CONTROL FIELD PASSED TO THIS ROUTINE
* FROM ASCENDING TO DESCENDING BY REVERSING ALL OF THE BITS.
* ASSUMES THAT ONLY BI CONTROL FIELDS ARE PASSED.

USING E61REV,12 SHOW BASE REG
STM 14,12,12(13) SAVE ALL REGS EXCEPT R13
LA 12,0(0,15) SET BASE REG
ST 13,SAVE61+4 SAVE BACKWARD POINTER
LA 14,SAVE61 SET FORWARD POINTER
ST 14,8(13) IN SAVE AREA
LR 13,14 SET OUR SAVE AREA
LR 3,1 SET PARM LIST POINTER
USING PARML,3
L 4,PARMPTR GET POINTER TO CONTROL FIELD IMAGE
LH 5,PARMLEN GET LENGTH OF CONTROL FIELD
BCTR 5,0 SUBTRACT 1 FOR EXECUTE
EX 5,REVCF CHANGE FROM ASCENDING TO DESCENDING

GOBACK L 13,4(,13)
LM 14,12,12(13) RESTORE REGS
BR 14 RETURN

REVCF XC 0(*-*,4),REVFF REVERSE CONTROL FIELD BITS
SAVE61 DS 18F
REVFF DC 256X’FF’

LTORG
END

Figure 24. E61 User Exit Example

COBOL User Exit Routines

Chapter 4. Using Your Own User Exit Routines 345

|
|
|

v User exits written in COBOL must not use STOP RUN statements. To return to
DFSORT, use the GOBACK statement.

v VS COBOL II user exits must be compiled with the RES/RENT compiler option.

v Compilation of OS/VS COBOL user exits with the RES compiler option aids
migration to VS COBOL II or later; however, user exits compiled with NORES will
run under DFSORT.

v If a user exit contains a READY TRACE, EXHIBIT, or DISPLAY statement, the
DFSORT messages normally written to SYSOUT must be directed to another
data set using the MSGDDN parameter. For READY TRACE, EXHIBIT, and
DISPLAY statements, COBOL writes also to SYSOUT. The messages to
SYSOUT can, therefore, be lost because of interleaving of output.

An alternative is to direct the COBOL output to another data set by using the
SYSx compiler option for OS/VS COBOL or the OUTDD compiler option for VS
COBOL II, COBOL for MVS & VM, COBOL for OS/390 & VM, or COBOL for
z/OS and OS/390.

Note: READY TRACE and EXHIBIT are only supported in OS/VS COBOL.

v COBOL user exits must not contain a SORT or a MERGE verb.

v When coding the MODS control statement to describe a COBOL user exit, use C
for the fourth parameter. This instructs DFSORT to build the correct parameter
list.

v If invoking DFSORT from a VS COBOL II or later program, you can use a
COBOL E15 if the VS COBOL II or later FASTSRT option is in effect for input
and a COBOL E35 if FASTSRT is in effect for output. The COBOL user exits
must be compiled with VS COBOL II or later.

v If you are running user exits compiled with VS COBOL II, you must use the VS
COBOL II library or Language Environment library. If COBEXIT=COB2 is not the
default for your installation, make sure you specify the COB2 parameter in the
OPTION control statement. Failure to do so degrades performance.

v If you are running user exits compiled with COBOL for MVS & VM, COBOL for
OS/390 & VM, or COBOL for z/OS and OS/390, you must use the Language
Environment library. If COBEXIT=COB2 is not the default for your installation,
make sure that you specify the COB2 parameter in the OPTION control
statement. Failure to do so degrades performance.

v If COBEXIT=COB2 is in effect for this run, you must use the VS COBOL II library
or Language Environment Library even if your COBOL user exit is compiled by
the OS/VS COBOL compiler.

v If you run user exits compiled with either the OS/VS COBOL compiler or the VS
COBOL II compiler and you specify the RES option, the COBOL library routines
must be available at run time. The COBOL library might be required for a user
exit compiled with the OS/VS COBOL NORES option. See your OS/VS COBOL
manual for information on options that require the COBOL library.

v User exits compiled with OS/VS COBOL can be run with either the OS/VS
COBOL or VS COBOL II library or, in some cases, with no library.

v COBOL for MVS & VM, COBOL for OS/390 & VM, and COBOL for z/OS and
OS/390 require that COBOL library routines in Language Environment must be
available at run-time.

v User exits compiled with OS/VS COBOL and running with the VS COBOL II
library must not issue STAEs unless the DFSORT NOESTAE option is in effect.
(OS/VS COBOL compiler options that cause STAE to be issued are STATE,
FLOW, SYMDMP, COUNT, and TRACE.)

COBOL User Exit Routines

346 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|
|
|

|
|
|

COBOL Requirements for Copy Processing
For copy processing, all sort requirements apply except for the following restrictions:

v When you directly invoke DFSORT and COBEXIT=COB2 is in effect, you can
use either a separately compiled COBOL E15 user exit or a separately compiled
COBOL E35 user exit, but not both.

v When you invoke DFSORT from a VS COBOL II or later program, the following
limitations apply when FASTSRT is in effect for:

– Input only: You can use a separately compiled E15 user exit, but not a
separately compiled E35 user exit.

– Output only: You can use a separately compiled E35 user exit, but not a
separately compiled E15 user exit.

– Input and output: You can use either a separately compiled E15 or a
separately compiled E35, but not both together (when COBEXIT=COB2).

If separately compiled E15 and E35 user exits are found together, DFSORT copy
processing terminates. Message ICE161A is issued.

COBOL Storage Requirements
If you are running COBOL user exits compiled with the RES compiler option, make
sure that you have enough storage available for the COBOL library subroutines.
(This does not apply if the library has been installed resident.)

Besides the minimum DFSORT main storage requirements, you need an additional
40KB of storage in your REGION for the OS/VS COBOL library subroutines and
150KB for the VS COBOL II library subroutines. Most of the VS COBOL II library
subroutines can be resident above 16MB virtual. However, whether you can actually
load the VS COBOL II library subroutines above 16MB virtual depends on how they
were installed. In order to run Language Environment for MVS & VM, you need
1200KB. You can minimize the storage needed by Language Environment for MVS
& VM below 16MB virtual by loading the COBPACKS above 16MB virtual. See
Language Environment for MVS & VM Installation and Customization Guide,
SC26-4817, or z/OS Language Environment Customization, for more information.

Under certain conditions, DFSORT can use all the storage in your REGION below
16MB virtual, thus leaving no room to load the COBOL library subroutines required
during processing of your user exit.

Main storage is available above 16MB virtual unless the TMAXLIM or
SIZE/MAINSIZE options specify an extremely high value (for example, your system
limit for main storage above 16MB virtual). In that case, you can use the ARESALL
or ARESINV option to release storage.

During processing, the actual amount of storage required for the COBOL library
subroutines depends on the functions performed in the COBOL user exit. You must
add a minimum of 40KB to the size of the user exit when running with the OS/VS
COBOL library subroutines and, in most cases, 20KB when running with the VS
COBOL II library or Language Environment for MVS & VM. If the user exit does I/O,
additional storage must be reserved for the I/O buffers. Additional storage for
buffers is specified by the m parameter on the MODS statement. A VS COBOL II or
later user exit requires less storage than a similar OS/VS COBOL user exit because
DFSORT automatically releases storage for some of the COBOL library subroutines
before the user exit is called.

When SIZE/MAINSIZE=MAX is in effect, an alternative way to release storage is to
use the RESALL or RESINV option.

COBOL User Exit Routines

Chapter 4. Using Your Own User Exit Routines 347

|
|
|

Note: You might need to release an additional 70KB of storage when you are:
v Calling both E15 and E35 user exits
v Running with nonresident VS COBOL II library subroutines
v Performing a sort with DFSORT residing above 16MB virtual.

This can be done by adding 70KB more to one of the following:

v The m parameter of the MODS statement for the E35 user exit (m = E35 user
exit size + 20KB+ 70KB)

v The RESALL option when SIZE/MAINSIZE=MAX is in effect.

COBOL User Exit Routines (Input Phase User Exit)

COBOL E15 User Exit: Passing or Changing Records for Sort
The EXITCK option affects the way DFSORT interprets certain return codes from
user exit E15. To avoid ambiguity, this section assumes that the IBM default,
EXITCK=STRONG, was selected at your site. For complete information about E15
return codes in various situations with EXITCK=STRONG and EXITCK=WEAK, see
“E15/E35 Return Codes and EXITCK” on page 363.

DFSORT enters the E15 user exit routine each time a new record is brought into
the input phase. DFSORT continues to enter E15 (even when there are no input
records) until the user exit tells DFSORT, with a return code of 8, not to return.

See Figure 17 on page 318 for logic flow details.

Some uses for the E15 user exit are:
v Adding records to an input data set
v Passing an entire input data set to DFSORT
v Deleting records from an input data set
v Changing records in an input data set.

Notes:

1. If both E15 and E35 user exits are used, they must be in the same version of
COBOL.

2. If you use the E15 user exit to pass all your records to DFSORT, you can omit
the SORTIN DD statement, in which case you must include a RECORD
statement in the program control statements.

3. If you omit the SORTIN DD statement, all input records are passed to DFSORT
through your COBOL E15 user exit. You return to DFSORT with a return code
of 12. When DFSORT returns to the E15 user exit after the last record has been
passed, you return to DFSORT with a return code of 8 in register 15, which
indicates “do not return.”

4. DFSORT continues to reenter your E15 user exit until a return code of 8 is
received. However, if STOPAFT is in effect, no additional records are inserted to
DFSORT after the STOPAFT count is satisfied (even if you pass back a return
code of 12).

5. You cannot use dynamic link-editing with a COBOL E15 user exit.

E15 Interface with COBOL
Each time the E15 user exit is called, DFSORT supplies the following fields:
v Record flags
v New record
v Length of the new record (for variable-length records)
v Length of user exit area

COBOL User Exit Routines

348 DFSORT R14 Application Programming Guide

v User exit area.

When E15 returns to DFSORT, the E15 user exit provides to DFSORT some or all
of the fields mentioned below. The first field is required; the others can be modified
as appropriate.

v RETURN-CODE (assigned by the user exit by setting the COBOL special register
RETURN-CODE)

v Return record

v Length of the return record (for VLR)

v Length of user exit area

v User Exit area.

For more information on how these fields are used in a COBOL E15 user exit, see
“E15 LINKAGE SECTION Fields for Fixed-Length and Variable-Length Records” on
page 351.

Figure 25 on page 350 details the interface to COBOL for the E15 user exit.

COBOL User Exit Routines (Input Phase User Exit)

Chapter 4. Using Your Own User Exit Routines 349

E15 LINKAGE SECTION Examples: Figure 26 on page 351 is an example of the
LINKAGE SECTION code for a fixed-length record (FLR) data set with a logical
record length (LRECL) of 100. The example shows the layout of the fields passed
to your COBOL routine.

R1 Pointer to Record
Flags

Pointer to New
Record

Pointer to Return
Record

Pointer to Dummy
Field

Pointer to Dummy
Field

Pointer to Dummy
Field

Pointer to Length of
New Record

Pointer to Length
of Return Record

Pointer to Length of
User Exit Area

Pointer to
User Exit Area

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

Record Flags

New Record

Return Record

Dummy Field

Dummy Field

VLR: Length of New Record

VLR: Length of Return Record

FLR: Dummy Field

FLR: Dummy Field

Dummy Field

Length of User Exit Area

User Exit Area

4 bytes

* bytes

* bytes

4 bytes

4 bytes

4 bytes

2 bytes

256 bytes

4 bytes

4 bytes

4 bytes

4 bytes

Number of Bytes
* - VLR: Number of bytes is given by the corresponding length field

FLR: Number of bytes is equal to the LERCL

Figure 25. E15 DFSORT Interface with COBOL

COBOL User Exit Routines (Input Phase User Exit)

350 DFSORT R14 Application Programming Guide

Figure 27 is an example of the LINKAGE SECTION code for a variable-length
record (VLR) data set with a maximum LRECL of 200. The example shows the
layout of the fields passed to your COBOL routine.

E15 LINKAGE SECTION Fields for Fixed-Length and
Variable-Length Records
The fields in the LINKAGE SECTION are used by DFSORT and your routine as
stated below. For clarity, the field names from Figure 27 have been used.

v To give your COBOL routine the status of the passed records, DFSORT uses the
record flags field (RECORD-FLAGS) in the following way:
0 (FIRST-REC)

The new record is the first passed record.
4 (MIDDLE-REC)

The new record is not the first passed record.
8 (END-REC)

All records have been passed to your routine or there were no records to
pass.

LINKAGE SECTION.
01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 NEW-REC PIC X(100).
01 RETURN-REC PIC X(100).
01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 UNUSED2 PIC 9(8) COMPUTATIONAL.
01 UNUSED3 PIC 9(8) COMPUTATIONAL.
01 UNUSED4 PIC 9(8) COMPUTATIONAL.
01 UNUSED5 PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.
01 EXITAREA.

05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 26. LINKAGE SECTION Code Example for E15 (Fixed-Length Records)

LINKAGE SECTION.
01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 NEW-REC.
05 NREC OCCURS 1 TO 200 TIMES

DEPENDING ON NEW-REC-LEN PIC X.
01 RETURN-REC.

05 RREC OCCURS 1 TO 200 TIMES
DEPENDING ON RETURN-REC-LEN PIC X.

01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 UNUSED2 PIC 9(8) COMPUTATIONAL.
01 NEW-REC-LEN PIC 9(8) COMPUTATIONAL.
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL.
01 UNUSED3 PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.
01 EXITAREA.

05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 27. LINKAGE SECTION Code Example for E15 (Variable-Length Record)

COBOL User Exit Routines (Input Phase User Exit)

Chapter 4. Using Your Own User Exit Routines 351

v DFSORT places the next input record in the new record field (NEW-REC). A VLR
does not contain an RDW, but DFSORT places the length of this VLR in the new
record length field (NEW-REC-LEN). The value in the NEW-REC-LEN field is the
length of the record only and does not include the 4 bytes for the RDW.

v When your routine places an insertion/replacement record in the return record
field (RETURN-REC), the VLR must not contain an RDW; your routine must
place the length of this record in the return record length field
(RETURN-REC-LEN). The value of the RETURN-REC-LEN field is the length of
the record only and must not include the 4 bytes for the RDW.

v Each time DFSORT calls your COBOL E15 or COBOL E35 user exit, it passes
the user exit a 256-byte user exit area field (EXITAREA). The first time the user
exit area field is passed to your COBOL E15 user exit, it contains 256 blanks,
and the user exit area length field (EXITAREA-LEN) contains 256.

Any changes you make to the user exit area field or user exit area length fields
are passed back both to your COBOL E15 user exit and your COBOL E35 user
exit.

Notes:

1. Do not set the user exit area length field to more than 256 bytes.

2. If the data used for input was not created by a COBOL run, you need to
know the LRECL defined for your data set. For a VLR, the maximum length
of the record defined in your COBOL user exit is 4 bytes less than the
LRECL value, because COBOL does not include the RDW as part of the
record. (Each VLR begins with an RDW field of 4 bytes. The RDW is not
included in the record passed to your COBOL user exit.)

3. You need to code only up to the last field that your routine actually uses (for
example, up to RETURN-REC if you do not use the user exit area).

4. DFSORT uses the specified or defaulted value for L2 in the RECORD
statement to determine the length of the records your E15 user exit passes
back to DFSORT. For fixed-length records, be sure that each record your E15
user exit changes or inserts has a length that is equal to the specified or
defaulted L2 value. For variable-length records, be sure that each record your
E15 user exit changes or inserts has a length that is less than or equal to the
specified or defaulted L2 value. Unwanted truncation or abends may occur if
DFSORT uses the wrong length for the records passed to it by your E15 user
exit.

For details of the L2 value, see “RECORD Control Statement” on page 296.

E15 Return Codes
Your COBOL E15 routine must pass a return code to DFSORT in the
RETURN-CODE field, a COBOL special register. Following are the return codes for
the E15 user exit:

Return Code Description
00 (X'00') No Action
04 (X'04') Delete Record
08 (X'08') Do Not Return
12 (X'0C') Insert Record
16 (X'10') Terminate DFSORT
20 (X'14') Alter or Replace Record

0: No Action
If you want DFSORT to retain the record unchanged, return with
RETURN-CODE set to 0.

COBOL User Exit Routines (Input Phase User Exit)

352 DFSORT R14 Application Programming Guide

4: Delete Record
If you want DFSORT to delete the record, return with RETURN-CODE set to 4.

8: Do Not Return
DFSORT continues to enter your routine until you return with RETURN-CODE
set to 8. After that, the user exit is not used again during the DFSORT
application. Unless you are inserting records after the end of the data set, you
must set RETURN-CODE to 8 when DFSORT indicates the end of the data set,
which it does by entering your routine with the record flags field set to 8.

If your user exit routine passes a return code of 8 to DFSORT when input
records still remain to be processed, the remaining records are processed by
DFSORT but are not passed to your user exit.

12: Insert Record
If you want DFSORT to add a record before the new record in the input data
set:

v Move the insert record to the return record field

v For VLR, move the length to the return record length field (Do not include the
4-byte RDW in this length.)

v Return with RETURN-CODE set to 12.

DFSORT returns to your routine with the same record as before in the new
record field, allowing your routine to insert more records or handle the new
record.

You can also insert records after the end of the data set. DFSORT keeps
returning to your routine as long as you pass it a RETURN-CODE of 12 and
until you return with a RETURN-CODE set to 8.

16: Terminate DFSORT
If you want to terminate DFSORT, return with RETURN-CODE set to 16.
DFSORT then returns to its calling program or to the system with a return code
of 16.

20: Alter Record
If you want to change the new record:
v Move the new record to the return record field.
v Change the record in the return record field.
v For VLR records, move the length to the return record length field.
v Return with RETURN-CODE set to 20.

Note: If your routine changes record size, you must indicate the new size on
the RECORD statement.

20: Replace Record
If you want to replace the new record:

v Move the replacement record to the return record field.

v For VLR records, move the length to the return record length field. (Do not
include the 4-byte RDW in this length.)

v Return with RETURN-CODE set to 20.

See “E15/E35 Return Codes and EXITCK” on page 363 for complete details of the
meanings of return codes in various situations.

COBOL User Exit Routines (Input Phase User Exit)

Chapter 4. Using Your Own User Exit Routines 353

E15 Procedure Division Requirements
When coding the PROCEDURE DIVISION, the following requirements must be met:

v To return control to DFSORT, you must use the GOBACK statement.

v In the USING option of the PROCEDURE DIVISION header, you must specify
each 01-level name in the LINKAGE SECTION. You must specify each name in
order up to the last one you plan to use even when you do not use all the
01-level names preceding the header.

Examples:

For the FLR example, Figure 26 on page 351, you would code:
PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC,

RETURN-REC, UNUSED1, UNUSED2, UNUSED3,
UNUSED4, UNUSED5, EXITAREA-LEN, EXITAREA.

For the VLR example, Figure 27 on page 351, you would code:
PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC,

RETURN-REC, UNUSED1, UNUSED2,
NEW-REC-LEN, RETURN-REC-LEN,
UNUSED3, EXITAREA-LEN, EXITAREA.

COBOL User Exit Routines (Output Phase User Exit)

COBOL E35 User Exit: Changing Records
The EXITCK option affects the way DFSORT interprets certain return codes from
user exit E35. To avoid ambiguity, this section assumes that the IBM default,
EXITCK=STRONG, was selected at your site. For complete information about E35
return codes in various situations with EXITCK=STRONG and EXITCK=WEAK, see
“E15/E35 Return Codes and EXITCK” on page 363.

DFSORT enters the E35 user exit routine each time it prepares to place a record in
the output area.

See Figure 17 on page 318 for logic flow details.

Some uses for the E35 user exit are:
v Adding records for output data sets
v Omitting records for output data sets
v Changing records for output data sets

When DFSORT indicates the end of the data set (record flags field set to 8), you
must set RETURN-CODE to 8 (unless you are inserting records after the end of the
data set); otherwise, DFSORT continues to enter E35.

Notes:

1. If both E15 and E35 user exits are used, they must be in the same version of
COBOL.

2. If you use the E35 user exit to dispose of all your output records, you can omit
the SORTOUT DD statement.

3. If you omit the SORTOUT DD statement and you do not specify any OUTFIL
data sets, your E35 user exit routine must dispose of each output record and
return to DFSORT with a return code of 4. When DFSORT returns to your
routine after you have disposed of the last record, return to DFSORT with a
return code of 8 to indicate “do not return.”

4. You cannot use dynamic link-editing with a COBOL E35 user exit.

COBOL User Exit Routines (Input Phase User Exit)

354 DFSORT R14 Application Programming Guide

E35 Interface with COBOL
Each time your E35 user exit is called, DFSORT supplies the following fields:
v Record flags
v Record leaving DFSORT
v Length of record leaving DFSORT (for variable-length records)
v Length of user exit area
v User Exit area.

When your E35 user exit returns to DFSORT, the E35 user exit provides to
DFSORT some or all of the fields mentioned below. The first field is required; the
others can be modified as appropriate.
v RETURN-CODE (assigned by the user exit by setting the COBOL special register

RETURN-CODE)
v Return record
v Length of return record (for variable-length records)
v Length of user exit area
v User exit area.

For more information on how these fields are used in a COBOL E35 user exit, see
“E35 LINKAGE SECTION Fields for Fixed-Length and Variable-Length Records” on
page 357.

Figure 28 on page 356 details the interface to COBOL for the E35 user exit.

COBOL User Exit Routines (Output Phase User Exit)

Chapter 4. Using Your Own User Exit Routines 355

E35 LINKAGE SECTION Examples: Figure 29 is an example of the LINKAGE
SECTION code for a fixed-length record (FLR) data set with a logical record length
(LRECL) of 100. The example shows the layout of the fields passed to your COBOL
routine.

R1 Pointer to Record
Flags

Pointer to Record
Leaving DFSORT

Pointer to Return
Record

Pointer to Record in
Output Area

Pointer to Dummy
Field

Pointer to Length of
Record in Output
Area

Pointer to Length
of Record Leaving
DFSORT

Pointer to Length
of Return Record

Pointer to Length of
User Exit Area

Pointer to
User Exit Area

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

Record Flags

Record Leaving DFSORT

Record in Output Area

Return Record

Dummy Field

VLR: Length of Return Record

VLR: Length of Record in Output Area

VLR: Length of Record Leaving DFSORT

FLR: Dummy Field

FLR: Dummy Field

FLR: Dummy Field

Length of User Exit Area

User Exit Area

4 bytes

* bytes

* bytes

* bytes

4 bytes

2 bytes

256 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

Number of Bytes
* - VLR: Number of bytes is given by the corresponding length field

FLR: Number of bytes is equal to the LERCL

Figure 28. E35 Interface with COBOL

COBOL User Exit Routines (Output Phase User Exit)

356 DFSORT R14 Application Programming Guide

Figure 30 is an example of the LINKAGE SECTION code for a variable-length
record (VLR) data set with a maximum LRECL of 200. The example shows the
layout of the fields passed to your COBOL routine.

E35 LINKAGE SECTION Fields for Fixed-Length and
Variable-Length Records
The fields in the LINKAGE SECTION are used by DFSORT and your routine as
stated below. For clarity, the field names from Figure 30 have been used.

v To give your COBOL routine the status of the passed records, DFSORT uses the
record flags field (RECORD-FLAGS) in the following way:
0 (FIRST-REC)

The record leaving DFSORT is the first passed record.
4 (MIDDLE-REC)

The record leaving DFSORT is not the first passed record.
8 (END-REC)

There is no record leaving DFSORT to pass; all records have been
passed to your routine or there were no records to pass.

LINKAGE SECTION.
01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 LEAVING-REC PIC X(100).
01 RETURN-REC PIC X(100).
01 OUTPUT-REC PIC X(100).
01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 UNUSED2 PIC 9(8) COMPUTATIONAL.
01 UNUSED3 PIC 9(8) COMPUTATIONAL.
01 UNUSED4 PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.
01 EXITAREA.

05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 29. LINKAGE SECTION Code Example for E35 (Fixed-Length Records)

LINKAGE SECTION.
01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 LEAVING-REC.
05 LREC OCCURS 1 TO 200 TIMES

DEPENDING ON LEAVING-REC-LEN PIC X.
01 RETURN-REC.

05 RREC OCCURS 1 TO 200 TIMES
DEPENDING ON RETURN-REC-LEN PIC X.

01 OUTPUT-REC.
05 OREC OCCURS 1 TO 200 TIMES

DEPENDING ON OUTPUT-REC-LEN PIC X.
01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 LEAVING-REC-LEN PIC 9(8) COMPUTATIONAL.
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL.
01 OUTPUT-REC-LEN PIC 9(8) COMPUTATIONAL.
01 EXITAREA-LEN PIC 9(4) COMPUTATIONAL.
01 EXITAREA.

05 EAREA OCCURS 1 TO 256 TIMES
DEPENDING ON EXITAREA-LEN PIC X.

Figure 30. LINKAGE SECTION Code Example for E35 (Variable-Length Records)

COBOL User Exit Routines (Output Phase User Exit)

Chapter 4. Using Your Own User Exit Routines 357

v DFSORT places the next output record, which usually follows the record in the
output area, in the record leaving field (LEAVING-REC). A VLR does not contain
an RDW; DFSORT places the length of this VLR in the record-leaving length field
(LEAVING-REC-LEN). The value in the LEAVING-REC-LEN field is the length of
the record only and does not include the 4 bytes for the RDW.

v When your routine places an insertion or replacement record in the return record
field (RETURN-REC), the VLR must not contain an RDW; your routine must
place the length of this record in the return record length field
(RETURN-REC-LEN). The value in the RETURN-REC-LEN field is the length of
the record only and does not include the 4 bytes for the RDW.

v DFSORT places the record already in the output area in the record in output area
field (OUTPUT-REC). A VLR does not contain an RDW. DFSORT places the
length, not including the 4 bytes for RDW, of this VLR in the record in output
area length field (OUTPUT-REC-LEN).

v DFSORT passes your COBOL E35 routine a 256-byte user exit area field
(EXITAREA) that can contain information passed by your COBOL E15 routine. If
no information is passed in the EXITAREA field by your COBOL E15 routine the
first time the field is passed to your COBOL E35 routine, EXITAREA contains 256
blanks, and the user exit area length field (EXITAREA-LEN) contains 256.

Any changes you make to the user exit area field or user exit area length field
are passed back to your COBOL E35 routine each time it is called by DFSORT.

Notes:

1. Do not set the user exit area length field to more than 256 bytes.

2. VLR records have a 4-byte RDW field at the beginning of each record. The
maximum record length plus the RDW will be the length defined for the
LRECL attribute of your output data set. COBOL programs do not use the
RDW and, therefore, the maximum length defined in your COBOL user exit is
4 bytes less than the LRECL value.

3. You need to code only up to the last field your routine actually uses (for
example, up to OUTPUT-REC-LEN if you do not use the user exit area).

4. DFSORT uses the specified or defaulted value for L3 in the RECORD
statement to determine the length of the records your E35 user exit passes
back to DFSORT. For fixed-length records, be sure that each record your E35
user exit changes or inserts has a length that is equal to the specified or
defaulted L3 value. For variable-length records, be sure that each record your
E35 user exit changes or inserts has a length that is less than or equal to the
specified or defaulted L3 value. Unwanted truncation or abends may occur if
DFSORT uses the wrong length for the records passed to it by your E35 user
exit.

For details of the L3 value, see “RECORD Control Statement” on page 296.

E35 Return Codes
Your COBOL E35 routine must pass a return code to DFSORT in the
RETURN-CODE field, a COBOL special register. Following are the return codes for
the E35 exit:

Return Code Description
00 (X'00') No Action
04 (X'04') Delete Record
08 (X'08') Do Not Return
12 (X'0C') Insert Record
16 (X'10') Terminate DFSORT
20 (X'14') Alter or Replace Record

COBOL User Exit Routines (Output Phase User Exit)

358 DFSORT R14 Application Programming Guide

0: No Action
If you want DFSORT to retain the record leaving DFSORT unchanged, return
with RETURN-CODE set to 0.

4: Delete Record
If you want DFSORT to delete the record leaving DFSORT, return with
RETURN-CODE set to 4.

8: Do Not Return
DFSORT keeps returning to your routine until you pass a RETURN-CODE set
to 8. After that, the user exit is not used again during the DFSORT application.
Unless you are inserting records after the end of the data set, you must set
RETURN-CODE to 8 when DFSORT indicates the end of the data set. This is
done by entering your routine with the record flags field set to 8.

If your user exit routine passes a return code of 8 to DFSORT when input
records still remain to be processed, the remaining records are processed by
DFSORT but are not passed to your user exit.

If you do not have an output data set and would usually return with a return
code of 8 before EOF, you can avoid getting the ICE025A message by
specifying NOCHECK on the OPTION control statement (if CHECK=NO had not
already been specified at installation time).

12: Insert Record
If you want DFSORT to add an output record before the record leaving
DFSORT:
v Move the insert record to the return record field
v For VLR records, move the length to the return record length field
v Return with RETURN-CODE set to 12.

DFSORT returns to your routine with the inserted record in the record output
area field and with the same record as before in the record leaving DFSORT
field. In this way, your routine can insert more records or handle the record
leaving DFSORT.

You can also insert records after the end of the data set. DFSORT keeps
returning to your routine as long as you pass it a RETURN-CODE 12 and until
you return with RETURN-CODE set to 8.

DFSORT does not perform sequence checking for DASD work data set sorts.
For tape work data set sorts, DFSORT does not perform sequence checking on
inserted records unless you delete the record leaving DFSORT and then
replace it.

16: Terminate DFSORT
If you want to terminate DFSORT, return with RETURN-CODE set to 16.
DFSORT then returns to its calling program or to the system with a return code
of 16.

20: Alter Record
If you want to change the record leaving DFSORT:
v Move the record leaving DFSORT to the return record field
v Change the record in the return record field
v For VLR records, move the length to the return record length field
v Return with RETURN-CODE set to 20.

Note: If your routine changes record size, you must indicate the new size on
the RECORD statement.

COBOL User Exit Routines (Output Phase User Exit)

Chapter 4. Using Your Own User Exit Routines 359

20: Replace Record
If you want to replace the record leaving DFSORT:
v Move the replacement record to the return record field
v For VLR records, move the length to the return record length field
v Return with RETURN-CODE set to 20.

See “E15/E35 Return Codes and EXITCK” on page 363 for complete details of the
meanings of return codes in various situations.

E35 Procedure Division Requirements
When coding the PROCEDURE DIVISION, the following requirements must be met:

v To return control to DFSORT, you must use the GOBACK statement.

v In the USING option of the PROCEDURE DIVISION header, you must specify
each 01-level name in the LINKAGE SECTION. You must specify each name in
order up to the last one you plan to use even when you do not use all the
01-level names preceding the header.

Examples:

For the FLR example, Figure 29 on page 357, you would code:
PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,

RETURN-REC, OUTPUT-REC, UNUSED1, UNUSED2,
UNUSED3, UNUSED4, EXITAREA-LEN, EXITAREA.

For the VLR example, Figure 30 on page 357, you would code:
PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,

RETURN-REC, OUTPUT-REC, UNUSED1,
LEAVING-REC-LEN, RETURN-REC-LEN,
OUTPUT-REC-LEN, EXITAREA-LEN, EXITAREA.

Sample Routines Written in COBOL
This section provides some sample program user exits written in COBOL.

COBOL E15 User Exit: Altering Records
Figure 31 shows an example of a COBOL E15 routine for a data set with
fixed-length records of 100 bytes. It examines the department field in the passed
record and takes the following action:
v If the department is D29, it changes it to J99.
v If the department is not D29, it accepts the record unchanged.

COBOL User Exit Routines (Output Phase User Exit)

360 DFSORT R14 Application Programming Guide

COBOL E35 User Exit: Inserting Records
Figure 32 shows an example of a COBOL E35 routine for a data set with
variable-length records up to 200 bytes. It examines the department field in each
passed record (records are assumed to be sorted by the department field) and
takes the following action:
v It inserts a record for department K22 in the proper sequence.
v It accepts all passed records unchanged.

IDENTIFICATION DIVISION.
PROGRAM-ID.

CE15.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 NEW-REC.
05 NFILL1 PIC X(10).
05 NEW-DEPT PIC X(3).
05 NFILL2 PIC X(87).
01 RETURN-REC.
05 RFILL1 PIC X(10).
05 RETURN-DEPT PIC X(3).
05 RFILL2 PIC X(87).

PROCEDURE DIVISION USING RECORD-FLAGS, NEW-REC, RETURN-REC.

IF END-REC
MOVE 8 TO RETURN-CODE
GO TO BACK-TO-SORT.

IF NEW-DEPT EQUAL TO "D29"
MOVE NEW-REC TO RETURN-REC
MOVE "J99" TO RETURN-DEPT
MOVE 20 TO RETURN-CODE

ELSE
MOVE 0 TO RETURN-CODE.

BACK-TO-SORT.
GOBACK.

Figure 31. COBOL E15 Routine Example (FLR)

Sample Routines Written in COBOL

Chapter 4. Using Your Own User Exit Routines 361

IDENTIFICATION DIVISION.
PROGRAM-ID.

CE35.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INSERT-DONE PIC 9(1) VALUE 0.
01 K22-REC.
05 K22-MANAGER PIC X(20) VALUE "J. DOE".
05 K22-DEPT PIC X(3) VALUE "K22".
05 K22-FUNC PIC X(20) VALUE "ACCOUNTING".
05 K22-LATER PIC X(30) VALUE SPACES.
01 LEAVING-VAR-LEN PIC 9(8) COMPUTATIONAL.
LINKAGE SECTION.
01 RECORD-FLAGS PIC 9(8) COMPUTATIONAL.

88 FIRST-REC VALUE 00.
88 MIDDLE-REC VALUE 04.
88 END-REC VALUE 08.

01 LEAVING-REC.
05 LREC-MANAGER PIC X(20).
05 LREC-DEPT PIC X(3).
05 LREC-FUNC PIC X(20).
05 LREC-LATER OCCURS 1 TO 157 TIMES

DEPENDING ON LEAVING-VAR-LEN PIC X.
01 RETURN-REC.
05 RREC OCCURS 1 TO 200 TIMES

DEPENDING ON RETURN-REC-LEN PIC X.
01 OUTPUT-REC.
05 OREC OCCURS 1 TO 200 TIMES

DEPENDING ON OUTPUT-REC-LEN PIC X.
01 UNUSED1 PIC 9(8) COMPUTATIONAL.
01 LEAVING-REC-LEN PIC 9(8) COMPUTATIONAL.
01 RETURN-REC-LEN PIC 9(8) COMPUTATIONAL.
01 OUTPUT-REC-LEN PIC 9(8) COMPUTATIONAL.

PROCEDURE DIVISION USING RECORD-FLAGS, LEAVING-REC,
RETURN-REC, OUTPUT-REC, UNUSED1, LEAVING-REC-LEN,
RETURN-REC-LEN, OUTPUT-REC-LEN.

IF END-REC
MOVE 8 TO RETURN-CODE
GO TO BACK-TO-SORT.

IF INSERT-DONE EQUAL TO 1
MOVE 0 TO RETURN-CODE
GO TO BACK-TO-SORT.

SUBTRACT 43 FROM LEAVING-REC-LEN
GIVING LEAVING-VAR-LEN.

IF LREC-DEPT GREATER THAN K22-DEPT
MOVE 1 TO INSERT-DONE
MOVE 43 TO RETURN-REC-LEN
MOVE K22-REC TO RETURN-REC
MOVE 12 TO RETURN-CODE

ELSE
MOVE 0 TO RETURN-CODE.

BACK-TO-SORT.
GOBACK.

Figure 32. COBOL E35 Routine Example (VLR)

Sample Routines Written in COBOL

362 DFSORT R14 Application Programming Guide

E15/E35 Return Codes and EXITCK
DFSORT’s interpretation of E15 and E35 return codes depends upon whether
EXITCK=STRONG or EXITCK=WEAK is in effect. See the discussion of the
EXITCK option in “OPTION Control Statement” on page 155 for more information.
The following tables show the exact meaning of each E15 and E35 return code with
EXITCK=STRONG and EXITCK=WEAK in all possible situations.

Notes:

1. You can determine whether EXITCK=STRONG or EXITCK=WEAK is in effect
from message ICE132I.

2. Use of EXITCK=WEAK can make it difficult to detect errors in the logic of your
E15 and E35 user exit routines.

3. EXITCK=WEAK is treated like EXITCK=STRONG if tape work data sets are
specified for a sort application or if the Blockset technique is not selected for a
merge application.

Table 53. E15 Without a SORTIN Data Set

E15 Return Code
Meaning with
EXITCK=STRONG

Meaning with
EXITCK=WEAK

0 Invalid Do not return

4 Invalid Do not return

8 Do not return Do not return

12 Insert record Insert record

16 Terminate DFSORT Terminate DFSORT

20 (COBOL only) Invalid Do not return

All others Invalid Invalid

Table 54. E15 With a SORTIN Data Set Before End of Input

E15 Return Code
Meaning with EXITCK=STRONG or
EXITCK=WEAK

0 No action/record altered

4 Delete record

8 Do not return

12 Insert record

16 Terminate DFSORT

20 (COBOL only) Alter/replace record

All others Invalid

E15/E35 Return Codes and EXITCK

Chapter 4. Using Your Own User Exit Routines 363

Table 55. E15 With a SORTIN Data Set After End of Input

E15 Return Code
Meaning with
EXITCK=STRONG

Meaning with
EXITCK=WEAK

0 Invalid Do not return

4 Invalid Do not return

8 Do not return Do not return

12 Insert record Insert record

16 Terminate DFSORT Terminate DFSORT

20 (COBOL only) Invalid Do not return

All others Invalid Invalid

Table 56. E35 With a SORTOUT or OUTFIL Data Set Before End of Input

E35 Return Code
Meaning with EXITCK=STRONG or
EXITCK=WEAK

0 No action/record altered

4 Delete record

8 Do not return

12 Insert record

16 Terminate DFSORT

20 (COBOL only) Alter/replace record

All others Invalid

Table 57. E35 Without a SORTOUT or OUTFIL Data Set Before End of Input

E35 Return Code
Meaning with
EXITCK=STRONG

Meaning with
EXITCK=WEAK

0 Invalid Delete record

4 Delete record Delete record

8 Do not return Do not return

12 Invalid Delete record

16 Terminate DFSORT Terminate DFSORT

20 (COBOL only) Invalid Delete record

All others Invalid Invalid

Table 58. E35 With a SORTOUT or OUTFIL Data Set After End of Input

E35 Return Code
Meaning with
EXITCK=STRONG

Meaning with
EXITCK=WEAK

0 Invalid Do not return

4 Invalid Do not return

8 Do not return Do not return

12 Insert record Insert record

16 Terminate DFSORT Terminate DFSORT

20 (COBOL only) Invalid Do not return

All others Invalid Invalid

E15/E35 Return Codes and EXITCK

364 DFSORT R14 Application Programming Guide

Table 59. E35 without a SORTOUT or OUTFIL Data Set After End of Input

E35 Return Code
Meaning with
EXITCK=STRONG

Meaning with
EXITCK=WEAK

0 Invalid Do not return

4 Invalid Do not return

8 Do not return Do not return

12 Invalid Do not return

16 Terminate DFSORT Terminate DFSORT

20 (COBOL only) Invalid Do not return

All others Invalid Invalid

E15/E35 Return Codes and EXITCK

Chapter 4. Using Your Own User Exit Routines 365

E15/E35 Return Codes and EXITCK

366 DFSORT R14 Application Programming Guide

Chapter 5. Invoking DFSORT from a Program

Invoking DFSORT Dynamically 367
What Are System Macro Instructions? 367
Using System Macro Instructions 367
Using JCL DD Statements . 368
Overriding DFSORT Control Statements from Programs 368
Invoking DFSORT With the 24-Bit Parameter List. 369

Providing Program Control Statements. 369
CONTROL Statement Images Example 369
Format of the 24-Bit Parameter List 370

Invoking DFSORT With The Extended Parameter List 375
Providing Program Control Statements. 375

Format of the Extended Parameter List 376
Writing the Macro Instruction 379

Parameter List Examples. 379
Restrictions for Dynamic Invocation 383

Merge Restriction . 383
Copy Restrictions . 383

Invoking DFSORT Dynamically
DFSORT can be invoked dynamically from programs written in COBOL or PL/I.
Specific information on dynamic invocation is covered in the COBOL and PL/I
programming guides. JCL requirements are the same as those for assembler.

This section explains what you need to know to initiate DFSORT from within your
assembler program using a system macro instruction instead of an EXEC job
control statement in the input stream. Specific restrictions on invoking DFSORT
from PL/I and COBOL are listed in “Restrictions for Dynamic Invocation” on
page 383.

What Are System Macro Instructions?
System macro instructions are macro instructions provided by IBM for
communicating service requests to the control program. You can use these
instructions only when programming in assembler language. They are processed by
the assembler program using macro definitions supplied by IBM and placed in the
macro library when your control program was installed.

You can specify one of three system macro instructions to pass control to the
program: LINK, ATTACH, or XCTL.

When you issue one of these instructions, the first load module of DFSORT is
brought into main storage. The linkage relationship between your program and
DFSORT differs according to which of the instructions you have used. For a
complete description of the macro instructions and how to use them, refer to
Application Development Guide and Application Development Macro Reference

Using System Macro Instructions
To initiate DFSORT processing with a system macro instruction, you must:

v Write the required job control language (JCL) DD statements.

© Copyright IBM Corp. 1973, 2002 367

v Write DFSORT control statements as operands of assembler DC instructions.
(Using DFSPARM or SORTCNTL data sets to specify program control statements
can be more convenient. See Chapter 3, “Using DFSORT Program Control
Statements” on page 95 for details.)

v Write a parameter list containing information to be passed to DFSORT and a
pointer containing the address of the parameter list. DFSORT accepts two types
of parameter lists: a 24-bit parameter list and an extended parameter list.
Although you can choose either parameter list, the extended parameter list can
perform a superset of the functions in the 24-bit parameter list; therefore, it
should be used for new DFSORT applications.

Note: DFSORT can also be called using the system’s EXEC PARM parameter
list, provided that the rules for passing it are followed (for example, the
parameter list must reside below 16MB virtual). DFSORT interprets a call
using the EXEC PARM parameter list as a direct invocation rather than a
program invocation.

v Prepare the macro instruction specifying one of the following as the entry point
name: ICEMAN, SORT, IERRCO00, or IGHRCO00.

Note: The save area passed to DFSORT must begin on a fullword boundary.

In addition, the following rule applies:

v If you are invoking DFSORT repeatedly (for example, from an E15 or E35 user
exit), you must always wait for the last invoked sort to end before you can give
control back to any of your user exits in an earlier invoked sort.

Using JCL DD Statements
JCL DD statements are usually required when invoking DFSORT from another
program. The statements and their necessary parameters are described in detail.

Overriding DFSORT Control Statements from Programs
You can override the control statements generated or passed by a program (for
example, a COBOL SORT verb or PLISRTx routine) with DFSORT’s DFSPARM
data set.

For example, you could use the following to override the SORT statement
generated by a COBOL SORT verb in order to use DFSORT’s Year 2000 features:

You can also use DFSPARM to provide different DFSORT control statements for
multiple invocations of DFSORT from a program. However, the control statements
must be located in temporary or permanent data sets and FREE=CLOSE must be
used. Here’s an example of using DFSPARM to override the control statements for
a COBOL program with three SORT verbs:

//DFSPARM DD *
OPTION Y2PAST=1956 * set fixed CW of 1956-2055
SORT FIELDS=(11,6,Y2T,A, * sort C’yymmdd’ using CW

31,10,CH,A) * sort other key
/*

Using System Macro Instructions

368 DFSORT R14 Application Programming Guide

DP1, DP2, and DP3 can contain any DFSORT control statements you like. The
statements in DP1 will be used for the first call to DFSORT, the statements in DP2
for the second and the statements in DP3 for the third.

For complete details on DFSPARM, see “DFSPARM DD Statement” on page 74.

Invoking DFSORT With the 24-Bit Parameter List

Providing Program Control Statements
When using the 24-bit parameter list, you must supply the starting and ending
address of a valid image of each control statement to be used during run-time. You
must provide the image as a character string in EBCDIC format using assembler
DC instructions. The rules for preparing the program control statements are as
follows:

v At least two control statements must be specified—generally SORT or MERGE,
and RECORD. If more than 15 control statements are specified, only the first 15
control statements are accepted and all others are ignored. Control statements
can also be specified in SORTCNTL or DFSPARM.

v The MODS statement is required when user exits other than E15, E32, and E35
are to be used. It is also required when the E15 or E35 routine addresses are
not passed by the parameter list.

v The following control statements can be passed using the 24-bit parameter list:
SORT or MERGE, RECORD, ALTSEQ, DEBUG, MODS, SUM, INREC,
OUTREC, INCLUDE or OMIT, and OUTFIL.

v At least one blank must follow the operation definer (SORT, for example). A
control statement can start and end with one or more blanks; however, no other
blanks are allowed.

v The content and format of the statements are as described in Chapter 3, “Using
DFSORT Program Control Statements” on page 95, except:

– Labels are not allowed although a leading blank is optional.

– Because each control statement image must be defined contiguously by one
or more assembler DC instructions, explicit and implicit continuation of
statements is neither necessary nor allowed.

v Neither comment statements, blank statements, nor remark fields are permitted.

v If you use ATTACH to initiate the program, you cannot use the checkpoint/restart
facility and must not specify CKPT in the SORT statement image.

For full override and applicability details, see Appendix B, “Specification/Override
of DFSORT Options” on page 603.

CONTROL Statement Images Example

This form, with a trailing blank separately defined, allows you to refer to the last
byte of the statement (SORT statement end address) by the name SORTEND.

//DFSPARM DD DSN=DP1,DISP=SHR,FREE=CLOSE
//DFSPARM DD DSN=DP2,DISP=SHR,FREE=CLOSE
//DFSPARM DD DSN=DP3,DISP=SHR,FREE=CLOSE

SORTBEG DC C’ SORT FIELDS=(10,15,CH,A)’
SORTEND DC C’ ’

Overriding DFSORT Control Statements from Programs

Chapter 5. Invoking DFSORT from a Program 369

Note: Assembler requires two single apostrophes to represent one single
apostrophe.

Format of the 24-Bit Parameter List
Figure 33 on page 371 shows the format of the 24-bit parameter list and the pointer
containing its address which you must pass to DFSORT. Detailed specifications for
each of the entries in the parameter list follow.

For full override and applicability details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603.

INCLBEG DC C’ INCLUDE COND=(5,3,CH,NE,C’J82’’)’
INCLEND DC C’ ’

Invoking DFSORT with the 24-Bit Parameter List

370 DFSORT R14 Application Programming Guide

Notes to Figure 33:

Starting address of SORT or MERGE statement image
Ending address of SORT or MERGE statement image

Starting address of RECORD statement image
Ending address of RECORD statement image

Address of E15 or E32 routine (zeros if none)

Address of E35 routine (zeros if none)

Starting address of MODS statement image
Ending address of MODS statement image

Main storage value

Reserved storage value

Address of 8-character message ddname

Number of input files (MERGE with E32)

Starting address of DEBUG statement image
Ending address of DEBUG statement image

Starting address of ALTSEQ statement image
Ending address of ALTSEQ statement image

Address of 256-byte ALTSEQ translation table

User exit address constant

The three bytes after X'FD' are ignored

Address of a pointer to 104-byte ESTAE work area
(or zeros)

Message option

Starting address of SUM statement image
Ending address of SUM statement image

Starting address of INCLUDE or OMIT statement image
Ending address of INCLUDE or OMIT statement image

Starting address of OUTREC statement image
Ending address of OUTREC statement image

Starting address of INREC statement image
Ending address of INREC statement image

Starting address of OUTFIL statement image
Ending address of OUTFIL statement image

-2

2
6

A
E

12

16

1A
1E

22

26

2A

2E

32
36

3A
3E

42

46

4A

4E

52

56

5A
5E

62
66

6A
6E

72
76

7A
7E

-2

2
6

10
14

18

22

26
30

34

38

42

46

50
54

58
62

66

70

74

78

82

86

90
94

98
102

106
110

114
118

122
126

X'00'
X'00'

X'00'
X'00'

X'00'

X'00'

X'02'
X'00'

X'00'

X'01'

X'03'

X'04'

X'05'
X'00'

X'06'
X'00'

X'F6'

X'F7'

X'FD'

X'FE'

X'FF'

X'07'
X'00'

X'08'
X'00'

X'09'
X'00'

X'0A'
X'00'

X'0B'
X'00'

(Hex) (Dec)
Offset Byte 1 Byte 2 Byte 3 and 4

X '80' Address of parameter list

Register 1

Unused Unused Length of parameter list in bytes Notes

4-character prefix for "SORT" DD statement names

1,3
1,5

1,3
1,5

1

1

2,3
2,5

2

2

2

2,4

2,3
2,5

2,3
2,5

2

2

2

2

2

2

2,3
2,5

2,3
2,5

2,3
2,5

2,3
2,5

2,3
2,5

Figure 33. The 24-Bit Parameter List

Invoking DFSORT with the 24-Bit Parameter List

Chapter 5. Invoking DFSORT from a Program 371

1. Required entry. Must appear in the relative position shown. The offset
shown is the actual offset of this entry.

2. Optional entry. Can appear anywhere after the required entries. The
displayed offset is for identification purposes only—the actual offset of this
entry can vary. Optional entries must be consecutive but can appear in any
order.

3. A specific control statement. Shown for illustrative purposes only. SORT or
MERGE, RECORD, ALTSEQ, DEBUG, MODS, SUM, INREC, OUTREC,
INCLUDE or OMIT, and OUTFIL can be passed using any of the following
hex entry codes: X’00’ (see Note 1), X’02’, X’05’ through X’0B’, X’10’, X’16’,
X’18’ and X’20’ through X’29’.

4. Required entry if the MERGE statement is present and input is supplied
through an E32 user exit. This entry is not required if the FILES option of
the MERGE statement is specified.

5. Required entry. Contains the ending address for a control statement and
must immediately follow the entry containing the starting address for that
same control statement.

The specifications for each of the parameter list entries follow:

Byte Explanation

-2 to -1
Unused.

0 to +1
The byte count. This 2-byte field contains the length in bytes of the
parameter list. This two byte field is not included when counting the number
of bytes occupied by the list.

The total length of the required entries is 24 (X'0018'). All optional entries
are four bytes long except those referring to control statement images
which are eight bytes each.

2-5 The starting address of the SORT or MERGE statement image. Must be in
the last three bytes of this fullword. The first byte must contain X'00'.

6-9 The ending address of the SORT or MERGE statement image. Must be in
the last three bytes. The first byte must contain X'00'.

10-13 The starting address of the RECORD statement image. Must be in the last
three bytes. The first byte must contain X'00'.

14-17 The ending address of the RECORD statement. Must be in the last three
bytes. The first byte must contain X'00'.

18-21 The address of the E15 or E32 routine that your program has placed in
main storage, if any; otherwise, all zeros. Must be in the last three bytes.
The first byte must contain X'00'.

22-25 The address of the E35 routine that your program has placed in main
storage, if any; otherwise, all zeros. Must be in the last three bytes. The first
byte must contain X'00'.

26-29 The starting address of the MODS statement image. Must be in the last
three bytes. The first byte must contain X'02'.

30-33 The ending address of the MODS statement. Must be in the last three
bytes. The first byte must contain X'00'.

Invoking DFSORT with the 24-Bit Parameter List

372 DFSORT R14 Application Programming Guide

34-37 Main storage value. The first byte must contain X'00'. The next three bytes
contain either the characters MAX or a hexadecimal value. You can use this
option to temporarily override the SIZE installation option. For full override
and applicability details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603. For an explanation of this value, see the
discussion of the MAINSIZE parameter in “OPTION Control Statement” on
page 155.

38-41 A reserved main storage value. The first byte must contain X'01'. The next
three bytes contain a hexadecimal value that specifies a number of bytes to
be reserved, where the minimum is 4K. For an explanation of this value,
see the explanation of the RESINV parameter in “OPTION Control
Statement” on page 155.

You can use this option to temporarily override the RESINV installation
option. For full override and applicability details, see Appendix B,
“Specification/Override of DFSORT Options” on page 603.

42-45 Message ddname. The first byte must contain X’03’. The next three bytes
contain the address of an 8-byte DD statement name for the message data
set, padded with blanks on the right if necessary. The name can be any
valid DD statement name, but must be unique.

You can use this option to temporarily override the MSGDDN installation
option. For full override details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603. For details on the use of the message data
set, see DFSORT Messages, Codes and Diagnosis Guide R14.

46-49 Number of input files to a merge. This entry is needed only if the MERGE
statement is present without the FILES option and input to the merge is
supplied through the E32 user exit. The first byte must contain X'04'. The
next three bytes contain the number of files in hexadecimal. For full
override and applicability details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603.

50-53 The starting address of the DEBUG statement image. Must be in the last
three bytes. The first byte must contain X'05'.

54-57 The ending address of the DEBUG statement image. Must be in the last
three bytes. The first byte must contain X'00'.

58-61 The starting address of the ALTSEQ statement image. Must be in the last
three bytes. The first byte must contain X'06'.

62-65 The ending address of the ALTSEQ statement image. Must be in the last
three bytes. The first byte must contain X'00'.

66-69 The address of a 256-byte translate table supplied instead of an ALTSEQ
statement. The first byte must contain X'F6'. If this parameter is present, the
X'06' parameter is ignored. For full override and applicability details, see
Appendix B, “Specification/Override of DFSORT Options” on page 603.

70-73 User exit address constant. These 4 bytes are passed to E15 (at offset 4 in
the E15 parameter list), to E32 (at offset 8 in the E32 parameter list) or to
E35 (at offset 8 in the E35 parameter list) after DFSORT replaces the X'F7'
with X'00'.

Note: The user exit address constant must not be used for a Conventional
merge or tape work data set sort application.

74-77 X'FD' in the first byte (the VLSHRT option) specifies that DFSORT is to
continue processing if it finds a variable-length input record too short to

Invoking DFSORT with the 24-Bit Parameter List

Chapter 5. Invoking DFSORT from a Program 373

|
|

contain all specified control fields, compare fields, or summary fields. For
full details of this option, see the discussion of the VLSHRT parameter in
“OPTION Control Statement” on page 155. You can use this option to
temporarily override the VLSHRT installation option. For full override and
applicability details, see Appendix B, “Specification/Override of DFSORT
Options” on page 603.

78-81 If the first byte contains X'FE', you can use the next three bytes to pass an
address of a 104-byte field save area where ESTAE information is saved.
These bytes must contain zeros if the ESTAE information is not saved.

If a system or user exit abend occurs, the DFSORT ESTAE recovery
routine will copy the first 104 bytes of the SDWA into this area before
returning to any higher level ESTAE recovery routines.

For more information on the DFSORT ESTAE recovery routine, see
Appendix E, “DFSORT Abend Processing” on page 647

82-85 The message option. The first byte must contain X'FF'. The following three
bytes contain the characters NOF, (I), or (U). You can use this option to
temporarily override the MSGPRT installation option.

NOF Messages and control statements are not printed. Critical messages are
written to the master console.

(I) All messages except diagnostic messages (ICE800I to ICE999I) are printed.
Critical messages are also written to the master console. Control
statements are printed only if LIST is in effect.

(U) Only critical messages are printed. They are also written to the master
console. Control statements are not printed (NOLIST is forced).

All messages are written to the message data set. For details on use of the
message data set, see DFSORT Messages, Codes and Diagnosis Guide R14 For
full override and applicability details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603.

For compatibility reasons, the forms (NO, (AB, (AP, (AC, (CB, (CC, (CP, (PC, (SC,
and (SP are also accepted.

The following list shows the equivalent specifications for these aliases:

Table 60. Aliases for Message Option

Option MSGPRT MSGCON

(NO NONE NONE

(AB ALL ALL

(AP ALL CRITICAL

(AC NONE ALL

(CB CRITICAL CRITICAL

(CC NONE CRITICAL

(CP CRITICAL CRITICAL

(PC ALL ALL

(SC ALL CRITICAL

(SP CRITICAL ALL

86-89 Four characters, which replace “SORT” in the following ddnames: SORTIN,

Invoking DFSORT with the 24-Bit Parameter List

374 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

SORTOUT, SORTINn, SORTINnn, SORTOFd, SORTOFdd, SORTWKd,
SORTWKdd, and SORTCNTL. You must use this option when you
dynamically invoke DFSORT more than once in a program step.

The four characters must all be alphanumeric or national ($, #, or @)
characters. The first character must be alphabetic, and the reserved names
DIAG, BALN, OSCL, POLY, CRCX, PEER, LIST, and SYSc (where c is any
alphanumeric character) must not be used. Otherwise, the four characters
are ignored.

For example, if you use ABC# as replacement characters, DFSORT uses
statements ABC#IN, ABC#CNTL, ABC#WKdd, and ABC#OUT instead of
SORTIN, SORTCNTL, SORTWKdd, and SORTOUT.

Note: This parameter is equivalent to the SORTDD=cccc run-time option.

90-93 The starting address of the SUM statement image. Must be in the last three
bytes. The first byte must contain X'07'.

94-97 The ending address of the SUM statement image. Must be in the last three
bytes. The first byte must contain X'00'.

98-101
The starting address of the INCLUDE or OMIT statement image. Must be in
the last three bytes. The first byte must contain X'08'.

102-105
The ending address of the INCLUDE or OMIT statement image. Must be in
the last three bytes. The first byte must contain X'00'.

106-109
The starting address of the OUTREC statement image. Must be in the last
three bytes. The first byte must contain X'09'.

110-112
The ending address of the OUTREC statement image. Must be in the last
three bytes. The first byte must contain X'00'.

114-116
The starting address of the INREC statement image. Must be in the last
three bytes. The first byte must contain X'0A'.

118-121
The ending address of the INREC statement image. Must be in the last
three bytes. The first byte must contain X'00'.

122-125
The starting address of the OUTFIL statement image. Must be in the last
three bytes. The first byte must contain X'0B'.

126-129
The ending address of the OUTFIL statement image. Must be in the last
three bytes. The first byte must contain X'00'.

Invoking DFSORT With The Extended Parameter List

Providing Program Control Statements
When using the extended parameter list, the control statements are written in a
single area to which the parameter list points. The control statement area consists
of:

v A 2-byte field containing the length (in binary) of the character string to follow.

Invoking DFSORT with the 24-Bit Parameter List

Chapter 5. Invoking DFSORT from a Program 375

v A character string in EBCDIC format using assembler DC instructions and
containing valid images of the control statements to be used during run-time.

The rules for preparing the program control statements are:

v The control statements must be separated by one or more blanks. A blank
preceding the first statement is optional; however, a trailing blank is required. No
labels, comment statements, or comment fields are allowed. Because each
control statement image must be defined contiguously by one or more assembler
DC instructions, explicit and implicit continuation of statements is not necessary
or allowed.

v The MODS statement is required when user exits other than E15, E18, E32,
E35, and E39 are to be used or when the E15, E18, E35, or E39 routine
addresses are not passed by the parameter list.

v All of the control statements described in Chapter 3, “Using DFSORT Program
Control Statements” on page 95 can be specified. None is required, but SORT,
MERGE, or OPTION COPY must be specified in the parameter list, SORTCNTL,
or DFSPARM.

v If you use ATTACH to initiate the program, you cannot use the checkpoint/restart
facility. Do not specify CKPT on the SORT or OPTION statement.

For full override and applicability details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603.

Format of the Extended Parameter List
Figure 34 on page 377 shows the format of the extended parameter list and the
pointer, which you must pass to DFSORT, containing its address.

The first parameter must be specified. A 4-byte field containing X'FFFFFFFF' must
be used to indicate the end of the parameter list. It can be coded anywhere after
the first parameter.

If a parameter is specified, it must appear in the indicated position and must contain
a 31-bit address or a clean (the first 8 bits containing zeros) 24-bit address. If a
parameter is not specified, it is treated as if it were specified as zeros. For full
override and applicability details, see Appendix B, “Specification/Override of
DFSORT Options” on page 603.

Invoking DFSORT With The Extended Parameter List

376 DFSORT R14 Application Programming Guide

Detailed specifications for each of the entries in the parameter list follow:

Byte Explanation

0-3 Required. The address of the area containing the DFSORT control
statements, if any; otherwise, all zeros. The high order bit must be 0 to
identify this as an extended parameter list.

Refer to the previous section for the format of the control statement area.
Note that the area must start with a two-byte length field.

If you specify this parameter as zeros, you must supply all the required
control statements in DFSPARM or SORTCNTL.

4-7 Optional. The address of the E15 or E32 user exit routine that your program
has placed in main storage (for example, via LOAD), if any; otherwise, all
zeros.

f (bit 0) has the following meaning:
0 = Enter the user exit with 24-bit addressing in effect (AMODE 24).
1 = Enter the user exit with 31-bit addressing in effect (AMODE 31).

Note: If the Blockset or Peerage/Vale technique is not selected, the user
exit is always entered with 24-bit addressing in effect (AMODE 24).

8-11 Optional. The address of the E35 user exit routine that your program has
placed in main storage (for example, via LOAD), if any; otherwise, all zeros.

f (bit 0) has the following meaning:
0 = Enter the user exit with 24-bit addressing in effect (AMODE 24).
1 = Enter the user exit with 31-bit addressing in effect (AMODE 31).

Note: If the Blockset or Peerage/Vale technique is not selected, the user
exit is always entered with 24-bit addressing in effect (AMODE 24).

Address of control statement area (zero if none)

Address of user exit E15 or E32 (zeros if none)

Address of user exit E35 (zeros if none)

Address of user exit E18 (zeros if none)

Address of user exit E39 (zeros if none)

4-character call identifier (zeros if none)

X 'FFFFFFFF'

Address of user exit constant (zeros if none)

Address of ALTSEQ translation table (zeros if none)

Address of ESTAE area pointer (zeros if none)

(Hex) (Dec) Bit 0

Register 1

0

4

8

C

10

14

18

1C

20

24

0

4

8

12

16

20

24

28

32

36

0

f

f

f

f

Figure 34. The Extended Parameter List

Invoking DFSORT With The Extended Parameter List

Chapter 5. Invoking DFSORT from a Program 377

12-15 Optional. This field will be passed to the E15, E32 or E35 user exit routines.

Note: The user exit address constant must not be used for a Conventional
merge or tape work data set sort application.

16-19 Optional. The address of a 256-byte ALTSEQ translation table supplied
instead of an ALTSEQ statement, if any; otherwise, all zeros. You can use
this option to override any ALTSEQ translation table specified at installation.
For full override and applicability details, see Appendix B,
“Specification/Override of DFSORT Options” on page 603.

20-23 Optional. The address of a 4-byte field containing the address of a 112-byte
work area where ESTAE information is saved, or all zeros if the ESTAE
information is not saved.

If a system or user exit abend occurs, the DFSORT recovery routine will
copy the first 112 bytes of the software diagnostic work area (SDWA) into
this area before returning to your ESTAE recovery routine.

24-27 Optional. The address of the E18 user exit routine that your program has
placed in main storage (for example, via LOAD), if any; otherwise, all zeros.

Note: This parameter is ignored for a merge application and for a tape
work data set sort application.

f (bit 0) has the following meaning:
0 = Enter the user exit with 24-bit addressing in effect (AMODE 24).
1 = Enter the user exit with 31-bit addressing in effect (AMODE 31).

Note: If the Blockset or Peerage/Vale technique is not selected, the user
exit is always entered with 24-bit addressing in effect (AMODE 24).

28-31 Optional. The address of the E39 user exit routine that your program has
placed in main storage (for example, via LOAD), if any; otherwise, all zeros.

Note: This parameter is ignored for a conventional merge application and
for a tape work data set sort application.

f (bit 0) has the following meaning:
0 = Enter the user exit with 24-bit addressing in effect (AMODE 24).
1 = Enter the user exit with 31-bit addressing in effect (AMODE 31).

Note: If the Blockset or Peerage/Vale technique is not selected, the user
exit is always entered with 24-bit addressing if effect (AMODE 24).

32-35 Optional. 4 characters to be used as an identifier for this call to DFSORT.
This field can be used to uniquely identify each call to DFSORT from a
program that calls DFSORT more than once. DFSORT prints message
ICE200I to display the field identifier exactly as you specify it; the field is
not checked for valid characters.

If the field identifier is specified, it must appear in the indicated position. If
the identifier field contains zeros (X'00000000'), or X'FFFFFFFF' is used to
end the parameter list before or at the field identifier, DFSORT does not
print message ICE200I.

Note: The list can be ended after any parameter. The last parameter in the list
must be followed by X'FFFFFFFF'.

Invoking DFSORT With The Extended Parameter List

378 DFSORT R14 Application Programming Guide

|
|
|
|
|

Writing the Macro Instruction
When writing the LINK, ATTACH, or XCTL macro instruction, you must:

v Specify SORT (the entry point) in the EP parameter of the instruction. (This
applies to sort, merge, and copy jobs.)

v Load the address of the pointer to the parameter list into register 1 (or pass it in
the MF parameter of the instruction).

Note: If you are using ATTACH, you might also need the ECB parameter.

If you provide an E15 user exit routine address in the parameter list, DFSORT
ignores the SORTIN data set; your E15 routine must pass all input records to
DFSORT. The same applies to a merge if you specify an E32 routine address. This
means that your routine must issue a return code of 12 (insert record) until the input
data set is complete, and then a return code of 8 (“do not return”).

DFSORT ignores the SORTOUT data set if you provide an E35 routine address in
the parameter list. Unless you use OUTFIL processing, your routine is then
responsible for disposing of all output records. It must issue a return code of 4
(delete record) for each record in the output data set. When the program has
deleted all the records, your routine issues a return code of 8 (“do not return”).

When DFSORT is done, it passes control to the routine that invoked it.

When a single task attaches two or more program applications, you must modify
the standard ddnames so that they are unique. For ways of doing this, and for the
rules of override, see Appendix B, “Specification/Override of DFSORT Options” on
page 603 .

If you ATTACH more than one DFSORT application from the same program, you
must wait for each to complete before attaching the next unless DFSORT and your
user exits are installed re-entrant.

When you initiate DFSORT via XCTL, you must give special consideration to the
area where the parameter list, address list, optional parameters, and modification
routines (if any) are stored. This information must not reside in the module that
issues the XCTL because the module is overlaid by DFSORT.

There are two ways to overcome this problem. First, the control information can
reside in a task that attaches the module that issues the XCTL. Second, the module
issuing the XCTL can first issue a GETMAIN macro instruction and place the control
information in the main storage area it obtains. This area is not overlaid when the
XCTL is issued. The address of the control information in the area must be passed
to DFSORT in general register 1.

Parameter List Examples
24-Bit Parameter List Example 1

Figure 35 on page 380 shows the format of the 24-bit parameter list you would use
to specify the main storage option for a sort application.

Writing The Macro Instruction

Chapter 5. Invoking DFSORT from a Program 379

24-Bit Parameter List Example 2

Figure 36 shows the format of the 24-bit parameter list that you would use for a
merge application when you want to supply input through an E32 routine and give
control to the ESTAE routine if the program fails.

24-Bit Parameter List Example 3

Figure 37 on page 381 shows how a 24-bit parameter list might appear in main
storage. General register 1 contains a pointer to the address of the parameter list
which is at location 1000. The address points to the parameter list which begins at
location 1006. The first 2-byte field of the parameter list contains, right-justified in
hexadecimal, the number of bytes in the list (36 decimal).

-2

2

6

10

14

18

22

26

-2

2

6

A

E

12

16

1A

(Hex) (Dec) Byte 1

Unused X '001C'

X '00'

X '00'

X '00'

X '00'

X '00'

X '00'

X '00'

Starting address of SORT statement

Ending address of SORT statement

Starting address of RECORD statement

Ending address of RECORD statement

Zeros (no E15 routine provided)

Zeros (no E35 routine provided)

Main storage value (in hexadecimal)

Byte 2 Bytes 3 and 4

Figure 35. Specifying the Main Storage Option (24-Bit Parameter List)

-2

2

6

10

14

18

22

26

30

-2

2

6

A

E

12

16

1A

1E

(Hex) (Dec) Byte 1

Unused X '001C'

X '00'

X '00'

X '00'

X '00'

X '00'

X '00'

X '04'

X 'FE'

Starting address of MERGE statement

Ending address of MERGE statement

Starting address of RECORD statement

Ending address of RECORD statement

Address of E32 routine

Zeros (no E35 routine provided)

Zeros-no work area address provided)

Number of input files

Byte 2 Bytes 3 and 4

Figure 36. Specifying E32 and ESTAE Routine (24-Bit Parameter List)

Writing The Macro Instruction

380 DFSORT R14 Application Programming Guide

The first two fullwords in the parameter list point to the beginning (location 1036)
and end (location 105B) of the SORT control statement. The next two fullwords
point to the beginning (location 105C) and end (location 1075) of the RECORD
statement.

The fifth and sixth fullwords in the list contain the entry point addresses for the E15
user exit (location 2000) and E35 user exit (location 3000).

The next fullword in the list contains four characters to replace the letters 'SORT' in
the ddnames of standard DD statements.

The next two fullwords in the list specify a main storage value for this application
and a message option.

24-Bit Parameter List Example 4

The example in Figure 38 on page 382 shows, in assembler language, how to code
the parameters and statement images needed for the 24-bit parameter list in
Figure 37. It also shows how to pass control to DFSORT.

Reg 1 00 00 10 00

1000

1004

1008

100C

1010

1014

1018

101C

1020

1024

102C

80 00 10 06

00 00 00 24

00 00 10 36

00 00 10 5B

00 00 10 5C

00 00 10 75

00 00 20 00

00 00 30 00

A B C #

00 00 65 90

FF (U)

(pointer to address)

(address of parameter list)

S O R T # F I E L D S =

(

#

=

1

R

1

0

E C

0 0

, 1

O

,

5

R

T

, C

#

P E

H A) ,,

F I L S Z = 4 7 8 0 6 #

D

Y

L E

=

N

F

G

#

T H

Parameter List

Optional

1036

105B

105C

1075

Figure 37. The 24-Bit Parameter List in Main Storage

Writing The Macro Instruction

Chapter 5. Invoking DFSORT from a Program 381

Extended Parameter List Example 1

The example in Figure 39 on page 383 shows, in assembler language, how to use
an extended parameter list to code parameters and statement images and how to
pass control to DFSORT.

LA 1,PARLST LOAD ADDR OF PARAM POINTER IN R1
ATTACH EP=SORT INVOKE SORT
.
.
.

PARLST DC X’80’,AL3(ADLST) POINTER FLAG/ADDRESS OF PARAM LIST
.
.
.
CNOP 2,4 ALIGN TO CORRECT BOUNDARY

ADLST DC AL2(LISTEND-LISTBEG) PARAM LIST LENGTH
LISTBEG DC A(SORTA) BEGINNING ADDRESS OF SORT STMT

DC A(SORTZ) END ADDRESS OF SORT STMT
DC A(RECA) BEGINNING ADDR OF RECORD STMT
DC A(RECZ) END ADDR OF RECORD STMT
DC A(MOD1) ADDR OF E15 RTN
DC A(MOD2) ADDR OF E35 RTN
DC C’ABC#’ DDNAME CHARACTERS
DC F’720000’ OPTIONAL MAIN STORAGE VALUE
DC X’FF’ MESSAGE OPTION FLAG BYTE
DC C’(U)’ MESSAGE OPTION

LISTEND EQU *
SORTA DC C’ SORT FIELDS=(10,15,CH,A),’ SORT CONTROL STMT

DC C’FILSZ=E4780’ (CONTINUED)
SORTZ DC C’ ’ DELIMITER
RECA DC C’ RECORD LENGTH=100,TYPE=F’ RECORD CONTROL STMT
RECZ DC C’ ’ DELIMITER

DS 0H
USING *,15

MOD1 (routine for E15 user exit)
.
.
USING *,15

MOD2 (routine for E35 user exit)

Figure 38. Coding a 24-Bit Parameter List

Writing The Macro Instruction

382 DFSORT R14 Application Programming Guide

Restrictions for Dynamic Invocation

Merge Restriction
Merge applications cannot be done when DFSORT is invoked from a PL/I program.

Copy Restrictions
Copy applications cannot be done when DFSORT is invoked from a PL/I program.

If you invoke DFSORT from a COBOL program, the following restrictions apply:

v If using OS/VS COBOL, a copy application cannot be done.

v If using VS COBOL II or later, the OPTION COPY statement can be placed in
either the COBOL II IGZSRTCD data set or the DFSORT SORTCNTL or
DFSPARM data set.

v If using the COBOL II or later FASTSRT compiler option for any part or all of the
COBOL SORT statement, a copy application can be done.

v If using the COBOL MERGE statement, a copy application cannot be done.

.

.

.
LA R1,PL1 SET ADDRESS OF PARAMETER LIST

* TO BE PASSED TO SORT/MERGE
ST R2,PL4 SET ADDRESS OF GETMAINED AREA

* TO BE PASSED TO E15
LINK EP=SORT INVOKE SORT/MERGE
.
.
.

PL1 DC A(CTLST) ADDRESS OF CONTROL STATEMENTS
PL2 DC A(E15) ADDRESS OF E15 ROUTINE
PL3 DC A(0) NO E35 ROUTINE
PL4 DS A USER EXIT ADDRESS CONSTANT
PL5 DC F’-1’ INDICATE END OF LIST
CTLST DS 0H CONTROL STATEMENTS AREA

DC AL2(CTL2-CTL1) LENGTH OF CHARACTER STRING
CTL1 DC C’ SORT FIELDS=(4,5,CH,A)’

DC C’ OPTION ’
DC C’RESINV=2048,FILSZ=E25000,MSGDDN=MSGOUT ’
DC C’ OMIT COND=(5,8,EQ,13,8),FORMAT=FI ’
DC C’ RECORD TYPE=F,LENGTH=80 ’

CTL2 EQU *
OUT DCB DDNAME=SYSOUT,... MYSORT USES SYSOUT
E15 DS 0H E15 ROUTINE

.

.

.
BR R14 RETURN TO SORT/MERGE

* MAPPING OF PARAMETER LIST PASSED TO E15 FROM SORT/MERGE
SRTLST DS A ADDRESS OF RECORD
GMA DS A ADDRESS OF AREA GETMAINED BY
* MYSORT

.

.

.

Figure 39. Coding an Extended Parameter List

Restrictions for Dynamic Invocation

Chapter 5. Invoking DFSORT from a Program 383

See “COBOL Requirements for Copy Processing” on page 347 for user exit
requirements.

Restrictions for Dynamic Invocation

384 DFSORT R14 Application Programming Guide

Chapter 6. Using ICETOOL

Overview . 386
ICETOOL/DFSORT Relationship 387
ICETOOL JCL Summary . 387
ICETOOL Operator Summary 388
Complete ICETOOL Examples. 389
Using Symbols . 390
Invoking ICETOOL . 390
Putting ICETOOL to Use . 391

Obtaining Various Statistics 391
Creating Multiple Versions/Combinations of Data Sets 392

Job Control Language for ICETOOL 394
JCL Restrictions . 396

ICETOOL Statements . 396
General Coding Rules . 396

COPY Operator . 397
Operand Descriptions . 398
COPY Examples . 399

Example 1 . 399
Example 2 . 400
Example 3 . 401

COUNT Operator . 401
Operand Descriptions . 402
COUNT Examples . 403

Example 1 . 403
Example 2 . 403
Example 3 . 403

DEFAULTS Operator . 403
Operand Description . 405
DEFAULTS Example . 405

DISPLAY Operator . 407
Simple Report . 408
Tailored Report . 408
Sectioned Report . 409
Operand Descriptions . 410
DISPLAY Examples. 429

Example 1 . 429
Example 2 . 429
Example 3 . 430
Example 4 . 431
Example 5 . 432
Example 6 . 433
Example 7 . 434
Example 8 . 436
Example 9 . 438
Example 10 . 440
Example 11. 441
Example 12 . 443

MODE Operator . 444
Operand Descriptions . 445
MODE Example . 445

OCCUR Operator . 446
Simple Report . 447
Tailored Report . 448

© Copyright IBM Corp. 1973, 2002 385

||
||

||
||

Operand Descriptions . 449
OCCUR Examples . 455

Example 1 . 455
Example 2 . 456
Example 3 . 457
Example 4 . 457
Example 5 . 458

RANGE Operator . 458
Operand Descriptions . 459
RANGE Example . 460

SELECT Operator . 461
Operand Descriptions . 462
SELECT Examples . 464

Example 1 . 465
Example 2 . 465
Example 3 . 465
Example 4 . 466
Example 5 . 466
Example 6 . 466

SORT Operator . 467
Operand Descriptions . 468
SORT Examples . 469

Example 1 . 469
Example 2 . 470
Example 3 . 471

STATS Operator . 471
Operand Descriptions . 471
STATS Example . 473

UNIQUE Operator . 473
Operand Descriptions . 473
UNIQUE Example . 474

VERIFY Operator . 475
Operand Descriptions . 475
VERIFY Example . 476

Calling ICETOOL from a Program 477
TOOLIN Interface . 477
Parameter List Interface . 477

Explanation of Fields . 478
Parameter List Interface Example 480

ICETOOL Notes and Restrictions. 483
ICETOOL Return Codes . 484

Overview
This chapter describes ICETOOL, a multi-purpose DFSORT utility. ICETOOL uses
the capabilities of DFSORT to perform multiple operations on one or more data sets
in a single job step. These operations include the following:

v Creating multiple copies of sorted, edited, or unedited input data sets

v Creating output data sets containing subsets of input data sets based on various
criteria for character and numeric field values or the number of times unique
values occur

v Creating output data sets containing different field arrangements of input data
sets

v Creating list data sets showing character and numeric fields in a variety of
simple, tailored, and sectioned report formats, allowing control of title, date, time,

Using ICETOOL

386 DFSORT R14 Application Programming Guide

||

||

page numbers, headings, lines per page, field formats, and total, maximum,
minimum and average values for the columns of numeric data

v Printing messages that give statistical information for selected numeric fields
such as minimum, maximum, average, total, count of values, and count of unique
values

v Printing messages that identify invalid decimal values

v Printing messages that give record counts

v Setting RC=12 or RC=0 based on record counts

v Creating a list data set showing the DFSORT installation defaults in use

v Creating list data sets showing unique values for selected character and numeric
fields and the number of times each occurs, in a variety of simple and tailored
report formats

v Creating list and output data sets for records with: duplicate values, non-duplicate
values, or values that occur n times, less than n times or more than n times

v Using three different modes (stop, continue, and scan) to control error checking
and actions after error detection for groups of operators.

ICETOOL/DFSORT Relationship
ICETOOL is a batch front-end utility that uses the capabilities of DFSORT to
perform the operations you request.

ICETOOL is comprised of twelve operators that perform sort, copy, statistical, and
report operations. Most of the operations performed by ICETOOL require only
simple JCL and operator statements. Some ICETOOL operations require or allow
you to specify complete DFSORT control statements (such as SORT, INCLUDE,
and OUTFIL) to take full advantage of DFSORT’s capabilities.

ICETOOL automatically calls DFSORT with the particular DFSORT control
statements and options required for each operation (such as DYNALLOC for
sorting).

ICETOOL also produces messages and return codes describing the results of each
operation and any errors detected. Although you generally do not need to look at
the DFSORT messages produced as a result of an ICETOOL run, they are
available in a separate data set if you need them.

ICETOOL can be called directly or from a program. ICETOOL allows operator
statements (and comments) to be supplied in a data set or in a parameter list
passed by a calling program. For each operator supplied in the parameter list,
ICETOOL puts information in the parameter list pertaining to that operation, thus
allowing the calling program to use the information derived by ICETOOL.

ICETOOL JCL Summary
The JCL statements used with ICETOOL are summarized below. See “Job Control
Language for ICETOOL” on page 394 for more detailed information. See also “JCL
Restrictions” on page 396 and “ICETOOL Notes and Restrictions” on page 483.

//JOBLIB DD
Defines your program link library if it is not already known to the system.

//STEPLIB DD
Same as //JOBLIB DD

Overview

Chapter 6. Using ICETOOL 387

|

|

//TOOLMSG DD
Defines the ICETOOL message data set for all operations.

//DFSMSG DD
Defines the DFSORT message data set for all operations.

//SYMNAMES DD
Defines the SYMNAMES data set containing statements to be used for
symbol processing.

//SYMNOUT DD
Defines the data set in which SYMNAMES statements and the symbol table
are to be listed.

//TOOLIN DD
Contains ICETOOL control statements.

//indd DD
Defines an input data set for a COPY, COUNT, DISPLAY, OCCUR, RANGE,
SELECT, SORT, STATS, UNIQUE, or VERIFY operation.

//outdd DD
Defines an output data set for a COPY, SELECT, or SORT operation.

//savedd DD
Defines an output data set for a SELECT operation.

//listdd DD
Defines a list data set for a DEFAULTS, DISPLAY, or OCCUR operation.

//xxxxCNTL DD
Contains DFSORT control statements for a COPY, COUNT, or SORT
operation.

ICETOOL Operator Summary
ICETOOL has twelve operators which are used to perform a variety of functions.
The functions of these operators are summarized below. See “ICETOOL
Statements” on page 396 for more detailed information. Additionally, information
pertaining to each operator is provided to calling programs which supply statements
to ICETOOL using a parameter list. See “Parameter List Interface” on page 477 for
details.

COPY
Copies a data set to one or more output data sets.

COUNT
Prints a message containing the count of records in a data set. COUNT can
also be used to set RC=12 or RC=0 based on meeting criteria for the number
of records in a data set.

DEFAULTS
Prints the DFSORT installation defaults in a separate list data set.

DISPLAY
Prints the values or characters of specified numeric or character fields in a
separate list data set. Simple, tailored, or sectioned reports can be produced.

MODE
Three modes are available which can be set or reset for groups of operators:

v STOP mode (the default) stops subsequent operations if an error is detected

v CONTINUE mode continues with subsequent operations if an error is
detected

Overview

388 DFSORT R14 Application Programming Guide

|
|
|

v SCAN mode allows ICETOOL statement checking without actually performing
any operations.

OCCUR
Prints each unique value for specified numeric or character fields and how
many times it occurs in a separate list data set. Simple or tailored reports can
be produced. The values printed can be limited to those for which the value
count meets specified criteria (for example, only duplicate values or only
non-duplicate values).

RANGE
Prints a message containing the count of values in a specified range for a
specified numeric field in a data set.

SELECT
Selects records from a data set for inclusion in an output data set based on
meeting criteria for the number of times specified numeric or character field
values occur (for example, only duplicate values or only non-duplicate values).
Records that are not selected can be saved in a separate output data set.

SORT
Sorts a data set to one or more output data sets.

STATS
Prints messages containing the minimum, maximum, average, and total for
specified numeric fields in a data set.

UNIQUE
Prints a message containing the count of unique values for a specified numeric
or character field.

VERIFY
Examines specified decimal fields in a data set and prints a message identifying
each invalid value found for each field.

Complete ICETOOL Examples
“ICETOOL Example” on page 589 contains a complete ICETOOL sample job with all
required JCL and control statements. The example below shows the JCL and
control statements for a simple ICETOOL job.

Overview

Chapter 6. Using ICETOOL 389

Table 61. Simple ICETOOL Job

//EXAMP JOB A402,PROGRAMMER
//RUNIT EXEC PGM=ICETOOL,REGION=1024K
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//TOOLIN DD *
* Show installation (ICEMAC) defaults

DEFAULTS LIST(SHOWDEF)
* Create three copies of a data set

COPY FROM(IN1) TO(OUT1,OUT2,OUT3)
* Print a report

DISPLAY FROM(IN2) LIST(REPORT) DATE TITLE(’Monthly Report’) PAGE -
HEADER(’Location’) ON(1,25,CH) -
HEADER(’Revenue’) ON(23,10,FS) -
HEADER(’Profit’) ON(45,10,FS) -
TOTAL(’Totals’) AVERAGE(’Averages’) BLANK

* Select all records with duplicate (non-unique) keys
SELECT FROM(IN2) TO(DUPKEYS) ON(1,25,CH) ALLDUPS -

* Save all records with non-duplicate (unique) keys
DISCARD (UNQKEYS)

/*
//SHOWDEF DD SYSOUT=A
//IN1 DD DSN=FLY.INPUT1,DISP=SHR
//IN2 DD DSN=FLY.INPUT2,DISP=SHR
//OUT1 DD DSN=FLY.NEW,DISP=OLD
//OUT2 DD DSN=FLY.BU1,DISP=OLD
//OUT3 DD DSN=FLY.BU2,DISP=OLD
//DUPKEYS DD DSN=FLY.DUPS,DISP=OLD
//UNQKEYS DD DSN=FLY.UNQS,DISP=OLD
//REPORT DD SYSOUT=A

Using Symbols
You can define and use a symbol for any field or constant in the following ICETOOL
operators: COUNT, DISPLAY, OCCUR, RANGE, SELECT, STATS, UNIQUE, and
VERIFY. You can also use symbols in the DFSORT control statements you specify
for an ICETOOL run. This makes it easy to create and reuse collections of symbols
(that is, mappings) representing information associated with various record layouts.
See Chapter 7, “Using Symbols for Fields and Constants” on page 485 for complete
details.

Invoking ICETOOL
ICETOOL can be invoked in the following three ways:

v Directly (that is, not from a program) using the TOOLIN Interface

v From a program using the TOOLIN Interface

v From a program using the Parameter List Interface.

With the TOOLIN Interface, you supply ICETOOL statements in a data set defined
by the TOOLIN DD statement. ICETOOL prints messages in the data set defined by
the TOOLMSG DD statement.

With the Parameter List Interface, your program supplies ICETOOL statements in a
parameter list. ICETOOL prints messages in the data set defined by the TOOLMSG
DD statement and also puts information in the parameter list for use by your
program.

Overview

390 DFSORT R14 Application Programming Guide

|

Putting ICETOOL to Use
By using various combinations of the twelve ICETOOL operators, you can easily
create applications that perform many complex tasks. The two small samples that
follow show some things you can do with ICETOOL.

Obtaining Various Statistics
Table 62. Obtaining Various Statistics

MODE STOP
VERIFY FROM(DATA1) ON(22,7,PD)
DISPLAY FROM(DATA1) LIST(SALARIES) -

TITLE(’Employee Salaries’) DATE TIME -
HEADER(’Employee Name’) HEADER(’Salary’) -
ON(1,20,CH) ON(22,7,PD) BLANK -
AVERAGE(’Average Salary’)

STATS FROM(DATA1) ON(22,7,PD)
RANGE FROM(DATA1) ON(22,7,PD) LOWER(20000)
RANGE FROM(DATA1) ON(22,7,PD) HIGHER(19999) LOWER(40000)
RANGE FROM(DATA1) ON(22,7,PD) HIGHER(40000)
OCCUR FROM(DATA1) LIST(SALARIES) -

TITLE(’Employees Receiving Each Salary’) DATE TIME -
HEADER(’Salary’) HEADER(’Employee Count’) -
ON(22,7,PD) ON(VALCNT) BLANK

Assume that you specify DD statements with the following ddnames for the
indicated data sets:

DATA1
A data set containing the name, salary, department, location and so on, of
each of your employees. The name field is in positions 1 through 20 in
character format and the salary field is in positions 22 through 28 in packed
decimal format.

SALARIES
A SYSOUT data set.

You can use the ICETOOL operators in Table 62 to do the following:

MODE STOP
If an error is found while processing one of the operators, subsequent
operators are not processed (that is, each operator is dependent on the
success of the previous operator).

VERIFY
Prints error messages in the TOOLMSG data set identifying any invalid
values in the packed decimal salary field.

DISPLAY
Prints a report with each employee’s name and salary and the average for
all employee salaries in the SALARIES list data set.

STATS
Prints messages in the TOOLMSG data set showing the minimum,
maximum, average, and total of the individual salaries.

RANGE
The three RANGE operators print messages in the TOOLMSG data set
showing the number of salaries below $20,000, from $20,000 to $39,999,
and above $40,000.

Overview

Chapter 6. Using ICETOOL 391

OCCUR
Prints a report with each unique salary and the number of employees who
receive it in the SALARIES list data set.

Creating Multiple Versions/Combinations of Data Sets
Table 63. Creating Multiple Versions/Combinations of Data Sets

* GROUP 1
MODE CONTINUE
COPY FROM(DATA1) TO(DATA2)
COPY FROM(MSTR1) TO(MSTR2)
SELECT FROM(DATA1) TO(SMALLDPT) ON(30,4,CH) LOWER(10)
UNIQUE FROM(MSTR1) ON(30,4,CH)

* GROUP 2
MODE STOP
COPY FROM(DATA1) TO(TEMP1) USING(NEW1)
COPY FROM(DATA1) TO(TEMP2) USING(NEW2)
COPY FROM(DATA1) TO(TEMP3) USING(NEW3)
SORT FROM(CONCAT) TO(FINALD,FINALP) USING(FINL)

Assume that you specify DD statements with the following ddnames for the
indicated data sets:

DATA1
A data set containing the name, salary, department, location, and so on, of each
of your employees. The department field is in positions 30 through 33 in
character format.

MSTR1
Master data set containing only the name and department of each of your
employees. The department field is in positions 30 through 33 in character
format.

DATA2, MSTR2, and SMALLDPT
Permanent data sets.

NEW1CNTL
A data set containing DFSORT control statements to INCLUDE employees in
department X100 and change the records to match the format of MSTR1.

NEW2CNTL
Same as NEW1CNTL but for department X200.

NEW3CNTL
Same as NEW1CNTL but for department X300.

TEMP1, TEMP2, and TEMP3
Temporary data sets.

FINLCNTL
A data set containing a DFSORT control statement to sort by department and
employee name.

CONCAT
A concatenation of the TEMP1, TEMP2, TEMP3, and MSTR1 data sets.

FINALD
A permanent data set.

FINALP
A SYSOUT data set.

Overview

392 DFSORT R14 Application Programming Guide

You can use the ICETOOL operators in Table 63 to do the following:

MODE CONTINUE
If an error is found while processing any of the group 1 operators,
subsequent group 1 operators are still processed; that is, group 1 operators
are not dependent on the success of the previous group 1 operators.

COPY The two copy operators create backup copies of DATA1 and MSTR1.

SELECT
Creates a permanent output data set containing the name, salary,
department, location, and so on, of each employee in departments with less
than 10 people.

UNIQUE
Prints a message in the TOOLMSG data set showing the number of unique
departments.

MODE STOP
If an error is found while processing one of the group 2 operators,
subsequent group 2 operators are not processed; that is, each group 2
operator is dependent on the success of previous group 2 operators.

COPY The three COPY operators create an output data set for the employees in
each department containing only name and department. Note that the
ddname requested by the USING(xxxx) operand is xxxxCNTL. For example,
USING(NEW1) requests ddname NEW1CNTL.

SORT Sorts the three output data sets created by the COPY operators along with
the master name/department data set and creates permanent and SYSOUT
data sets containing the resulting sorted records.

You can combine both of these examples into a single ICETOOL job step.

Overview

Chapter 6. Using ICETOOL 393

Job Control Language for ICETOOL
An overview of the job control language (JCL) statements for ICETOOL is given
below followed by discussions of each ICETOOL DD statement and the use of
reserved DD statements and ddnames.

Table 64. JCL Statements for ICETOOL

//EXAMPL JOB ...
//* ICETOOL CAN BE CALLED DIRECTLY OR FROM A PROGRAM
//STEP EXEC PGM=ICETOOL (or PGM=program_name)
//* THE FOLLOWING DD STATEMENTS ARE ALWAYS REQUIRED
//TOOLMSG DD SYSOUT=A (or DSN=...)
//DFSMSG DD SYSOUT=A
//* THE FOLLOWING DD STATEMENTS ARE USED FOR SYMBOL PROCESSING
//* SYMNAMES DD ...
//* SYMNOUT DD SYSOUT=A (OR DSN=...)
//* THE TOOLIN DD STATEMENT IS ONLY REQUIRED IF THE TOOLIN INTERFACE
//* IS USED.
//TOOLIN DD *

ICETOOL statements
/*
//* THE FOLLOWING DD STATEMENTS ARE ONLY REQUIRED IF SPECIFIED IN
//* ICETOOL STATEMENTS.
//indd DD ...

.

.

.
//outdd DD ...

.

.

.
//listdd DD SYSOUT=A (or DSN=...)

.

.

.
//xxxxCNTL DD *

DFSORT control statements
/*

.

.

.

TOOLMSG DD Statement
Defines the ICETOOL message data set for all operations. ICETOOL messages
and statements appear in this data set. ICETOOL uses RECFM=FBA,
LRECL=121 and the specified BLKSIZE for the TOOLMSG data set. If the
BLKSIZE you specify is not a multiple of 121, ICETOOL uses BLKSIZE=121. If
you do not specify the BLKSIZE, ICETOOL selects the block size as directed by
the SDBMSG installation option (see DFSORT Installation and Customization
R14).

The TOOLMSG DD statement must be present.

DFSMSG DD Statement
Defines the DFSORT message data set for all operations. The DFSORT
messages and control statements from all ICETOOL calls to DFSORT appear in
this data set. Refer to the discussion of SYSOUT in “System DD Statements”
on page 62 for details.

The DFSMSG DD statement must be present.

Job Control Language for ICETOOL

394 DFSORT R14 Application Programming Guide

Note: A SYSOUT data set should be used for DFSMSG. If you define
DFSMSG as a temporary or permanent data set, you will only see the
DFSORT messages from the last call to DFSORT unless you allocate a
new data set using a disposition of MOD.

//SYMNAMES DD
Defines the SYMNAMES data set containing statements to be used for symbol
processing. See Chapter 7, “Using Symbols for Fields and Constants” on
page 485 for complete details.

//SYMNOUT DD
Defines the data set in which SYMNAMES statements and the symbol table are
to be listed. See Chapter 7, “Using Symbols for Fields and Constants” on
page 485 for complete details.

TOOLIN DD statement
Defines the ICETOOL statement data set which must have the following
attributes: RECFM=F or RECFM=FB and LRECL=80.

If the TOOLIN Interface is used, the TOOLIN DD statement must be present. If
the Parameter List Interface is used, the TOOLIN DD statement is not required
and is ignored if present.

indd DD Statement
Defines the input data set for an operation. Refer to“SORTIN DD Statement” on
page 66 for details. ICETOOL imposes the additional restriction that the LRECL
of this data must be at least 4.

An indd DD statement must be present for each unique indd name specified in
each FROM operand.

outdd DD Statement
Defines an output data set for a COPY, SELECT, or SORT operation. Refer to
“SORTOUT and OUTFIL DD Statements” on page 71 for details.

An outdd DD statement must be present for each unique outdd name specified
in each TO operand.

savedd DD Statement
Defines an output data set for a SELECT operation. Refer to“SORTOUT and
OUTFIL DD Statements” on page 71 for details.

A savedd DD statement must be present for each unique savedd name
specified in each DISCARD operand.

listdd DD Statement
Defines the list data set for a DEFAULTS, DISPLAY, or OCCUR operation. For
each listdd data set, ICETOOL uses RECFM=FBA, LRECL=121 (for
DEFAULTS) or the LRECL specified in the WIDTH operand or calculated as
needed if WIDTH is not specified (DISPLAY and OCCUR), and the specified
block size. If the BLKSIZE you specify is not a multiple of the LRECL,
ICETOOL uses BLKSIZE=LRECL. If you do not specify BLKSIZE, ICETOOL
selects the block size as directed by the SDBMSG installation option (see
DFSORT Installation and Customization R14).

A listdd DD statement must be present for each unique listdd name specified in
each LIST operand.

xxxxCNTL DD Statement
Defines the DFSORT control statement data set for a SORT, COPY, or COUNT
operation. Refer to “SORTCNTL DD Statement” on page 73 for more details.

Job Control Language for ICETOOL

Chapter 6. Using ICETOOL 395

An xxxxCNTL DD statement must be present for each unique xxxx specified in
each USING operand.

JCL Restrictions
You should avoid using ddnames reserved for ICETOOL and DFSORT in ICETOOL
operands (FROM, TO, LIST,DISCARD). In general, you should also avoid supplying
DD statements with ddnames reserved for DFSORT when using ICETOOL because
doing so can cause unpredictable results. Specifically:

v SORTCNTL should not be used as a ddname in ICETOOL operators nor should
it be supplied as a DD statement. A xxxxCNTL DD statement should only be
supplied when you specify a USING(xxxx) operand. xxxx must be four characters
which are valid in a ddname of the form xxxxCNTL. xxxx must not be SYSx.

v SYSIN, SORTCNTL, SORTIN, SORTOUT, SORTINnn, and xxxxINnn (where xxxx
is specified in a USING operand) should not be used as ddnames in ICETOOL
operators nor supplied as DD statements.

v TOOLMSG, DFSMSG, SYMNAMES, SYMNOUT, TOOLIN, SYSUDUMP, and
SYSABEND should not be used as ddnames in ICETOOL operators.

v In general, xxxxWKdd ddnames should not be used as ddnames in ICETOOL
operators. However, if you want to override dynamic allocation of work data sets
for ICETOOL operators OCCUR, SELECT and UNIQUE, you can use
SORTWKdd DD statements for that purpose. If you want to override dynamic
allocation of work data sets for ICETOOL operator SORT, you can use
xxxxWKdd DD statements for that purpose (where xxxx is specified in the USING
operand).

v DFSPARM (or the ddname specified for ICEMAC option PARMDDN) should not
be used as a ddname in ICETOOL operators. It should only be used as a DD
statement to override DFSORT options for all operators, if appropriate. Refer to
“DFSPARM DD Statement” on page 74 for details.

v xxxxOFdd (where xxxx is specified in a USING operand) is required as the
ddname when an OUTFIL statement in the xxxxCNTL data set specifies
FILES=dd. To avoid this requirement, use the FNAMES=ddname operand rather
than the FILES=dd operand in OUTFIL statements, and include a DD statement
for the specified ddname. See “OUTFIL Control Statements” on page 204 for
details of the FNAMES operand.

ICETOOL Statements
Each operation must be described to ICETOOL using an operator statement.
Additionally, ICETOOL allows comment statements and blank statements. An
explanation of the general rules for coding ICETOOL statements is given below
followed by a detailed discussion of each operator.

General Coding Rules
The general format for all ICETOOL operator statements is:

OPERATOR operand ... operand

where each operand consists of KEYWORD(parameter, parameter...) or just
KEYWORD. Any number of operators can be specified and in any order.

The following rules apply for operator statements:

v The operator and operands must be in uppercase EBCDIC.

v The operator must be specified first.

v One blank is required between the operator and the first operand.

Job Control Language for ICETOOL

396 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|

v One blank is required between operands.

v Any number of blanks can be specified before or after the operator or any
operand, but blanks cannot be specified anywhere else except within quoted
character strings.

v Parentheses must be used where shown. Commas or semicolons must be used
where commas are shown.

v Operands can be in any order.

v Columns 1-72 are scanned; columns 73-80 are ignored.

v Continuation can be indicated by a hyphen (-) after the operator or after any
operand. The next operand must then be specified on the next line. For example:

Any characters specified after the hyphen are ignored. Each operand must be
completely specified on one line.

A statement with an asterisk (*) in column 1 is treated as a comment statement. It is
printed with the other ICETOOL statements, but otherwise not processed. A
statement with blanks in columns 1 through 72 is treated as a blank statement. It is
ignored since ICETOOL prints blank lines where appropriate.

COPY Operator

Copies an input data set to one or more output data sets.

DFSORT is called to copy the indd data set to the outdd data sets; the DFSORT
control statements in xxxxCNTL are used if USING(xxxx) is specified. You can use
DFSORT control statements and options in the xxxxCNTL data set to copy a subset
of the input records (INCLUDE or OMIT statement; SKIPREC and STOPAFT
options; OUTFIL INCLUDE, OMIT, STARTREC, ENDREC, and SPLIT operands;
user exit routines), reformat records for output (INREC and OUTREC statements,
OUTFIL OUTREC operand, user exit routines), and so on.

If an INCLUDE or OMIT statement or an OUTFIL INCLUDE or OMIT operand is
specified in the xxxxCNTL data set, the active locale’s collating rules affect
INCLUDE and OMIT processing, as explained in the “Cultural Environment
Considerations” discussion in “INCLUDE Control Statement” on page 111.

SORT FROM(INDD) -
USING(ABCD) -
TO(OUTPUT1,OUTPUT2,OUTPUT3)

�� COPY FROM(indd) E

E

,

TO(outdd)
USING(xxxx)

,

TO(outdd) USING(xxxx)

VSAMTYPE(x)
�

�
LOCALE(name)
LOCALE(CURRENT)
LOCALE(NONE)

SERIAL
��

ICETOOL Statements

Chapter 6. Using ICETOOL 397

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
Specifies the ddname of the input data set to be read by DFSORT for this
operation. An indd DD statement must be present and must define an input
data set that conforms to the rules for DFSORT’s SORTIN data set.

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

TO(outdd,...)
Specifies the ddnames of the output data sets to be written by DFSORT for this
operation. From 1 to 10 outdd names can be specified. An outdd DD statement
must be present for each outdd name specified. If a single outdd data set is
specified, DFSORT is called once to copy the indd data set to the outdd data
set, using SORTOUT processing; the outdd data set must conform to the rules
for DFSORT’s SORTOUT data set. If multiple outdd data sets are specified and
SERIAL is not specified, DFSORT is called once to copy the indd data set to
the outdd data sets, using OUTFIL processing; the outdd data sets must
conform to the rules for DFSORT’s OUTFIL data sets.

TO and USING can both be specified. If USING is not specified, TO must be
specified. If TO is not specified, USING must be specified.

A ddname specified in the FROM operand must not also be specified in the TO
operand.

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

USING(xxxx)
Specifies the first 4 characters of the ddname for the control statement data set
to be used by DFSORT for this operation. xxxx must be four characters which
are valid in a ddname of the form xxxxCNTL. xxxx must not be SYSx.

If USING is specified, an xxxxCNTL DD statement must be present and the
control statements in it must conform to the rules for DFSORT’s SORTCNTL
data set.

TO and USING can both be specified. If USING is not specified, TO must be
specified. If TO is not specified, USING must be specified and the xxxxCNTL
data set must contain either one or more OUTFIL statements or a MODS
statement for an E35 routine that disposes of all records. Other statements are
optional.

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

VSAMTYPE(x)
Specifies the record type for a VSAM input data set. x must be either F for
fixed-length record processing or V for variable-length record processing.

If VSAMTYPE(x) is specified, ICETOOL will pass a RECORD TYPE=x control
statement to DFSORT. (If you specify a RECORD TYPE=x statement in the
xxxxCNTL data set, it will override the one passed by ICETOOL.)

For complete information on record type processing for VSAM input, see
“RECORD Control Statement” on page 296.

LOCALE(name)
Specifies that locale processing is to be used and designates the name of the

COPY Operator

398 DFSORT R14 Application Programming Guide

locale to be made active during DFSORT processing. LOCALE(name) can be
used to override the LOCALE installation option. For complete details on
LOCALE(name), see the discussion of the LOCALE operand in “OPTION
Control Statement” on page 155.

LOCALE(CURRENT)
Specifies that locale processing is to be used, and the current locale active
when DFSORT is entered will remain the active locale during DFSORT
processing. LOCALE(CURRENT) can be used to override the LOCALE
installation option. For complete details on LOCALE(CURRENT), see the
discussion of the LOCALE operand in “OPTION Control Statement” on
page 155.

LOCALE(NONE)
Specifies that locale processing is not to be used. DFSORT will use the binary
encoding of the code page defined for your data for collating and comparing.
LOCALE(NONE) can be used to override the LOCALE installation option. For
complete details on LOCALE(NONE), see the discussion of the LOCALE
operand in “OPTION Control Statement” on page 155.

SERIAL
Specifies that OUTFIL processing is not to be used when multiple outdd data
sets are specified. DFSORT is called multiple times and uses SORTOUT
processing; the outdd data sets must conform to the rules for DFSORT’s
SORTOUT data set. SERIAL is not recommended because the use of serial
processing (that is, multiple calls to DFSORT) instead of OUTFIL processing
can degrade performance and imposes certain restrictions as detailed below.
SERIAL is ignored if a single outdd data set is specified.

DFSORT is called to copy the indd data set to the first outdd data set using the
DFSORT control statements in the xxxxCNTL data set if USING(xxxx) is
specified. If the first copy is successful, DFSORT is called as many times as
necessary to copy the first outdd data set to the second and subsequent outdd
data sets. Therefore, for maximum efficiency, use a DASD data set as the first
in a list of outdd data sets on both DASD and tape. If more than one outdd data
set is specified, DFSORT must be able to read the first outdd data set after it is
written in order to copy it to the other outdd data sets. Do not use a SYSOUT
or DUMMY data set as the first in a list of outdd data sets because:

v if the first data set is SYSOUT, DFSORT abends when it tries to copy the
SYSOUT data set to the second outdd data set.

v if the first data set is DUMMY, DFSORT copies the empty DUMMY data set
to the other outdd data sets, with the result that all outdd data sets are then
empty.

COPY Examples
Although the COPY operators in the examples below could all be contained in a
single ICETOOL job step, they are shown and discussed separately for clarity.

Example 1

* Method 1
COPY FROM(MASTER) TO(PRINT,TAPE,DASD)

* Method 2
COPY FROM(MASTER) TO(DASD,TAPE,PRINT) SERIAL

COPY Operator

Chapter 6. Using ICETOOL 399

This example shows two different methods for creating multiple output data sets.

Method 1 requires one call to DFSORT, one pass over the input data set, and
allows the output data sets to be specified in any order. The COPY operator copies
all records from the MASTER data set to the PRINT (SYSOUT), TAPE, and DASD
data sets, using OUTFIL processing.

Method 2 requires three calls to DFSORT, three passes over the input data set, and
imposes the restriction that the SYSOUT data set must not be the first TO data set.
The COPY operator copies all records from the MASTER data set to the DASD
data set and then copies the resulting DASD data set to the TAPE and PRINT
(SYSOUT) data sets. Since the first TO data set is processed three times (written,
read, read), placing the DASD data set first is more efficient than placing the TAPE
data set first. PRINT must not be the first in the TO list because a SYSOUT data
set cannot be read.

Example 2

* Method 1
COPY FROM(IN) TO(DEPT1) USING(DPT1)
COPY FROM(IN) TO(DEPT2) USING(DPT2)
COPY FROM(IN) TO(DEPT3) USING(DPT3)

* Method 2
COPY FROM(IN) USING(ALL3)

This example shows two different methods for creating subsets of an input data set.
Assume that:

v The DPT1CNTL data set contains:
INCLUDE COND=(5,3,CH,EQ,C’D01’)

v The DPT2CNTL data set contains:
INCLUDE COND=(5,3,CH,EQ,C’D02’)

v The DPT3CNTL data set contains:
INCLUDE COND=(5,3,CH,EQ,C’D03’)

v The ALL3CNTL data set contains:
OUTFIL FNAMES=DEPT1,INCLUDE=(5,3,CH,EQ,C’D01’)
OUTFIL FNAMES=DEPT2,INCLUDE=(5,3,CH,EQ,C’D02’)
OUTFIL FNAMES=DEPT3,INCLUDE=(5,3,CH,EQ,C’D03’)

Method 1 requires three calls to DFSORT and three passes over the input data set:

v The first COPY operator copies the records from the IN data set that contain D01
in positions 5-7 to the DEPT1 data set.

v The second COPY operator copies the records from the IN data set that contain
D02 in positions 5-7 to the DEPT2 data set.

v The third COPY operator copies the records from the IN data set that contain
D03 in positions 5-7 to the DEPT3 data set.

Method 2 accomplishes the same result as method 1, but because it uses OUTFIL
statements instead of TO operands, requires only one call to DFSORT and one
pass over the input data set.

COPY Operator

400 DFSORT R14 Application Programming Guide

Example 3

COPY FROM(VSAMIN) TO(VSAMOUT) VSAMTYPE(V)

The COPY operator copies all records from the VSAMIN data set to the VSAMOUT
data set. The VSAM records are treated as variable-length.

COUNT Operator

Prints a message containing the count of records in a data set. Can also be used to
set RC=12 or RC=0 based on meeting criteria for the number of records in a data
set.

DFSORT is called to copy the indd data set to ICETOOL’s E35 user exit. The
DFSORT control statements in xxxxCNTL are used if USING(xxxx) is specified. You
can use a DFSORT INCLUDE or OMIT statement in the xxxxCNTL data set to
count a subset of the input records.

If an INCLUDE or OMIT statement is specified in the xxxxCNTL data set, the active
locale’s collating rules affect INCLUDE and OMIT processing as explained in the
“Cultural Environment Considerations” discussion in “INCLUDE Control Statement”
on page 111.

If EMPTY, NOTEMPTY, HIGHER(x), LOWER(y), EQUAL(v) or NOTEQUAL(w) is not
specified, ICETOOL prints a message containing the record count as determined by
its E35 user exit.

If EMPTY, NOTEMPTY, HIGHER(x), LOWER(y), EQUAL(v) or NOTEQUAL(w) is
specified, ICETOOL checks the record count as determined by its E35 user exit
against the specified criteria. If the criteria is met (for example, HIGHER(20) is
specified and the record count is 21 or more), ICETOOL sets RC=12 for the
COUNT operator. If the criteria is not met (for example, HIGHER(20) is specified
and the record count is 20 or less), ICETOOL sets RC=0 for the COUNT operator.
ICETOOL uses DFSORT’s STOPAFT option to process the minimum number of
records required to determine whether or not the criteria is met.

Note: Be sure to check the messages in TOOLMSG when you initially set up any
COUNT operators with criteria to make sure that RC=12 is not issued
because of syntax errors.

�� COUNT FROM(indd)
USING(xxxx) VSAMTYPE(x) LOCALE(name)

LOCALE(CURRENT)
LOCALE(NONE)

�

�
EMPTY
NOTEMPTY
HIGHER(x)
LOWER(y)
EQUAL(v)
NOTEQUAL(w)

��

COPY Operator

Chapter 6. Using ICETOOL 401

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

You must not supply your own DFSORT MODS statement because it would
override the MODS statement passed by ICETOOL for this operator.

Note: The record count is also printed for the DISPLAY, OCCUR, RANGE,
SELECT, STATS, UNIQUE, and VERIFY operators.

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

USING(xxxx)
Specifies the first 4 characters of the ddname for the control statement data set
to be used by DFSORT for this operation. xxxx must be four characters which
are valid in a ddname of the form xxxxCNTL. xxxx must not be SYSx.

If USING is specified, an xxxxCNTL DD statement must be present and the
control statements in it:
1. Must conform to the rules for DFSORT’s SORTCNTL data set.
2. Should generally be used only for an INCLUDE or OMIT statement or

comments statements.

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

LOCALE(name)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

LOCALE(CURRENT)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

LOCALE(NONE)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

EMPTY
Sets RC=12 for this COUNT operator if the input data set or subset is empty, or
sets RC=0 for this COUNT operator if the input data set or subset is not empty.

EMPTY is equivalent to EQUAL(0).

NOTEMPTY
Sets RC=12 for this COUNT operator if the input data set or subset is not
empty, or sets RC=0 for this COUNT operator if the input data set or subset is
empty.

EMPTY is equivalent to NOTEQUAL(0).

HIGHER(x)
Sets RC=12 for this COUNT operator if the record count is higher than x, or
sets RC=0 for this COUNT operator if the record count is equal to or lower than
x.

x must be specified as n or +n where n can be 0 to 562949953421310.

COUNT Operator

402 DFSORT R14 Application Programming Guide

|
|
|

|

|
|
|
|

|

|
|
|
|

|

LOWER(y)
Sets RC=12 for this COUNT operator if the record count is lower than y, or sets
RC=0 for this COUNT operator if the record count is equal to or higher than y.

y must be specified as n or +n where n can be 0 to 562949953421310.

EQUAL(v)
Sets RC=12 for this COUNT operator if the record count is equal to v, or sets
RC=0 for this COUNT operator if the record count is not equal to v.

v must be specified as n or +n where n can be 0 to 562949953421310.

NOTEQUAL(w)
Sets RC=12 for this COUNT operator if the record count is not equal to w, or
sets RC=0 for this COUNT operator if the record count is equal to w.

w must be specified as n or +n where n can be 0 to 562949953421310.

COUNT Examples

Example 1
For this example, assume that the CTL1CNTL data set contains a DFSORT
INCLUDE statement.

COUNT FROM(IN1)
COUNT FROM(IN2) USING(CTL1)

The first COUNT operator prints a message containing the count of records in the
IN1 data set.

The second COUNT operator prints a message containing the count of records
included from the IN2 data set.

Example 2

COUNT FROM(INPUT1) EMPTY

Sets RC=12 if INPUT1 is empty (that is, INPUT1 has no records), or sets RC=0 if
INPUT1 is not empty (that is, INPUT1 has at least one record).

Example 3
For this example, assume that the CTL2CNTL data set contains a DFSORT
INCLUDE statement.

COUNT FROM(INPUT2) HIGHER(50000) USING(CTL2)

Sets RC=12 if more than 50000 records are included from INPUT2, or sets RC=0 if
50000 or less records are included from INPUT2.

DEFAULTS Operator

Prints the DFSORT installation defaults in a separate list data set.

�� DEFAULTS LIST(listdd) ��

COUNT Operator

Chapter 6. Using ICETOOL 403

|
|
|

|

|
|
|

|

|
|
|

|

|

|
|
|

|
|

|
|
|

|
|
|

|
|

DFSORT enables you to maintain eight separate sets of installation defaults using
eight installation modules as follows:

v Environment installation modules

– JCL (ICEAM1 module) - batch JCL directly invoked installation module

– INV (ICEAM2 module) - batch program invoked installation module

– TSO (ICEAM3 module) - TSO directly invoked installation module

– TSOINV (ICEAM4 module) - TSO program invoked installation module

v Time-of-day installation modules

– TD1 (ICETD1 module) - first time-of-day installation module

– TD2 (ICETD2 module) - second time-of-day installation module

– TD3 (ICETD3 module) - third time-of-day installation module

– TD4 (ICETD4 module) - fourth time-of-day installation module

Each installation default has two or more possible values; DFSORT is shipped with
a set of IBM-supplied defaults that can be modified using the ICEMAC macro. The
DEFAULTS operator provides an easy way to determine the installation defaults
selected for each of the installation modules when DFSORT was installed. See
DFSORT Installation and Customization R14 for a complete discussion of ICEMAC,
the eight installation modules and the installation defaults and their values.

DEFAULTS produces a report showing the installation defaults for ICEAM1-4
followed by the installation defaults for ICETD1-4. The format of the report produced
by DEFAULTS varies depending on the defaults selected, but might look like this
conceptually:

The value for each item (for each of the eight installation environments) is shown as
it is set in the ICEAM1-4 and ICETD1-4 installation modules loaded from the

DFSORT REL 14.0 INSTALLATION (ICEMAC) DEFAULTS - p -

* IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE SPECIFIED DEFAULT)

ITEM JCL (ICEAM1) INV (ICEAM2) TSO (ICEAM3) TSOINV (ICEAM4)
---------- -------------------- -------------------- -------------------- -------------------
item value value value value
.
.
.
item value value value value
item value value value value

* IBM_value
.
.
.

DFSORT REL 14.0 INSTALLATION (ICEMAC) DEFAULTS - p -

* IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE SPECIFIED DEFAULT)

ITEM TD1 (ICETD1) TD2 (ICETD2) TD3 (ICETD3) TD4 (ICETD4)
---------- -------------------- -------------------- -------------------- -------------------
item value value value value
.
.
.
item value value value value

* IBM_value * IBM_value
item value value value value
.
.
.

DEFAULTS Operator

404 DFSORT R14 Application Programming Guide

STEPLIB, JOBLIB, or link library. For any value that is different from the
IBM-supplied value, the IBM-supplied value is shown below it.

The value for each item (for each of the eight installation environments) is shown as
it is set in the ICEAM1-4 and ICETD1-4 installation modules loaded from the
STEPLIB, JOBLIB, or link library. For any value that is different from the
IBM-supplied value, the IBM-supplied value is shown below it.

The control character occupies the first byte of each record. The title and headings
are always printed; p is the page number. The item name column occupies 10
bytes, each of the item value columns occupies 20 bytes, and 5 blanks appear
between columns.

Operand Description
LIST(listdd)

Specifies the ddname of the list data set to be produced by ICETOOL for this
operation. A listdd DD statement must be present. ICETOOL uses
RECFM=FBA, LRECL=121 and the specified BLKSIZE for the list data set. If
the BLKSIZE you specify is not a multiple of 121, ICETOOL uses
BLKSIZE=121. If you do not specify the BLKSIZE, ICETOOL selects the block
size as directed by the SDBMSG installation option from ICEAM2 or ICEAM4
(see DFSORT Installation and Customization R14).

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

DEFAULTS Example

DEFAULTS LIST(OPTIONS)

Prints, in the OPTIONS data set, the DFSORT installation defaults. The OPTIONS
output starts on a new page and might look as follows (the first few items are
shown with illustrative values for the ICEAM1-4 report and for the ICETD1-4 report):

DEFAULTS Operator

Chapter 6. Using ICETOOL 405

The title and appropriate heading lines appear at the top of each page. The
specified and IBM-supplied ALTSEQ tables are printed separately after the other
items.

DFSORT REL 14.0 INSTALLATION (ICEMAC) DEFAULTS - 1 -

* IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE SPECIFIED DEFAULT)

ITEM JCL (ICEAM1) INV (ICEAM2) TSO (ICEAM3) TSOINV (ICEAM4)
---------- -------------------- -------------------- -------------------- -----------------
RELEASE 14.0 14.0 14.0 14.0
MODULE ICEAM1 ICEAM2 ICEAM3 ICEAM4
APAR LEVEL PQ56402 PQ56402 PQ56402 PQ56402
COMPILED 03/06/02 03/06/02 03/06/02 03/06/02

ENABLE NONE TD1 NONE NONE

ABCODE MSG 99 MSG 99
* MSG * MSG

ALTSEQ SEE BELOW SEE BELOW SEE BELOW SEE BELOW
ARESALL 0 0 0 0
ARESINV NOT APPLICABLE 0 NOT APPLICABLE 0
CFW YES YES YES YES
CHALT YES YES NO NO

* NO * NO
CHECK YES YES YES YES
CINV YES YES YES YES
COBEXIT COB2 COB2 COB2 COB2

* COB1 * COB1 * COB1 * COB1
DIAGSIM NO NO NO NO
DSA 32 32 32 32
.
.
.

DFSORT REL 14.0 INSTALLATION (ICEMAC) DEFAULTS - 4 -

* IBM-SUPPLIED DEFAULT (ONLY SHOWN IF DIFFERENT FROM THE SPECIFIED DEFAULT)

ITEM TD1 (ICETD1) TD2 (ICETD2) TD3 (ICETD3) TD4 (ICETD4)
---------- -------------------- -------------------- -------------------- -----------------
RELEASE 14.0 14.0 14.0 14.0
MODULE ICETD1 ICETD2 ICETD3 ICETD3
APAR LEVEL PQ56402 PQ56402 PQ56402 PQ56402
COMPILED 03/06/02 03/06/02 03/06/02 03/06/02
SUN 0600-2000 NONE NONE NONE

* NONE
MON NONE NONE NONE NONE
TUE NONE NONE NONE NONE
WED NONE NONE NONE NONE
THU NONE NONE NONE NONE
FRI NONE NONE NONE NONE
SAT 0600-2000 NONE NONE NONE

* NONE

ABCODE 99 MSG MSG MSG
* MSG

ALTSEQ SEE BELOW SEE BELOW SEE BELOW SEE BELOW
ARESALL 0 0 0 0
ARESINV 0 0 0 0
CFW YES YES YES YES
CHALT YES NO NO NO

* NO
CHECK YES YES YES YES
CINV YES YES YES YES
COBEXIT COB2 COB1 COB1 COB1

* COB1
DIAGSIM NO NO NO NO
DSA 48 32 32 32

* 32
.
.
.

DEFAULTS Operator

406 DFSORT R14 Application Programming Guide

DISPLAY Operator

Prints the values or characters of specified numeric fields (including SMF date/time)
or character fields in a separate list data set. Simple, tailored, and sectioned reports
can be produced. From 1 to 20 fields can be specified, but the resulting list data set
line length must not exceed the limit specified by the WIDTH operand or 2048 bytes
if WIDTH is not specified. The record number can be printed as a special field.

DFSORT is called to copy the indd data set to ICETOOL’s E35 user exit. ICETOOL
uses its E35 user exit to print appropriate titles, headings and data in the list data
set.

You must not supply your own DFSORT MODS, INREC, or OUTREC statement
since they would override the DFSORT statements passed by ICETOOL for this
operator.

Specifying formatting items or the PLUS or BLANK operand, which can
“compress” the columns of output data, can enable you to include more

�� DISPLAY FROM(indd) E ON(p,m,f)
ON(p,m,f,formatting)
ON(p,m,HEX)
ON(VLEN)
ON(VLEN,formatting)
ON(NUM)
ON(NUM,formatting)

LIST(listdd) �

�
TITLE(’string’) PAGE DATE

DATE(abcd)
DATENS(abc)

TIME
TIME(abc)
TIMENS(ab)

BLANK
PLUS

�

� E

HEADER(’string’)
HEADER(NONE)
NOHEADER

LINES(n) INDENT(n) BETWEEN(n)
�

�
TOTAL(’string’) MAXIMUM(’string’) MINIMUM(’string’)

�

�
AVERAGE(’string’) LIMIT(n)

�

�
VSAMTYPE(x) WIDTH(n) BREAK(p,m,f)

BREAK(p,m,f,formatting)

�

�
BTITLE(’string’) BTOTAL(’string’) BMAXIMUM(’string’)

�

�
BMINIMUM(’string’) BAVERAGE(’string’) STATLEFT UZERO

��

DISPLAY Operator

Chapter 6. Using ICETOOL 407

|
|
|
|
|

fields in your report, up to a maximum of 20, if your line length is limited by
the character width your printer or display supports.

Simple Report
You can produce a simple report by specifying just the required operands. For
example, if you specify FROM and LIST operands, and ON operands for 10-byte
character and 7-byte zoned decimal fields, the output in the list data set can be
represented as follows:

(p,m,f) (p,m,f)
characters sddddddddddddddd
. .
. .
. .

A control character occupies the first byte of each list data set record. Left-justified
standard headings are printed at the top of each page to indicate the contents of
each column, followed by a line for each record showing the characters and
numbers in the fields of that record.

The fields are printed in columns in the same order in which they are specified in
the DISPLAY statement. All fields are left-justified. For numeric fields, leading zeros
are printed, a - is used for the minus sign, and a + is used for the plus sign.

By default, the first column of data starts immediately after the control character,
and three blanks appear between columns. The INDENT operand can be used to
change the number of blanks before the first column of data. The BETWEEN
operand can be used to change the number of blanks between columns.

The standard column widths are as follows:

v Character data: the length of the character field or 20 bytes if the field length is
less than 21 bytes

v Numeric data: 16 bytes

v Record number: 15 bytes

HEADER operands can be used to change or suppress the headings. Formatting
items or the PLUS or BLANK operand can be used to change the appearance of
numeric fields in the report. PLUS, BLANK, and HEADER operands can be used to
change the width of the columns for numeric and character fields and the
justification of headings and fields.

The NOHEADER operand can be used to create list data sets containing only data
records. Data sets created in this way can be processed further by other operators
(for example, STATS or UNIQUE) using CH format for character values or CSF/FS
format for numeric values.

TOTAL, MAXIMUM, MINIMUM, and AVERAGE can be used to print statistics for
numeric fields after the columns of data. Formatting items can be used to suppress
the statistics for selected numeric fields.

Tailored Report
You can tailor the output in the list data set using various operands that control title,
date, time, page number, headings, lines per page, field formats, and total,
maximum, minimum, and average values for the columns of numeric data. The
optional operands can be used in many different combinations to produce a wide

DISPLAY Operator

408 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|

variety of report formats. For example, if you specify FROM, LIST, BLANK, TITLE,
PAGE, DATE, TIME, HEADER and AVERAGE operands, and ON operands for
10-byte character and 7-byte zoned decimal fields, the output in the list data set
can be represented as follows:

title - p - mm/dd/yy hh:mm:ss

header header
---------- --------
characters sd
. .
. .
. .

average sd

A control character occupies the first byte of each list data set record. The title line
is printed at the top of each page of the list data set. It contains the elements you
specify (title string, page number, date and time) in the order in which you specify
them. Eight blanks appear between title elements. A blank line is printed after the
title line.

Your specified headings (underlined) are printed after the title line on each page to
indicate the contents of each column, followed by a line for each record showing
the characters and numbers in the fields of that record. Headings for character
fields are left-justified and headings for numeric fields are right-justified.

Your specified statistical lines (total, maximum, minimum, and average, and their
associated strings) are printed for selected numeric fields after the columns of data.
The associated strings can be printed in the first column or to the left of it.

The fields are printed in columns in the same order in which they are specified in
the DISPLAY statement. Character fields are left-justified and numeric fields are
right-justified. For numeric fields, leading zeros are suppressed, a - is used for the
minus sign, and a blank is used for the plus sign (you can specify PLUS rather than
BLANK if you want a + to be used for the plus sign).

Formatting items can be used to change the appearance of individual numeric fields
in the report with respect to separators, number of digits, decimal point, decimal
places, signs, leading zeros, division by 10, 100, 1000, 10000, 100000, 1000000,
1000000000, 1024, 1048576 (1024*1024), or 1073741824 (1024*1024*1024),
leading strings, floating strings, and trailing strings. Formatting items can also be
used to insert leading or trailing strings for character fields.

The column widths are dynamically adjusted according to the length of the headings
and the maximum number of bytes needed for the character or numeric data.

Sectioned Report
You can produce a sectioned report (simple or tailored) by including a BREAK
operand to indicate the break field used to divide the report into sections. Each set
of sequential input records (which you have previously sorted on the break field and
other fields, as appropriate), with the same value for the specified break field,
results in a corresponding set of data lines that is treated as a section in the report.

The break field is printed at the beginning of each section. Formatting items can be
used to change the appearance of numeric break fields, and to insert a string
before or after character or numeric break fields.

DISPLAY Operator

Chapter 6. Using ICETOOL 409

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|

Optional break operands can be used to modify the break title for each section (the
break value is always printed as part of the break title) and to print statistics for
selected numeric fields in each section. For example, if you add BTITLE, BREAK,
BMAXIMUM, and BMINIMUM to the operands for the tailored report discussed
above, each section of the output in the list data set starts on a new page and can
be represented as follows:

title - p - mm/dd/yy hh:mm:ss

btitle bvalue

header header
---------- --------
characters sd
. .
. .
. .

bmaximum sd

bminimum sd

The final page showing the overall statistics starts on a new page and can be
represented as follows:

title - p - mm/dd/yy hh:mm:ss

header header
---------- --------

average sd

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
Specifies the ddname of the input data set to be read by DFSORT for this
operation. An indd DD statement must be present and must define an input
data set that conforms to the rules for DFSORT’s SORTIN data set. In addition,
the LRECL of the data set must be at least 4.

ON(p,m,f)
Specifies the position, length, and format of a numeric or character field to be
used for this operation. ’(p,m,f)’ is used for the standard column heading (see
HEADER(’string’), HEADER(NONE) and NOHEADER for alternative heading
options).

p specifies the first byte of the field relative to the beginning of the input record. p is
1 for the first data byte of a fixed-length record and 5 for the first data byte of a
variable-length record as illustrated below (RRRR represents the 4-byte record
descriptor word):

m specifies the length of the field in bytes. A field must not extend beyond position
32752 or beyond the end of a record. The maximum length for a field depends on
its format.

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

DISPLAY Operator

410 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

f specifies the format of the field as shown below.

Format Code Length Description

BI 1 to 4 bytes Unsigned binary

FI 1 to 4 bytes Signed fixed-point

PD 1 to 8 bytes Signed packed decimal

ZD 1 to 15 bytes Signed zoned decimal

CH 1 to 1500 bytes Character

CSF or FS 1 to 16 bytes (15 digit limit) Signed numeric with optional
leading floating sign

DT1 4 bytes SMF date interpreted as
Z'yyyymmdd'

DT2 4 bytes SMF date interpreted as
Z'yyyymm'

DT3 4 bytes SMF date interpreted as
Z'yyyyddd'

TM1 4 bytes SMF time interpreted as
Z'hhmmss'

TM2 4 bytes SMF time interpreted as
Z'hhmm'

TM3 4 bytes SMF time interpreted as Z'hh'

TM4 4 bytes SMF time interpreted as
Z'hhmmssxx'

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

For a CSF or FS format field:

v A maximum of 15 digits is allowed. If a CSF/FS value with 16 digits is found,
ICETOOL issues an error message and terminates the operation.

For a ZD or PD format field:

v If a decimal value contains an invalid digit (A-F), ICETOOL identifies the bad
value in a message and prints asterisks for that value, and for the total,
maximum, minimum and average (if specified) for that field, in the list data set. If
the number of bad values reaches the LIMIT for invalid decimal values, ICETOOL
terminates the operation. If the LIMIT operand is not specified, a default of 200 is
used for the invalid decimal value limit.

v A value is treated as positive if its sign is F, E, C, A, 8, 6, 4, 2, or 0.

v A value is treated as negative if its sign is D, B, 9, 7, 5, 3, or 1.

For a DT1, DT2 or DT3 format field:

v An invalid SMF date can result in a data exception (0C7 ABEND) or an incorrect
ZD date.

v SMF date values are always treated as positive.

For a TM1, TM2, TM3 or TM4 format field:

v An invalid SMF time can result in an incorrect ZD time.

v SMF time values are always treated as positive.

DISPLAY Operator

Chapter 6. Using ICETOOL 411

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||
|

|

|
|

|

|

|

|

ON(p,m,f,formatting)
Specifies the position, length, and format of a numeric or character field to be
used for this operation and how the data for this field is to be formatted for
printing. The BLANK operand is automatically in effect.

See ON(p,m,f) for further details.

formatting

specifies formatting items that indicate how the data for this field is to be
formatted for printing. Formatting items can be specified in any order, but each
item can only be specified once. Any formatting item can be specified for a
numeric field, but only L'string' and T'string' can be specified for a character
field.

The column width is dynamically adjusted to accommodate the maximum bytes
to be inserted as a result of all formatting items specified.

mask
specifies an edit mask to be applied to the numeric data for this field.
Thirty-three pre-defined edit masks are available, encompassing many of the
numeric notations throughout the world with respect to separators, decimal
point, decimal places, signs, and so forth. ICETOOL edits the data according to
the selected mask. If other formatting items are specified but mask is not, the
default mask of A0 is applied to the data.

E'pattern' cannot be specified with a mask.

The attributes of each group of masks is shown below.

Table 65. Attributes of Edit Masks

Masks Separators Decimal Places Positive Sign Negative Sign

A0 No 0 blank -

A1-A5 Yes 0 blank -

B1-B6 Yes 1 blank -

C1-C6 Yes 2 blank -

D1-D6 Yes 3 blank -

E1-E4 Yes 0 blank ()

F1-F5 Yes 2 blank ()

The table below describes the available masks and shows how the values
12345678 and -1234567 would be printed for each mask. In the pattern:

v d is used to represent a decimal digit (0-9)

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ
NOST
Ndd
/x

��

DISPLAY Operator

412 DFSORT R14 Application Programming Guide

|
|
|

|

|
|
|
|
|

|
|

|

v w is used to represent a leading sign that will be blank for a positive value or
- for a negative value

v x is used to represent a trailing sign that will be blank for a positive value or -
for a negative value

v y is used to represent a leading sign that will be blank for a positive value or
(for a negative value

v z is used to represent a trailing sign that will be blank for a positive value or)
for a negative value

Table 66. Edit Mask Patterns

Mask Pattern 12345678 -1234567

A0 wddddddddddddddd 12345678 -1234567

A1 wddd,ddd,ddd,ddd,ddd 12,345,678 -1,234,567

A2 wddd.ddd.ddd.ddd.ddd 12.345.678 -1.234.567

A3 wddd ddd ddd ddd ddd 12 345 678 -1 234 567

A4 wddd’ddd’ddd’ddd’ddd 12’345’678 -1’234’567

A5 ddd ddd ddd ddd dddx 12 345 678 1 234 567-

B1 wdd,ddd,ddd,ddd,ddd.d 1,234,567.8 -123,456.7

B2 wdd.ddd.ddd.ddd.ddd,d 1.234.567,8 -123.456,7

B3 wdd ddd ddd ddd ddd,d 1 234 567,8 -123 456,7

B4 wdd’ddd’ddd’ddd’ddd.d 1’234’567.8 -123’456.7

B5 wdd’ddd’ddd’ddd’ddd,d 1’234’567,8 -123’456,7

B6 dd ddd ddd ddd ddd,dx 1 234 567,8 123 456,7-

C1 wd,ddd,ddd,ddd,ddd.dd 123,456.78 -12,345.67

C2 wd.ddd.ddd.ddd.ddd,dd 123.456,78 -12.345,67

C3 wd ddd ddd ddd ddd,dd 123 456,78 -12 345,67

C4 wd’ddd’ddd’ddd’ddd.dd 123’456.78 -12’345.67

C5 wd’ddd’ddd’ddd’ddd,dd 123’456,78 -12’345,67

C6 d ddd ddd ddd ddd,ddx 123 456,78 12 345,67-

D1 wddd,ddd,ddd,ddd.ddd 12,345.678 -1,234.567

D2 wddd.ddd.ddd.ddd,ddd 12.345,678 -1.234,567

D3 wddd ddd ddd ddd,ddd 12 345,678 -1 234,567

D4 wddd’ddd’ddd’ddd.ddd 12’345.678 -1’234.567

D5 wddd’ddd’ddd’ddd,ddd 12’345,678 -1’234,567

D6 ddd ddd ddd ddd,dddx 12 345,678 1 234,567-

E1 yddd,ddd,ddd,ddd,dddz 12,345,678 (1,234,567)

E2 yddd.ddd.ddd.ddd.dddz 12.345.678 (1.234.567)

E3 yddd ddd ddd ddd dddz 12 345 678 (1 234 567)

E4 yddd’ddd’ddd’ddd’dddz 12’345’678 (1’234’567)

F1 yd,ddd,ddd,ddd,ddd.ddz 123,456.78 (12,345.67)

F2 yd.ddd.ddd.ddd.ddd,ddz 123.456,78 (12.345,67)

F3 yd ddd ddd ddd ddd,ddz 123 456,78 (12 345,67)

F4 yd’ddd’ddd’ddd’ddd.ddz 123’456.78 (12’345.67)

F5 yd’ddd’ddd’ddd’ddd,ddz 123’456,78 (12’345,67)

DISPLAY Operator

Chapter 6. Using ICETOOL 413

If LZ is specified, leading zeros are printed. for example, +1 is shown as
0,000.01 with ON(21,6,FS,C1,LZ).

If LZ is not specified, leading zeros are suppressed except when inappropriate.
For example, +1 is shown as 1 with ON(21,6,FS,A1) and as 0.01 with
ON(21,6,FS,C1).

The leading sign (blank for a positive value or − for a negative value) appears
to the left of the first non-suppressed digit of the formatted value. For example,
−1 is shown as −1 with ON(21,6,FS,A2), as −000.001 with ON(21,6,FS,A2,LZ)
and as −0.01 with ON(21,6,FS,C2).

E'pattern'
specifies an edit pattern to be applied to the numeric data for this field.
E'pattern' is useful for formatting unsigned numeric data such as telephone
numbers, dates, time-of-day, social security numbers, and so on. For example,
0123456789 is shown as (012)-345-6789 with ON(21,10,ZD,E'(999)-999-9999').

The pattern (1 to 24 characters) must be enclosed in single apostrophes. Each
9 in the pattern (up to 15) is replaced by a corresponding digit from the numeric
value. Characters other than 9 in the pattern appear as specified. To include a
single apostrophe (') in the pattern, specify two single apostrophes ('').

F'string' or a mask cannot be specified with E'pattern'.

When E'pattern' is specified for a field:

v Values are shown unsigned. For example, +120622 and −120622 are both
shown as 12:06:22 with ON(12,7,FS,E'99:99:99').

v If the number of significant digits in a value is less than the number of 9’s in
the pattern, 0’s are filled in on the left. For example, 1234 is shown as
0012-34 with ON(12,6,FS,E'9999-99').

v If the number of significant digits in a value is greater than the number of 9’s
in the pattern, digits are truncated from the left. For example, 1234567 is
shown as *45:67* with ON(9,4,PD,E'99:99*').

L’string’
specifies a leading string to appear at the beginning of the character or numeric
data column for this field. For example, ’DFSORT ’ is shown as ’**DFSORT ’
with ON(1,8,CH,L’**’).

The string (1 to 10 characters) must be enclosed in single apostrophes. To
include a single apostrophe (’) in the string, specify two single apostrophes (’’).

F’string’
specifies a floating string to appear to the left of the first non-blank character of
the formatted numeric data for this field. For example, 0001234 is shown as
$12.34 with ON(9,7,ZD,C1,F’$’).

The string (1 to 10 characters) must be enclosed in single apostrophes. To
include a single apostrophe (’) in the string, specify two single apostrophes (’’).

E'pattern' cannot be specified with F'string'.

T’string’
specifies a trailing string to appear at the end of the character or numeric data
column for this field. For example, ’DFSORT ’ is shown as ’**DFSORT ***’ with
ON(1,8,CH,L’**’,T’***’).

DISPLAY Operator

414 DFSORT R14 Application Programming Guide

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|

|
|
|

|
|
|

|

The string (1 to 10 characters) must be enclosed in single apostrophes. To
include a single apostrophe (’) in the string, specify two single apostrophes (’’).

LZ specifies that leading zeros are to be printed when the specified edit mask is
applied to the numeric data for this field, overriding the default of suppressing
leading zeros. For example, +123 is shown as 123 with ON(21,6,FS,A0), but as
000123 with ON(21,6,FS,A0,LZ).

LZ is useful for formatting numeric data, such as account numbers, for which
leading zeros must be printed.

Leading zeros are always printed for E'pattern' regardless of whether or not LZ
is specified.

NOST
specifies that requested statistics (TOTAL, MAXIMUM, MINIMUM, AVERAGE,
BTOTAL, BMAXIMUM, BMINIMUM, BAVERAGE) are not to be printed for this
numeric field.

Ndd
specifies the number of digits to be used for the numeric field when determining
the column width. dd specifies the number of digits and must be a two-digit
number between 01 and 15.

When TOTAL or BTOTAL is specified, the default number of digits is 15. If you
know that your TOTAL or BTOTAL value requires less than 15 digits, you can
use Ndd to indicate that, thus reducing the column width if it is determined by
the number of digits.

If dd is greater than or equal to the default number of digits, dd is used. If dd is
less than the default number of digits, the default is used. For example:

If TOTAL or BTOTAL is used:

v If ON(1,5,ZD) is specified, 15 digits (default for TOTAL) is used for the
number of digits when determining the column width.

v If ON(1,5,ZD,N10) is specified, 10 digits (from N10) is used.

v If ON(1,5,ZD,N03) is specified, 5 digits (default for 5,ZD) is used.

If TOTAL and BTOTAL are not used:

v If ON(1,5,ZD) is specified, 5 digits (default for 5,ZD) is used for the number
of digits when determining the column width.

v If ON(1,5,ZD,N10) is specified, 10 digits (from N10) is used.

v If ON(1,5,ZD,N03) is specified, 5 digits (default for 5,ZD) is used.

If you use Ndd and a total overflows the number of digits used, ICETOOL prints
asterisks for the total and terminates the operation.

If E’pattern’ is specified, Ndd is ignored since the number of digits is determined
from the pattern.

/x specifies division of the numeric data for this field before formatting. x indicates
the division factor to be used as described below. The resulting values are
rounded down to the nearest integer. Statistics (TOTAL, MAXIMUM, MINIMUM,
AVERAGE, BTOTAL, BMAXIMUM, BMINIMUM, BAVERAGE) and column
widths reflect the divided numbers.

/D specifies division by 10 before formatting. For example, −1234 is shown
as −123 with ON(11,2,FI,/D).

DISPLAY Operator

Chapter 6. Using ICETOOL 415

||
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|
|

|

|

|

|
|

|

|

|
|

|
|

||
|
|
|
|

||
|

/C specifies division by 100 before formatting. For example, 12345 is
shown as 12.3 with ON(11,2,BI,/C,B1).

/K specifies division by 1000 before formatting. For example,
−1234567890 is shown as (1 234 567) with ON(1,11,FS,/K,E3).

/DK specifies division by 10000 (10*1000) before formatting. For example,
6213849653 is shown as 0-6213-84 with ON(31,10,FS,/DK,E’9-9999-
99’).

/CK specifies division by 100000 (100*1000) before formatting. For example,
98765432101 is shown as 9,876.54 with ON(21,11,ZD,C1,/CK).

/M specifies division by 1000000 (1000*1000) before formatting. For
example, −123456789 is shown as −1.23 with ON(31,10,FS,/M,C4).

/G specifies division by 1000000000 (1000*1000*1000) before formatting.
For example, 1234567898765 is shown as 1’234 with
ON(15,13,ZD,A4,/G).

/KB specifies division by 1024 before formatting. For example, 1234567890
is shown as 1 205 632 with ON(45,10,ZD,/KB,A3).

/MB specifies division by 1048576 (1024*1024) before formatting. For
example, 123456789 is shown as 117 with ON(60,9,FS,/MB).

/GB specifies division by 1073741824 (1024*1024*1024) before formatting.
For example, 1234567898765 is shown as 1,149 with
ON(15,13,ZD,/GB,A1).

ON(p,m,HEX)
Specifies the position and length of a character field to be used for this
operation and printed in hexadecimal format (00-FF for each byte). ’ (p,m,HEX)’
is used for the standard column heading. See HEADER(’string’),
HEADER(NONE), and NOHEADER for alternative heading options.

See ON(p,m,f) for a discussion of p.

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. A field can be 1 to 1000 bytes.

ON(VLEN)
Equivalent to specifying ON(1,2,BI); a two-byte binary field starting at position 1.
For variable-length records, ON(VLEN) represents the record-length for each
record. ’ RECORD LENGTH’ is used for the standard column heading. See
HEADER(’string’), HEADER(NONE), and NOHEADER for alternative heading
options.

ON(VLEN,formatting)
Equivalent to specifying ON(1,2,BI,formatting); a two-byte binary field starting at
position 1, and how the data for this field is to be formatted for printing. The
BLANK operand is automatically in effect.

See ON(VLEN) for further details.

formatting

DISPLAY Operator

416 DFSORT R14 Application Programming Guide

||
|

||
|

||
|
|

||
|

||
|

||
|
|

||
|

||
|

||
|
|

|
|

|
|
|
|

|

|

specifies formatting items that indicate how the data for this field is to be
formatted for printing. Formatting items can be specified in any order, but each
item can only be specified once.

The column width is dynamically adjusted to accommodate the maximum bytes
to be inserted as a result of all formatting items specified.

See ON(p,m,f,formatting) for a discussion of formatting.

ON(NUM)
Specifies that the record number is to be printed. The record number starts at 1
and is incremented by 1 for each record printed in the list data set. ’ RECORD
NUMBER’ is used for the standard column heading. See HEADER(’string’),
HEADER(NONE), and NOHEADER for alternative heading options.

ON(NUM,formatting)
Specifies that the record number is to be printed, and how the record number is
to be formatted for printing. The BLANK operand is automatically in effect.

See ON(NUM) for further details.

formatting

specifies formatting items that indicate how the record number is to be
formatted for printing. Formatting items can be specified in any order, but each
item can only be specified once.

The column width is dynamically adjusted to accommodate the maximum bytes
to be inserted as a result of all formatting items specified.

mask See ON(p,m,f,formatting) for a discussion of mask.

E’pattern’
See ON(p,m,f,formatting) for a discussion of E’pattern’.

L’string’
See ON(p,m,f,formatting) for a discussion of L’string’.

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ
NOST
Ndd
/x

��

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ
Ndd

��

DISPLAY Operator

Chapter 6. Using ICETOOL 417

|
|
|

|
|

|

|
|
|

|

|

|
|
|

|
|

||

|
|

|
|

F’string’
See ON(p,m,f,formatting) for a discussion of F’string’.

T’string’
See ON(p,m,f,formatting) for a discussion of T’string’.

LZ See ON(p,m,f,formatting) for a discussion of LZ.

Ndd Specifies the number of digits to be used for the record number when
determining the column width. dd specifies the number of digits and
must be a two-digit number between 01 and 15.

The default number of digits for the record number is 15. If you know
that your record numbers require less than 15 digits, you can use Ndd
to indicate that, thus reducing the column width if it is determined by the
number of digits. For example, if ON(NUM,N09) is specified, 9 digits
(from N09) is used instead of 15 (default for record number).

If you use Ndd and the number of records overflows the number of
digits used, ICETOOL terminates the operation.

If E’pattern’ is specified, Ndd is ignored since the number of digits is
determined from the pattern.

LIST(listdd)
Specifies the ddname of the list data set to be produced by ICETOOL
for this operation. A listdd DD statement must be present. ICETOOL
sets the attributes of the list data set as follows:

v RECFM is set to FBA.

v LRECL is set to one of the following:

– If WIDTH(n) is specified, LRECL is set to n. Use WIDTH(n) if your
LRECL must be set to a particular value (for example, if you use
DISP=MOD to place several reports in the same data set).

– If WIDTH(n) is not specified, LRECL is set to 121 or to the
calculated required line length if it is greater than 121 characters.
If your LRECL does not need to be set to a particular value, you
can let ICETOOL determine and set the appropriate LRECL value
by not specifying WIDTH(n).

v BLKSIZE is set to one of the following:

– The BLKSIZE from the DD statement, DSCB, or label, if it is a
multiple of the LRECL used.

– The LRECL if the BLKSIZE from the DD statement, DSCB, or
label is not a multiple of the LRECL used.

– The block size as directed by the SDBMSG installation option
(see DFSORT Installation and Customization R14 if the BLKSIZE
is not available from the DD statement, DSCB, or label.

Refer to “JCL Restrictions” on page 396 for more information regarding
the selection of ddnames.

TITLE(’string’)
Specifies printing of a title string in the title line. The title line is printed
at the top of each page of the list data set. It contains the elements you
specify (title string, page number, date and time) in the order in which
you specify them. Eight blanks appear between title elements. A blank
line is printed after the title line.

DISPLAY Operator

418 DFSORT R14 Application Programming Guide

|
|

|
|

||

||
|
|

|
|
|
|
|

|
|

|
|

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). Blanks at the start of the string move the text to the
right. Blanks at the end of the string increase the spacing between the
string and the next title element.

PAGE Specifies printing of the page number in the title line. The page number
is printed in the form - p - where p is in decimal with no leading zeros.
The page number is 1 for the first page and is incremented by 1 for
each subsequent page.

The title line is printed at the top of each page of the list data set. It
contains the elements you specify (title string, page number, date and
time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

DATE Specifies printing of the date in the title line. The date is printed in the
form mm/dd/yy where mm is the month, dd is the day, and yy is the
year. DATE is equivalent to specifying DATE(MDY/).

The title line is printed at the top of each page of the list data set. It
contains the elements you specify (title string, page number, date and
time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

DATE(abcd)
Specifies printing of the date in the title line. The date is printed in the
form ’adbdc’ according to the specified values for abc and d. For
example, on March 29, 2002, DATE(4MD-) would produce ’2002-03-29’
and DATE(MDY.) would produce ’03.29.02’.

abc can be any combination of M, D, and Y or 4 (each specified once)
where M represents the month (01-12), D represents the day (01-31), Y
represents the last two digits of the year (for example, 02), and 4
represents the four digits of the year (for example, 2002).

d can be any character and is used to separate the month, day, and
year.

The title line is printed at the top of each page of the list data set. It
contains the elements you specify (title string, page number, date and
time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

DATENS(abc)
Specifies printing of the date in the title line. The date is printed in the
form 'abc' according to the specified values for abc. For example, on
March 29, 2002, DATENS(4MD) would produce '20020329' and
DATENS(MDY) would produce '032902'.

abc can be any combination of M, D, and Y or 4 (each specified once)
where M represents the month (01-12), D represents the day (01-31), Y
represents the last two digits of the year (for example, 02), and 4
represents the four digits of the year (for example, 2002).

The title line is printed at the top of each page of the list data set. It
contains the elements you specify (title string, page number, date and
time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

TIME Specifies printing of the time in the title line. The time is printed in the

DISPLAY Operator

Chapter 6. Using ICETOOL 419

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

form hh:mm:ss where hh is hours, mm is minutes and ss is seconds.
TIME is equivalent to specifying TIME(24:).

The title line is printed at the top of each page of the list data set. It
contains the elements you specify (title string, page number, date and
time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

TIME(abc)
Specifies printing of the time in the title line. The time is printed in the
form ’hhcmmcss xx’ according to the specified value for ab and c. For
example, at 08:25:13 pm, TIME=(24:) would produce ’20:25:13’ and
TIME=(12.) would produce ’08.25.13 pm’.

ab can be:

v 12 to indicate 12-hour time. hh (hours) is 01-12, mm (minutes) is
00-59, ss (seconds) is 00-59 and xx is am or pm.

v 24 to indicate 24-hour time. hh (hours) is 00-23, mm (minutes) is
00-59, ss (seconds) is 00-59 and xx is not included.

c can be any character and is used to separate the hours, minutes, and
seconds. The title line is printed at the top of each page of the list data
set. It contains the elements you specify (title string, page number, date
and time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

TIMENS(ab)
Specifies printing of the time in the title line. The time is printed in the
form 'hhmmss xx' according to the specified value for ab. For example,
at 08:25:13 pm, TIMENS=(24) would produce '202513' and
TIMENS=(12) would produce '082513 pm'.

ab can be:

v 12 to indicate 12-hour time. hh (hours) is 01-12, mm (minutes) is
00-59, ss (seconds) is 00-59 and xx is am or pm.

v 24 to indicate 24-hour time. hh (hours) is 00-23, mm (minutes) is
00-59, ss (seconds) is 00-59 and xx is not included.

The title line is printed at the top of each page of the list data set. It
contains the elements you specify (title string, page number, date and
time) in the order in which you specify them. Eight blanks appear
between title elements. A blank line is printed after the title line.

BLANK
Specifies an alternate format for printing character and numeric data as
follows:

v Numeric values for which formatting is not specified are printed with
blank for plus sign, - for minus sign and no leading zeros (overriding
the default of + for plus sign and leading zeros).

Numeric values are thus displayed as:

– d...d for positive values (blank sign immediately to the left of the
digits and no leading zeros)

– -d...d for negative values (- sign immediately to the left of the
digits and no leading zeros)

v Column widths are dynamically adjusted according to the length of
the headings and the maximum number of bytes needed for the
character or numeric data

DISPLAY Operator

420 DFSORT R14 Application Programming Guide

|
|
|
|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|
|

v Headings and data for numeric fields are right-justified (overriding the
default of left-justified headings and data for numeric fields)

PLUS Specifies an alternate format for printing character and numeric data as
follows:

v Numeric values for which formatting is not specified are printed with
+ for plus sign, - for minus sign and no leading zeros (overriding the
default of leading zeros).

Numeric values are thus displayed as:

– +d...d for positive values (+ sign immediately to the left of the
digits and no leading zeros)

– -d...d for negative values (- sign immediately to the left of the
digits and no leading zeros)

v Column widths are dynamically adjusted according to the length of
the headings and the maximum number of bytes needed for the
character or numeric data

v Headings and data for numeric fields are right-justified (overriding the
default of left-justified headings and data for numeric fields)

For ON(NUM), PLUS is treated as BLANK.

HEADER(’string’)
Specifies a heading to be printed for the corresponding ON field. The
specified string is used instead of the standard column heading for the
corresponding ON field. (ON fields and HEADER operands correspond
one-for-one according to the order in which they are specified; that is,
the first HEADER operand corresponds to the first ON field, the second
HEADER operand corresponds to the second ON field, and so on.)

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). If the string length is greater than the column width for
the corresponding ON field, the column width is increased to the string
length.

The heading is left-justified for character fields or right-justified for
numeric fields and is underlined with hyphens for the entire column
width (overriding the default of left-justified, non-underlined headings).
Character values are left-justified and numeric values are right-justified
(overriding the default of left-justified field values).

Blanks at the start or end of a heading string may alter the justification
of the heading or the width of the column.

If HEADER(’string’) is used for any ON field, HEADER(’string’) or
HEADER(NONE) must be used for each ON field.

HEADER(NONE)
Specifies that a heading is not to be printed for the corresponding ON
field. The standard column heading for the corresponding ON field is
suppressed.

If HEADER(’string’) is used for any ON field, HEADER(’string’) or
HEADER(NONE) must be used for each ON field. Specifying
HEADER(NONE) for every ON field is equivalent to specifying
NOHEADER.

DISPLAY Operator

Chapter 6. Using ICETOOL 421

NOHEADER
Specifies that headings for ON fields are not to be printed (overriding
the default of printing standard headings for ON fields).

If NOHEADER is used, it must be specified only once and
HEADER(’string’) or HEADER(NONE) must not be used.

If NOHEADER is specified without any TITLE, DATE, TIME, or PAGE
operands, the resulting list data set contains only data records. Data
sets created in this way can be processed further by other operators
(for example, STATS or UNIQUE) using CH for character values or
CSF/FS for numeric values.

LINES(n)
Specifies the number of lines per page for the list data set (overriding
the default of 58). n must be greater than 9, but less than 1000.

INDENT(n)
Specifies the number of blanks to be used to indent the report
(overriding the default of 0). n can be from 0 to 50. For example, if
INDENT(n) is not specfied, the report starts in column 2 (after the
control character), whereas if INDENT(10) is specified, the report starts
in column 12 (after the control character and 10 blanks).

BETWEEN(n)
Specifies the number of blanks to be used between the columns of data
(overriding the default of 3). n can be from 0 to 50. For example, if
BETWEEN(n) is not specfied, three blanks appear between columns,
whereas if BETWEEN(7) is specified, seven blanks appear between
columns.

TOTAL(’string’)
Specifies an overall TOTAL line is to be printed after the rows of data
for the report. The specified string is printed starting at the indent
column of the overall TOTAL line, followed by the overall total for each
numeric data column. If STATLEFT is specified, the string is printed to
the left of the first column of data with the totals on the same line as the
string. If STATLEFT is not specified, the string is printed in the first
column of data with the totals on the same line as the string, or on the
next line, as appropriate. A blank line is printed before the overall
TOTAL line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify TOTAL(’’)
using two single apostrophes.

The overall total for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The total for a
specific numeric field is suppressed if the NOST formatting item is
specified for that field. Totals are printed for ON(VLEN) fields, but not
for ON(NUM) fields.

By default, column widths are adjusted to allow for a maximum of a
sign and 15 digits for the totals. If the overall total for an ON field
overflows 15 digits, ICETOOL prints asterisks for the overall total for
that field and terminates the operation.

DISPLAY Operator

422 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

You can use the Ndd formatting item to decrease the number of digits
used for a total. If the overall total for an ON field overflows the number
of digits used, ICETOOL prints asterisks for the overall total for that field
and terminates the operation.

The TOTAL, MAXIMUM, MINIMUM, and AVERAGE lines are printed in
the order in which you specify them.

MAXIMUM(’string’)
Specifies an overall MAXIMUM line is to be printed after the rows of
data for the report. The specified string is printed starting at the indent
column of the overall MAXIMUM line, followed by the overall maximum
for each numeric data column. If STATLEFT is specified, the string is
printed to the left of the first column of data with the maximums on the
same line as the string. If STATLEFT is not specified, the string is
printed in the first column of data with the maximums on the same line
as the string, or on the next line, as appropriate. A blank line is printed
before the overall MAXIMUM line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify MAXIMUM(’’)
using two single apostrophes.

The overall maximum for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The maximum for
a specific numeric field is suppressed if the NOST formatting item is
specified for that field. Maximums are printed for ON(VLEN) fields, but
not for ON(NUM) fields.

The TOTAL, MAXIMUM, MINIMUM, and AVERAGE lines are printed in
the order in which you specify them.

MINIMUM(’string’)
Specifies an overall MINIMUM line is to be printed after the rows of
data for the report. The specified string is printed starting at the indent
column of the overall MINIMUM line, followed by the overall minimum
for each numeric data column. If STATLEFT is specified, the string is
printed to the left of the first column of data with the minimums on the
same line as the string. If STATLEFT is not specified, the string is
printed in the first column of data with the minimums on the same line
as the string, or on the next line, as appropriate. A blank line is printed
before the overall MINIMUM line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify MINIMUM(’’)
using two single apostrophes.

The overall minimum for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The minimum for a
specific numeric field is suppressed if the NOST formatting item is
specified for that field. Minimums are printed for ON(VLEN) fields, but
not for ON(NUM) fields.

The TOTAL, MAXIMUM, MINIMUM, and AVERAGE lines are printed in
the order in which you specify them.

AVERAGE(’string’)
Specifies an overall AVERAGE line is to be printed after the rows of
data for the report. The specified string is printed starting at the indent

DISPLAY Operator

Chapter 6. Using ICETOOL 423

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|

column of the overall AVERAGE line, followed by the overall average
for each numeric data column. If STATLEFT is specified, the string is
printed to the left of the first column of data with the averages on the
same line as the string. If STATLEFT is not specified, the string is
printed in the first column of data with the averages on the same line as
the string, or on the next line, as appropriate. A blank line is printed
before the overall AVERAGE line.

The overall average (or mean) is calculated by dividing the overall total
by the number of values in the report and rounding down to the nearest
integer (examples: 23 / 5 = 4, -23 / 5 = -4).

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’). To suppress printing of a string, specify AVERAGE(’’)
using two single apostrophes.

The overall average for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The average for a
specific numeric field is suppressed if the NOST formatting item is
specified for that field. Averages are printed for ON(VLEN) fields, but
not for ON(NUM) fields.

If the overall total for an ON field overflows 15 digits, ICETOOL prints
asterisks for the overall average for that field and terminates the
operation.

The TOTAL, MAXIMUM, MINIMUM, and AVERAGE lines are printed in
the order in which you specify them.

LIMIT(n)
Specifies a limit for the number of invalid decimal values (overriding the
default of 200). If n invalid decimal values are found, ICETOOL
terminates the operation. n can be 1 to 15 decimal digits, but must be
greater than 0.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY
Operator” on page 397.

WIDTH(n)
Specifies the line length and LRECL you want ICETOOL to use for your
list data set. n can be from 121 to 2048.

ICETOOL always calculates the line length required to print all titles,
headings, data, and statistics and uses it as follows:

v If WIDTH(n) is specified and the calculated line length is less than or
equal to n, ICETOOL sets the line length and LRECL to n.

v If WIDTH(n) is specified and the calculated line length is greater than
n, ICETOOL issues an error message and terminates the operation.

v If WIDTH(n) is not specified and the calculated line length is less
than or equal to 121, ICETOOL sets the line length and LRECL to
121.

v If WIDTH(n) is not specified and the calculated line length is between
122 and 2048, ICETOOL sets the line length and LRECL to the
calculated line length.

v If WIDTH(n) is not specified and the calculated line length is greater
than 2048, ICETOOL issues an error message and terminates the
operation.

DISPLAY Operator

424 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|

Use WIDTH(n) if your LRECL must be set to a particular value (for
example, if you use DISP=MOD to place several reports in the same
data set) or if you want to ensure that the line length for your report
does not exceed a specific maximum (for example, 133 bytes).
Otherwise, you can let ICETOOL calculate and set the appropriate line
length and LRECL by not specifying WIDTH(n).

BREAK(p,m,f)
Specifies a numeric or character break field to be used to divide the
report into sections. Each set of sequential input records, with the same
value for the specified break field, results in a corresponding set of data
lines that is treated as a section in the report. The DISPLAY operator
should be preceded by a SORT operator (or another application) that
sorts the break field and any other appropriate fields in the desired
sequence for the report.

Each section starts on a new page. Each page of a section includes a
break title line showing the break value for the section. Numeric break
values are printed with blank for plus sign, - for minus sign, and no
leading zeros. BTITLE can be used to specify a string to appear in the
break title line. The break value and break title string appear in the
order in which you specify BREAK and BTITLE. Two blanks appear
between break title elements. A blank line is printed after the break title
line.

BTOTAL, BMAXIMUM, BMINIMUM, and BAVERAGE can be used to
produce break statistics for each numeric ON field-for example, the
maximum of the values in the section for ON(5,3,ZD) and the maximum
of the values in the section for ON(22,2,BI). The break statistics for
each section are printed at the end of the section (on one or more
pages which include the break title). TOTAL, MAXIMUM, MINIMUM,
and AVERAGE can be used to produce overall statistics for each
numeric ON field-for example, the maximum of the values in the report
for ON(5,3,ZD) and the maximum of the values in the report for
ON(22,2,BI). The overall statistics for each section are printed at the
end of the report (on a separate page which does not include the break
title).

See ON(p,m,f) for a discussion of p and m.

f specifies the format of the field as shown for ON(p,m,f).

For a CSF or FS format break field:

v A maximum of 15 digits is allowed. If a value with 16 digits is found,
ICETOOL issues an error message and terminates the operation.

For a ZD or PD format break field:

v If a decimal value with an invalid digit (A-F) is found, ICETOOL
issues an error message and terminates the operation.

v A value is treated as positive if its sign is F, E, C, A, 8, 6, 4, 2, or 0.

v A value is treated as negative if its sign is D, B, 9, 7, 5, 3, or 1.

For a DT1, DT2 or DT3 format field:

v An invalid SMF date can result in a data exception (0C7 ABEND) or
an incorrect ZD date.

v SMF date values are always treated as positive.

DISPLAY Operator

Chapter 6. Using ICETOOL 425

|

|
|

|

For a TM1, TM2, TM3 or TM4 format field:

v An invalid SMF time can result in an incorrect ZD time.

v SMF time values are always treated as positive.

BREAK(p,m,f,formatting)
Specifies a numeric or character break field to be used to divide the
report into sections, and how the data for this field is to be formatted for
printing.

See BREAK(p,m,f) for further details.

formatting

specifies formatting items that indicate how the record number is to be
formatted for printing. Formatting items can be specified in any order,
but each item can only be specified once. Any formatting item can be
specified for a numeric break field, but only L’string’ and T’string’ can be
specified for a character break field.

mask See ON(p,m,f,formatting) for a discussion of mask.

E’pattern’
See ON(p,m,f,formatting) for a discussion of E’pattern’.

L’string’
See ON(p,m,f,formatting) for a discussion of L’string’.

F’string’
See ON(p,m,f,formatting) for a discussion of F’string’.

T’string’
See ON(p,m,f,formatting) for a discussion of T’string’.

LZ See ON(p,m,f,formatting) for a discussion of LZ.

BTITLE(’string’)
Specifies a string to appear in the break title line printed for each page
of a section. BTITLE can only be specified if BREAK is specified. The
break value and break title string appear in the order in which you
specify BREAK and BTITLE. Two blanks appear between break title
elements. A blank line is printed after the break title line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). Blanks at the start of the string move the text to the
right. Blanks at the end of the string increase the spacing between the
string and the break value if BTITLE is specified before BREAK.

BTOTAL(’string’)
Specifies a break TOTAL line is to be printed after the rows of data for
each section. BTOTAL can only be specified if BREAK is specified. The
specified string is printed starting at the indent column of the break

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ

��

DISPLAY Operator

426 DFSORT R14 Application Programming Guide

|

|

|

|
|
|
|

|

|

|
|
|
|
|

||

|
|

|
|

|
|

|
|

||

|
|
|
|

TOTAL line, followed by the break total for each numeric data column.If
STATLEFT is specified, the string is printed to the left of the first column
of data with the totals on the same line as the string. If STATLEFT is
not specified, the string is printed in the first column of data with the
totals on the same line as the string, or on the next line, as appropriate.
A blank line is printed before the break TOTAL line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify BTOTAL(’’)
using two single apostrophes.

The break total for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The total for a
specific numeric field is suppressed if the NOST formatting item is
specified for that field. Totals are printed for ON(VLEN) fields, but not
for ON(NUM) fields.

By default, column widths are adjusted to allow for a maximum of a
sign and 15 digits for the totals. If the break total for an ON field
overflows 15 digits, ICETOOL prints asterisks for the break total for that
field and terminates the operation.

You can use the Ndd formatting item to decrease the number of digits
used for a total. If the break total for an ON field overflows the number
of digits used, ICETOOL prints asterisks for the break total for that field
and terminates the operation.

The BTOTAL, BMAXIMUM, BMINIMUM, and BAVERAGE lines are
printed in the order in which you specify them.

BMAXIMUM(’string’)
Specifies a break MAXIMUM line is to be printed after the rows of data
for each section. BMAXIMUM can only be specified if BREAK is
specified. The specified string is printed starting at the indent column of
the break MAXIMUM line, followed by the break maximum for each
numeric data column. If STATLEFT is specified, the string is printed to
the left of the first column of data with the maximums on the same line
as the string. If STATLEFT is not specified, the string is printed in the
first column of data with the maximums on the same line as the string,
or on the next line, as appropriate. A blank line is printed before the
break MAXIMUM line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify BMAXIMUM(’’)
using two single apostrophes.

The break maximum for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The maximum for
a specific numeric field is suppressed if the NOST formatting item is
specified for that field. Maximums are printed for ON(VLEN) fields, but
not for ON(NUM) fields.

The BTOTAL, BMAXIMUM, BMINIMUM, and BAVERAGE lines are
printed in the order in which you specify them.

BMINIMUM(’string’)
Specifies a break MINIMUM line is to be printed after the rows of data
for each section. BMINIMUM can only be specified if BREAK is
specified. The specified string is printed starting at the indent column of

DISPLAY Operator

Chapter 6. Using ICETOOL 427

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

the break MINIMUM line, followed by the break minimum for each
numeric data column. If STATLEFT is specified, the string is printed to
the left of the first column of data with the minimums on the same line
as the string. If STATLEFT is not specified, the string is printed in the
first column of data with the minimums on the same line as the string,
or on the next line, as appropriate. A blank line is printed before the
break MINIMUM line.

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify BMINIMUM(’’)
using two single apostrophes.

The break minimum for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The minimum for a
specific numeric field is suppressed if the NOST formatting item is
specified for that field. Minimums are printed for ON(VLEN) fields, but
not for ON(NUM) fields.

The BTOTAL, BMAXIMUM, BMINIMUM, and BAVERAGE lines are
printed in the order in which you specify them.

BAVERAGE(’string’)
Specifies a break AVERAGE line is to be printed after the rows of data
for each section. BAVERAGE can only be specified if BREAK is
specified. The specified string is printed starting at the indent column of
the break AVERAGE line, followed by the break average for each
numeric data column. If STATLEFT is specified, the string is printed to
the left of the first column of data with the averages on the same line as
the string. If STATLEFT is not specified, the string is printed in the first
column of data with the averages on the same line as the string, or on
the next line, as appropriate. A blank line is printed before the break
AVERAGE line.

The break average (or mean) is calculated by dividing the break total by
the number of values in the section and rounding down to the nearest
integer (examples: 23 / 5 = 4, -23 / 5 = -4).

The string (1 to 50 characters) must be enclosed in single apostrophes.
To include a single apostrophe (’) in the string, specify two single
apostrophes (’’). To suppress printing of a string, specify BAVERAGE(’’)
using two single apostrophes.

The break average for each numeric ON field is printed in the format
(formatting, PLUS, BLANK, or standard) you specify. The average for a
specific numeric field is suppressed if the NOST formatting item is
specified for that field. Averages are printed for ON(VLEN) fields, but
not for ON(NUM) fields.

If the break total for an ON field overflows 15 digits, ICETOOL prints
asterisks for the break average for that field and terminates the
operation.

The BTOTAL, BMAXIMUM, BMINIMUM, and BAVERAGE lines are
printed in the order in which you specify them.

STATLEFT
Specifies that the strings for statistics (TOTAL, MAXIMUM, MINIMUM,
AVERAGE, BTOTAL, BMAXIMUM, BMINIMUM, BAVERAGE) are to be
placed to the left of the first column of data (overriding the default of
placing the strings in the first column). STATLEFT ensures that each

DISPLAY Operator

428 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|
|

statistic appears on the same line as its string while making the
statistics lines stand out from the columns of data.

UZERO
Specifies that -0 and +0 are to be treated as unsigned zero values, that
is, as the same value. With UZERO, -0 and +0 are treated as positive
for ON, MINIMUM, MAXIMUM, BREAK, BMINIMUM and BMAXIMUM
processing.

UZERO overrides the default of treating -0 and +0 as signed zero
values, that is, as different values. Without UZERO, -0 is treated as
negative and +0 is treated as positive for ON, MINIMUM, MAXIMUM,
BREAK, BMINIMUM and BMAXIMUM processing.

DISPLAY Examples
Although the DISPLAY operators in the examples below could all be contained in a
single ICETOOL job step, they are shown and discussed separately for clarity. See
“OCCUR Operator” on page 446 for additional examples of tailoring the report
format.

Example 1

DISPLAY FROM(SOURCE) LIST(FIELDS) ON(NUM) ON(40,12,CH) -
ON(20,8,PD)

Prints, in the FIELDS data set:

v A heading line containing the standard headings

v Data lines in the standard format containing:

– The record number in the standard format

– The characters from positions 40-51 of the SOURCE data set

– The packed decimal values from positions 20-27 of the SOURCE data set in
the standard format

The FIELDS output starts on a new page and looks as follows (the first 2 records
are shown with illustrative values):

RECORD NUMBER (40,12,CH) (20,8,PD)
000000000000001 SAN JOSE 000000000003745
000000000000002 MORGAN HILL 000000000016502

. . .

. . .

. . .

The heading line appears at the top of each page.

Example 2

DISPLAY FROM(IN) LIST(LIST1) -
TITLE(’National Accounting Report’) -
PAGE DATE TIME -
HEADER(’Division’) HEADER(’Revenue’) HEADER(’Profit/Loss’) -
ON(1,25,CH) ON(45,10,ZD) ON(35,10,ZD) -
BLANK -
TOTAL(’Company Totals’) -
AVERAGE(’Company Averages’)

DISPLAY Operator

Chapter 6. Using ICETOOL 429

|
|

Prints, in the LIST1 data set:

v A title line containing the specified title, the page number, the date and the time

v A heading line containing the specified underlined headings

v Data lines in the BLANK format containing:

– The characters from positions 1-25 of the IN data set

– The zoned decimal values from positions 45-54 of the IN data set

– The zoned decimal values from positions 35-44 of the IN data set

v A TOTAL line containing the specified string and the total for each of the two
zoned decimal fields in the BLANK format

v An AVERAGE line containing the specified string and the average for each of the
two zoned decimal fields in the BLANK format.

The LIST1 output starts on a new page and looks as follows (the first 2 records are
shown with illustrative values):

National Accounting Report - 1 - 10/21/92 18:52:44

Division Revenue Profit/Loss
------------------------- ---------------- ----------------
Research and Development 54323456 -823325
Manufacturing 159257631 1372610
. . .
. . .
. . .

Company Totals 612867321 5277836

Company Averages 76608415 659729

The title line and underlined heading line appear at the top of each page.

Example 3

DISPLAY FROM(DATA) LIST(JUSTDATA) -
NOHEADER -
ON(17,5,PD) ON(1,2,FI)

Prints, in the JUSTDATA data set:

v Data lines in the standard format containing:

– The packed decimal values from positions 17-21 of the DATA data set in the
standard format

– The fixed-point values from positions 1-2 of the DATA data set in the standard
format

The JUSTDATA output contains no page ejects or heading lines and looks as
follows (the first 2 records are shown with illustrative values):

-0000000000273216 +0000000000000027
+0000000000993112 +0000000000000321

. .

. .

. .

DISPLAY Operator

430 DFSORT R14 Application Programming Guide

Example 4

COPY FROM(INPUT) TO(TEMP) USING(TREG)
DISPLAY FROM(TEMP) LIST(REGULAR) -

TITLE(’Report on Regular Tools ’) PAGE -
HEADER(NONE) ON(1,18,CH) -
HEADER(’Item’) ON(35,5,CH) -
HEADER(’Percent Change’) ON(28,4,FS,B1) -
LINES(66)

COPY FROM(INPUT) TO(TEMP) USING(TPOW)
DISPLAY FROM(TEMP) LIST(POWER) -

TITLE(’Report on Power Tools ’) PAGE -
HEADER(NONE) ON(1,18,CH) -
HEADER(’Item’) ON(35,5,CH) -
HEADER(’Percent Change’) ON(28,4,FS,B1) -
LINES(66)

This example shows how reports for different subsets of data can be produced.
Assume that:

v The TREGCNTL data set contains:
INCLUDE COND=(44,8,CH,EQ,C’Regular’)

v The TPOWCNTL data set contains:
INCLUDE COND=(44,8,CH,EQ,C’Power’)

The first COPY operator copies the records from the INPUT data set that contain
’Regular ’ in positions 44-51 to the TEMP (temporary) data set

The first DISPLAY operator uses the first subset of records in the TEMP data set to
print, in the REGULAR data set:

v A title line containing the specified title and the page number; the page number is
moved to the right as a result of the extra blanks at the end of the TITLE string
and the 8 blanks between the title string and the page number

v A heading line containing the specified underlined headings (with no heading for
the first ON field)

v Data lines for the first subset of records containing:

– The characters from positions 1-18

– The characters from positions 35-39

– The floating sign values from positions 28-31 formatted with one decimal
place and a period as the decimal point

The second COPY operator copies the records from the INPUT data set that
contain ’Power ’ in positions 44-51 to the TEMP (temporary) data set

The second DISPLAY operator uses the second subset of records in the TEMP
data set to print, in the POWER data set:

v A title line containing the specified title and the page number; the page number is
moved to the right as a result of the extra blanks at the end of the TITLE string
and the 8 blanks between the title string and the page number

v A heading line containing the specified underlined headings (with no heading for
the first ON field)

v Data lines for the second subset of records containing:

– The characters from positions 1-18

– The characters from positions 35-39

DISPLAY Operator

Chapter 6. Using ICETOOL 431

– The floating sign values from positions 28-31 formatted with one decimal
place and a period as the decimal point

The REGULAR output starts on a new page and looks as follows (the first 2
records are shown with illustrative values):

Report on Regular Tools - 1 -

Item Percent Change
----- --------------

Hammers 10325 -7.3
Wrenches 00273 15.8
. . .
. . .
. . .

The title line and underlined heading line appear at the top of each page. The
number of lines per page is 66, overriding the default of 58.

The POWER output starts on a new page and looks as follows (the first 2 records
are shown with illustrative values):

Report on Power Tools - 1 -

Item Percent Change
----- --------------

Saws 31730 9.8
Drills 68321 123.0
. . .
. . .
. . .

The title line and underlined heading line appear at the top of each page. The
number of lines per page is 66, overriding the default of 58.

Example 5

DISPLAY FROM(INV) LIST(RDWLIST1) -
TITLE(’No Frills RDW Report’) -
ON(NUM) -
ON(VLEN) -
ON(1,4,HEX) -
MINIMUM(’Smallest’) -
MAXIMUM(’Largest’)

Prints, in the RDWLIST1 data set:

v A title line containing the specified title

v A heading line containing the standard headings

v Data lines in the standard format containing:

– The record number

– The record length

– The record descriptor word (RDW) in hexadecimal

v A MINIMUM line containing the specified string and the minimum record length in
the standard format

v A MAXIMUM line containing the specified string and the maximum record length
in the standard format.

DISPLAY Operator

432 DFSORT R14 Application Programming Guide

The RDWLIST1 output starts on a new page and looks as follows (the first 2
records are shown with illustrative values):

No Frills RDW Report

RECORD NUMBER RECORD LENGTH (1,4,HEX)
000000000000001 +000000000000075 004B0000
000000000000002 +000000000000071 00470000

. . .

. . .

. . .

Smallest +000000000000058

Largest +000000000000078

The title line and heading line appear at the top of each page.

Example 6

DISPLAY FROM(INV) LIST(RDWLIST2) -
DATE(DMY.) -
TITLE(’ Fancy RDW Report ’) -
TIME(12:) -
HEADER(’Relative Record’) ON(NUM) -
HEADER(’ RDW (length)’) ON(VLEN) -
HEADER(’RDW (Hex)’) ON(1,4,HEX) -
BLANK -
MINIMUM(’Smallest Record in Variable Data Set:’) -
MAXIMUM(’Largest Record in Variable Data Set:’)

Prints, in the RDWLIST2 data set:

v A title line containing the date, the specified title and the time

v A heading line containing the specified underlined headings

v Data lines in the BLANK format containing:

– The record number

– The record length

– The record descriptor word (RDW) in hexadecimal

v A MINIMUM line containing the specified string and the minimum record length in
the BLANK format

v A MAXIMUM line containing the specified string and the maximum record length
in the BLANK format.

RDWLIST2 output starts on a new page and looks as follows (the first 2 records are
shown with illustrative values):

DISPLAY Operator

Chapter 6. Using ICETOOL 433

21.09.92 Fancy RDW Report 01:52:28 pm

Relative Record RDW (length) RDW (Hex)
--------------- ---------------- ---------

1 75 004B0000
2 71 00470000
. . .
. . .
. . .

Smallest Record in Variable Data Set:
58

Largest Record in Variable Data Set:
78

The title line and underlined heading line appear at the top of each page.

Example 7

SORT FROM(PARTS) TO(TEMP) USING(SRT1)
DISPLAY FROM(TEMP) LIST(USA) -

TITLE(’Parts Completion Report for USA’) DATE -
HEADER(’Part’) HEADER(’Completed’) HEADER(’Value ($)’) -
ON(15,6,CH) ON(3,4,ZD,A1) ON(38,8,ZD,C1) -
TOTAL(’Total:’)

DISPLAY FROM(TEMP) LIST(FRANCE) -
TITLE(’Parts Completion Report for France’) DATE(DM4/) -
HEADER(’Part’) HEADER(’Completed’) HEADER(’Value (F)’) -
ON(15,6,CH) ON(3,4,ZD,A3) ON(38,8,ZD,C3) -
TOTAL(’Total:’)

DISPLAY FROM(TEMP) LIST(DENMARK) -
TITLE(’Parts Completion Report for Denmark’) DATE(DMY-) -
HEADER(’Part’) HEADER(’Completed’) HEADER(’Value (kr)’) -
ON(15,6,CH) ON(3,4,ZD,A2) ON(38,8,ZD,C2) -
TOTAL(’Total:’)

This example shows how reports for three different countries can be produced. The
reports differ only in the way that date and numeric values are displayed.

Assume that the SRT1CNTL data set contains:
SORT FIELDS=(15,6,CH,A)

The SORT operator sorts the PARTS data set to the TEMP data set using the
SORT statement in SRT1CNTL.

The first DISPLAY operator uses the sorted records in the TEMP data set to print,
in the USA data set:

v A title line containing the specified title and the date in the format commonly used
in the United States

v A heading line containing the specified underlined headings

v Data lines containing:

– The characters from positions 15-20

– The zoned decimal values from positions 3-6 formatted with the separators
commonly used in the United States

– The zoned decimal values from positions 38-45 formatted with two decimal
places and the separators and decimal point commonly used in the United
States.

DISPLAY Operator

434 DFSORT R14 Application Programming Guide

v A TOTAL line containing the specified string and the total for each of the two
zoned decimal fields formatted in the same way as the data values.

The second DISPLAY operator uses the sorted records in the TEMP data set to
print, in the FRANCE data set:

v A title line containing the specified title and the date in the format commonly used
in France

v A heading line containing the specified underlined headings

v Data lines containing:

– The characters from positions 15-20

– The zoned decimal values from positions 3-6 formatted with the separators
commonly used in France

– The zoned decimal values from positions 38-45 formatted with two decimal
places and the separators and decimal point commonly used in France.

v A TOTAL line containing the specified string and the total for each of the two
zoned decimal fields formatted in the same way as the data values.

The third DISPLAY operator uses the sorted records in the TEMP data set to print,
in the DENMARK data set:

v A title line containing the specified title and the date in the format commonly used
in Denmark

v A heading line containing the specified underlined headings

v Data lines containing:

– The characters from positions 15-20

– The zoned decimal values from positions 3-6 formatted with the separators
commonly used in Denmark

– The zoned decimal values from positions 38-45 formatted with two decimal
places and the separators and decimal point commonly used in Denmark.

v A TOTAL line containing the specified string and the total for each of the two
zoned decimal fields formatted in the same way as the data values.

The USA output starts on a new page and looks as follows (several records are
shown with illustrative values):

Parts Completion Report for USA 01/14/95

Part Completed Value ($)
------ -------------------- ---------------------
000310 562 8,317.53
001184 1,234 23,456.78
029633 35 642.10
192199 3,150 121,934.65
821356 233 2,212.34

Total: 5,214 156,563.40

The title line and underlined heading line appear at the top of each page.

The FRANCE output starts on a new page and looks as follows (several record are
shown with illustrative values):

DISPLAY Operator

Chapter 6. Using ICETOOL 435

Parts Completion Report for France 14/01/1995

Part Completed Value (F)
------ -------------------- ---------------------
000310 562 8 317,53
001184 1 234 23 456,78
029633 35 642,10
192199 3 150 121 934,65
821356 233 2 212,34

Total: 5 214 156 563,40

The title line and underlined heading line appear at the top of each page.

The DENMARK output starts on a new page and looks as follows (several records
are shown with illustrative values):

Parts Completion Report for Denmark 14-01-95

Part Completed Value (kr)
------ -------------------- ---------------------
000310 562 8.317,53
001184 1.234 23.456,78
029633 35 642,10
192199 3.150 121.934,65
821356 233 2.212,34

Total: 5.214 156.563,40

The title line and underlined heading line appear at the top of each page.

Example 8

SORT FROM(DATA) TO(TEMP) USING(SRTX)
DISPLAY FROM(TEMP) LIST(WEST) -

DATE TITLE(’Western Region Profit/Loss Report’) PAGE -
BTITLE(’Division:’) BREAK(3,10,CH) -
HEADER(’Branch Office’) ON(16,13,CH) -
HEADER(’Profit/Loss (K)’) ON(41,4,PD,/K,E1) -
BMINIMUM(’Lowest Profit/Loss in this Division:’) -
BMAXIMUM(’Highest Profit/Loss in this Division:’) -
BAVERAGE(’Average Profit/Loss for this Division:’) -
MINIMUM(’Lowest Profit/Loss for all Divisions:’) -
MAXIMUM(’Highest Profit/Loss for all Divisions:’) -
AVERAGE(’Average Profit/Loss for all Divisions:’)

This example shows how a report with sections can be produced.

Assume that the SRTXCNTL data set contains:
SORT FIELDS=(3,10,A,16,13,A),FORMAT=CH

The SORT operator sorts the DATA data set to the TEMP data set using the SORT
statement in SRTXCNTL.

The DISPLAY operator uses the sorted records in the TEMP data set to print, in the
WEST data set, sections with:

v A title line containing the date, the specified title string, and the page number

v A break title containing the specified break title string, and the break field
characters from positions 3-12

DISPLAY Operator

436 DFSORT R14 Application Programming Guide

v A heading line containing the specified underlined headings

v Data lines containing:

– The characters from positions 16-28

– The packed decimal values from positions 41-44 divided by 1000 and
formatted with separators and signs as specified.

v Break MINIMUM, MAXIMUM, and AVERAGE lines containing the specified
strings and statistics for the packed decimal field values in this section, formatted
in the same way as the data values.

The last page of the report contains:

v A title line containing the date, the specified title string, and the page number

v A heading line containing the specified underlined headings

v Overall MINIMUM, MAXIMUM, and AVERAGE lines containing the specified
strings and statistics for the packed decimal field values in the report, formatted
in the same way as the data values.

The first section of the WEST output starts on a new page and looks as follows
(several records are shown with illustrative values):

01/14/95 Western Region Profit/Loss Report - 1 -

Division: Chips

Branch Office Profit/Loss (K)
------------- ---------------
Gilroy 3,293
Los Angeles (141)
Morgan Hill 213
Oakland 1,067
San Francisco (31)
San Jose 92
San Martin 1,535

Lowest Profit/Loss in this Division:
(141)

Highest Profit/Loss in this Division:
3,293

Average Profit/Loss for this Division:
861

The title line, break title line, and underlined heading line appear at the top of each
page of the section.

The second section of the WEST output starts on a new page and looks as follows
(several records are shown with illustrative values):

DISPLAY Operator

Chapter 6. Using ICETOOL 437

01/14/95 Western Region Profit/Loss Report - 2 -

Division: Ice Cream

Branch Office Profit/Loss (K)
------------- ---------------
Marin 673
Napa 95
San Francisco (321)
San Jose 2,318
San Martin 21

Lowest Profit/Loss in this Division:
(321)

Highest Profit/Loss in this Division:
2,318

Average Profit/Loss for this Division:
557

The title line, break title line, and underlined heading line appear at the top of each
page of the section.

The last page of the WEST output starts on a new page and looks as follows:

01/15/95 Western Region Profit/Loss Report - 3 -

Branch Office Profit/Loss (K)
------------- ---------------

Lowest Profit/Loss for all Divisions:
(321)

Highest Profit/Loss for all Divisions:
3,293

Average Profit/Loss for all Divisions:
734

Example 9

MODE CONTINUE
VERIFY FROM(CHECK) ON(2,3,PD) LIMIT(500)
DISPLAY FROM(CHECK) LIST(PDREPORT) BLANK LIMIT(500) -

HEADER(’Relative Record’) ON(NUM) -
HEADER(’Numeric’) ON(2,3,PD) -
HEADER(’Hexadecimal’) ON(2,3,HEX) -
HEADER(’Associated Field’) ON(21,20,CH)

This example shows how each record containing an invalid decimal value can be
identified either by its relative record number or an associated field in the record.

The MODE operator ensures that the DISPLAY operator is processed if the VERIFY
operator identifies an invalid decimal value.

The VERIFY operator checks for invalid digits (A-F) and invalid signs (0-9) in the
packed decimal values from positions 2-4 of the CHECK data set. Message
ICE618A is printed in the TOOLMSG data set for each value (if any) that contains
an invalid digit or sign. If 500 invalid values are found, the operation is terminated.

DISPLAY Operator

438 DFSORT R14 Application Programming Guide

The DISPLAY operator checks for invalid digits (A-F) in the packed decimal values
from positions 2-4 of the CHECK data set. Message ICE618A is printed in the
TOOLMSG data set for each value (if any) that contains an invalid digit. If 500
invalid values are found, the operation is terminated. If a check for invalid signs is
required, the VERIFY operator must be used, since the DISPLAY operator only
checks for invalid digits. The VERIFY operator is not required if signs need not be
checked.

The DISPLAY operator also prints, in the PDREPORT data set:

v A heading line containing the specified underlined headings

v Data lines in the BLANK format containing:

– The relative record number. This number can be matched against the
RECORD numbers printed in the ICE618A messages to find the records with
invalid signs.

– The numeric representation of the packed decimal value in positions 2-4.
Asterisks are shown for values with invalid digits, making them easy to
identify. Asterisks are not shown for values with invalid signs; these must be
identified by matching the relative record number against the RECORD
number in ICE618A.

– The hexadecimal representation of the packed decimal value in positions 2-4
(also shown in ICE618A). This makes it easy to find the specific hexadecimal
digits or signs that are invalid.

– The characters in positions 21-40. An associated field such as this can be
used to make identification of the records with invalid values easier.

The ICE618A messages in TOOLMSG for the VERIFY operator are:

The ICE618A messages in TOOLMSG for the DISPLAY operator are:

The PDREPORT output looks as follows:

ICE618A 0 INVALID (2,3,PD) VALUE - RECORD: 000000000000003,
HEX VALUE 53A54C

ICE618A 0 INVALID (2,3,PD) VALUE - RECORD: 000000000000012,
HEX VALUE 621540

ICE618A 0 INVALID (2,3,PD) VALUE - RECORD: 000000000000019,
HEX VALUE 400F3C

ICE618A 0 INVALID (2,3,PD) VALUE - RECORD: 000000000000003,
HEX VALUE 53A54C

ICE618A 0 INVALID (2,3,PD) VALUE - RECORD: 000000000000019,
HEX VALUE 400F3C

DISPLAY Operator

Chapter 6. Using ICETOOL 439

Relative Record Numeric Hexadecimal Associated Field
--------------- ------- ----------- --------------------

1 18600 18600C Wagar
2 -93 00093B Gellai
3 ****** 53A54C Giulianelli
4 86399 86399C Mehta
5 24215 24215F Johnson
6 8351 08351C Packer
7 19003 19003C Childers
8 -31285 31285D Burg
9 88316 88316C Monkman
10 1860 01860C Vezinaw
11 -29285 29285D Mead
12 62154 621540 Wu
13 -328 00328D Madrid
14 -11010 11010D Warren
15 1363 01363F Burt
16 92132 92132C Mao
17 -48500 48500D Shen
18 -55 00055D Yamamoto-Smith
19 ****** 400F3C Yaeger
20 33218 33218C Leung
21 96031 96031C Kaspar

PDREPORT can be used in conjunction with the ICE618A messages to identify
that:

v Record 3 has an invalid digit of A and an associated field of “Giulianelli”

v Record 12 has an invalid sign of 0 and an associated field of “Wu”

v Record 19 has an invalid digit of F and an associated field of “Yaeger”.

Example 10

COPY FROM(IN) USING(OUTF)
DISPLAY FROM(TEMP) LIST(EMPCT) BLANK -

TITLE(’Employees by Function’) -
DATE -
HEADER(’Function’) HEADER(’Employees’) -
ON(1,25,CH) ON(30,4,ZD)

This example shows how the OUTFIL table lookup feature can be used to substitute
meaningful phrases for cryptic values in ICETOOL reports. Assume that:

v The OUTFCNTL data set contains:
OUTFIL FNAMES=TEMP,

OUTREC=(1:9,2,CHANGE=(25,
C’MN’,C’Manufacturing’,
C’RD’,C’Research and Development’,
C’FN’,C’Finance’,
C’MR’,C’Marketing’,
C’IS’,C’Information Systems’),

30:4,4)

The COPY operator uses the OUTFIL statement in OUTFCNTL to reformat the IN
data set records to the TEMP (temporary) data set. Two fields are extracted for use
by the DISPLAY operator:

v The 2-character department code in positions 9-10 is changed to a 25-character
name in positions 1-25 using the table lookup feature.

v The zoned decimal value in positions 4-7 is moved to positions 30-33.

DISPLAY Operator

440 DFSORT R14 Application Programming Guide

The DISPLAY operator uses the reformatted fields in the TEMP data set to print, in
the EMPCT data set:

v A title line containing the specified title and the date

v A heading line containing the specified underlined headings

v Data lines in the BLANK format containing:

– The names from positions 1-25 that were substituted for the department
codes

– The zoned decimal values from positions 30-33.

The EMPCT output starts on a new page and looks as follows:

Employees by Function 02/14/95

Function Employees
------------------------- ---------
Manufacturing 486
Marketing 21
Research and Development 55
Information Systems 123
Finance 33

Example 11

DISPLAY FROM(ACCTS) LIST(PLAIN) -
TITLE(’Accounts Report for First Quarter’) -
DATE(MD4/) BLANK -
HEADER(’Amount’) ON(12,6,ZD) -
HEADER(Id’) ON(NUM) -
HEADER(’Acct#’) ON(31,3,PD) -
HEADER(’Date’) ON(1,4,ZD) -
TOTAL(’Total for Q1’) -
AVERAGE(’Average for Q1’)

DISPLAY FROM(ACCTS) LIST(FANCY) -
TITLE(’Accounts Report for First Quarter’) -
DATE(MD4/) BLANK -
HEADER(’Amount’) ON(12,6,ZD,C1,N08) -
HEADER(Id’) ON(NUM,N02) -
HEADER(’Acct#’) ON(31,3,PD,NOST,LZ) -
HEADER(’Date’) ON(1,4,ZD,E’99/99’,NOST) -
INDENT(2) BETWEEN(5) -
STATLEFT -
TOTAL(’Total for Q1’) -
AVERAGE(’Average for Q1’)

This example shows some options you can use to improve the appearance of a
DISPLAY report. The first DISPLAY operator produces a ″plain″ report, and the
second DISPLAY operator uses the options shown in bold to produce a ″fancy″
report.

The PLAIN output starts on a new page and looks as follows:

DISPLAY Operator

Chapter 6. Using ICETOOL 441

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

Accounts Report for First Quarter 05/04/2001

Amount Id Acct# Date
--------------- --------------- ------------------- --------------------

93271 1 15932 106
137622 2 187 128
83147 3 15932 212
183261 4 2158 217
76389 5 187 305
920013 6 15932 319

Total for Q1
1493703 50328 1287

Average for Q1
248950 8388 214

The FANCY output starts on a new page and looks as follows:

Accounts Report for First Quarter 05/04/2001

Amount Id Acct# Date
-------- --- ------ -----

932.71 1 15932 01/06
1,376.22 2 00187 01/28

831.47 3 15932 02/12
1,832.61 4 02158 02/17

763.89 5 00187 03/05
9,200.13 6 15932 03/19

Total for Q1 14,937.03

Average for Q1 2,489.50

Here is an explanation of the extra options used for the ″fancy″ report:

v First ON field: In the PLAIN report, BLANK causes ICETOOL to print the 6-byte
ZD values as unedited digits with leading zeros suppressed. But for this example,
we know the digits really represent dollars and cents. So in the FANCY report,
we use the C1 formatting item (one of thirty-three available masks) to print the
values with a comma (,) as the thousands separator and a period (.) as the
decimal point.

In the PLAIN report, TOTAL causes ICETOOL to allow 15 digits for the values
because it does not know how many digits are needed. But for this example, we
know the total amount will not exceed 8 digits. So in the FANCY report, we use
the N08 formatting item to set the number of digits to 8. This decreases the
column width for the field.

v Second ON field: In the PLAIN report, NUM causes ICETOOL to allow 15 digits
for the record number because it does not know how many digits are needed.
But for this example, we know the number of records will not exceed 99. So in
the FANCY report, we use the N02 formatting item to set the number of digits to
2. This decreases the column width for the record number.

v Third ON field: In the PLAIN report, TOTAL and AVERAGE cause ICETOOL to
print the total and average for this 3-byte PD field. But for this example, we know
we do not want statistics for the field because it is an account number. So in the
FANCY report, we use the NOST formatting item to suppress the statistics for
this field.

In the PLAIN report, the default mask of A0 causes ICETOOL to suppress
leading zeros for this 3-byte PD field. But for this example, we know that we want

DISPLAY Operator

442 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

to show leading zeros for the field because it is an account number. So in the
FANCY report, we use the LZ formatting item to print leading zeros for this field.

v Fourth ON field: In the PLAIN report, BLANK causes ICETOOL to print the 4-byte
ZD values as unedited digits with leading zeros suppressed. But for this example,
we know the digits represent a date (month and day). So in the FANCY report,
we use the E’99/99’ formatting item to print the values with leading zeros and a
slash (/) between the month and day.

In the PLAIN report, TOTAL and AVERAGE cause ICETOOL to print the total and
average for this 4-byte ZD field. But for this example, we know we do not want
the total or average for this field because it is a date. So in the FANCY report,
we use the NOST formatting item to suppress the statistics for this field.

Note: In some applications, we might want the minimum and maximum for a
date displayed with E’pattern’, so we would not specify NOST for the date
field.

v INDENT: In the PLAIN report, ICETOOL starts the report in column 2 (after the
control character), by default. But for this example, we want to indent the report a
bit. So in the FANCY report, we use the INDENT(2) operand to indent the report
by 2 blanks so it starts in column 4.

v BETWEEN: In the PLAIN report, ICETOOL uses 3 blanks between the columns
of data, by default. But for this example, we want more space between the
columns. So in the FANCY report, we use the BETWEEN(5) operand to insert 5
blanks between the columns.

v STATLEFT: In the PLAIN report, ICETOOL prints the strings for TOTAL and
AVERAGE under the first column of data, by default, and uses two lines for each
statistic to avoid having the string overlay the value. But for this example, we
would like to have the TOTAL and AVERAGE strings stand out in the report and
also have each string on the same line as its value. So in the FANCY report, we
use the STATLEFT operand to print the TOTAL and AVERAGE strings to the left
of the first column of data.

Example 12

SORT FROM(RAWSMF) TO(SMF14) USING(SMFI)
DISPLAY FROM(SMF14) LIST(SMF14RPT) -

TITLE(’SMF Type-14 Records’) DATE(4MD/) -
HEADER(’Date’) ON(11,4,DT1,E’9999/99/99’) -
HEADER(’Time’) ON(7,4,TM1,E’99:99:99’) -
HEADER(’Sys’) ON(15,4,CH) -
HEADER(’Jobname’) ON(19,8,CH) -
HEADER(’Datasetname’) ON(69,44,CH)

This example shows how SMF date and time values can be displayed in a
meaningful way in a report on SMF type-14 records.

The SORT operator selects the type-14 records from the RAWSMF data set and
sorts them by date and time to the SMF14 data set. It uses the following control
statements in SMFICNTL:

INCLUDE COND=(6,1,BI,EQ,14)
SORT FIELDS=(11,4,PD,A,7,4,BI,A)

The DISPLAY operator uses the selected type-14 records in SMF14 to print, in the
SMF14RPT data set:

v A title line containing the specified title and the date

v A heading line containing the specified underlined headings

DISPLAY Operator

Chapter 6. Using ICETOOL 443

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|

|

v Data lines containing:

– The SMF date values in positions 11-14 displayed as C'yyyy/mm/dd'

– The SMF time values in positions 7-10 displayed as C'hh:mm:ss'

– The character values in positions 15-18

– The character values in positions 19-26

– The character values in positions 69-112

The SMF14RPT output starts on a new page and looks as follows:

SMF Type-14 Records 2001/04/24

Date Time Sys Jobname Datasetname
---------- -------- ---- -------- ----------- ...
2001/04/20 06:03:15 ID03 JOB00003 SYS1.QRS
2001/04/20 10:03:22 ID02 JOB00002 SYS1.XYZ
2001/04/21 14:05:37 ID03 JOB00004 SYS1.MNO
2001/04/21 22:11:00 ID03 JOB00005 SYS1.MNO
2001/04/24 00:00:08 ID03 JOB00006 SYS1.MNO

Note: When you use SMF date formats (DTn) or SMF time formats (TMn), the
SMF values are treated as numeric. This allows you to use numeric
formatting items such as masks and patterns to edit the SMF values. By
default, DTn and TMn headings, like other numeric headings, appear
right-aligned as shown in the SMF14RPT output example above. If you want
to center-align or left-align headings for numeric values, you can add an
appropriate number of blanks at the end of HEADER('string').

For example, if you wanted to left-align the SMF date heading, you could
use six blanks at the end of the header string like so:

HEADER(’Date ’)

to get the following heading:
Date

If you wanted to center-align the SMF date heading, you could use three
blanks at the end of the header string like so:

HEADER(’Date ’)

to get the following heading:
Date

MODE Operator

Specifies one of three modes to control error checking and actions after error
detection. A MODE operator effects the “processing” (that is, error checking of
ICETOOL statements and calling DFSORT) of the operators which follow it, up to
the next MODE operator (if any). MODE operators allow you to do the following for
groups of operators or all operators:

�� MODE STOP
CONTINUE
SCAN

��

DISPLAY Operator

444 DFSORT R14 Application Programming Guide

|||||||||||||||||||

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|

|
|

|

|

|
|

|
|

|

|

|
|

|

1. Stop or continue processing operators after a return code of 12 or 16. A return
code of 12 or 16 can be set as the result of a statement or run-time error
detected by ICETOOL or DFSORT.

2. Check for errors in ICETOOL statements, but do not call DFSORT.

Operand Descriptions
The operands described below can be specified in any order.

STOP
Stops subsequent operations if a return code of 12 or 16 is set. If an error is
detected for an operator, SCAN mode is automatically set in effect; DFSORT is
not called for subsequent operators, although checking ICETOOL statements for
errors continues.

STOP mode can be used to group dependent operators (that is, if an operation
fails, do not process the remaining operators).

STOP MODE is set in effect automatically at the start of the ICETOOL run.

CONTINUE
Continues with subsequent operations regardless of whether or not a return
code of 12 or 16 is set. If an operator results in an error, processing continues
for subsequent operators.

CONTINUE mode can be used to group independent operators (that is, process
each operator regardless of the success or failure of the others).

SCAN
ICETOOL statements are checked for errors, but DFSORT is not called.

SCAN mode can be used to test ICETOOL statements for errors.

Note: SCAN mode is set automatically if an error is detected while in STOP
mode.

MODE Example

MODE SCAN
RANGE ...
UNIQUE ...

MODE STOP
VERIFY ...
DISPLAY ...

MODE CONTINUE
COPY ...
SORT ...
STATS ...

SCAN mode: RANGE and UNIQUE are checked for statement errors, but DFSORT
is not called.

STOP mode: DISPLAY is dependent on VERIFY. If the return code for VERIFY is
12 or 16, SCAN mode is entered; DISPLAY is checked for statement errors, but
DFSORT is not called.

CONTINUE mode: COPY, SORT, and STATS are independent of each other. SORT
is processed even if the return code for COPY is 12 or 16. STATS is processed
even if the return code for COPY or SORT is 12 or 16.

MODE Operator

Chapter 6. Using ICETOOL 445

Note that the return codes for one group of operators does not affect the other
groups of operators.

OCCUR Operator

Prints each unique value for specified numeric fields (including SMF date/time) or
character fields, and how many times it occurs, in a separate list data set. Simple or
tailored reports can be produced. The values printed can be limited to those for
which the value count meets specified criteria.

From 1 to 10 fields can be specified, but the resulting list data set line length must
not exceed the limit specified by the WIDTH operand or 2048 bytes if WIDTH is not
specified. At least one ON(VLEN) or ON(p,m,f) field must be specified; all such ON
fields specified are used to determine whether a record contains a unique value. A
single list data set record is printed for each unique value. If ON(VALCNT) is
specified, the ″value count″ (that is, the number of times the ON values occur) is
printed in the list data set record along with the other ON values.

Specifying formatting items or the PLUS or BLANK operand, which can
″compress″ the columns of output data, can enable you to include more fields
in your report, up to a maximum of 10, if your line length is limited by the
character width your printer or display supports.

ALLDUPS, NODUPS, HIGHER(x), LOWER(y) or EQUAL(v) can be specified to limit
the ON values printed to those for which the value count meets the specified criteria
(for example, ALLDUPS for duplicate values only). The default criteria is HIGHER(0)
resulting in the ON values being printed for each unique value.

�� OCCUR
OCCURS

FROM(indd) E ON(p,m,f)
ON(p,m,f,formatting)
ON(p,m,HEX)
ON(VLEN)
ON(VLEN,formatting)
ON(VALCNT)
ON(VALCNT,formatting)

LIST(listdd) �

�
TITLE(’string’) PAGE DATE

DATE(abcd)
DATENS(abc)

TIME
TIME(abc)
TIMENS(ab)

BLANK
PLUS

�

� E

HEADER(’string’)
HEADER(NONE)
NOHEADER

LINES(n) INDENT(n) BETWEEN(n)
�

�
ALLDUPS
NODUPS
HIGHER(x)
LOWER(y)
EQUAL(v)

VSAMTYPE(x) WIDTH(n) UZERO
��

MODE Operator

446 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|
|

DFSORT is called to sort the indd data set to ICETOOL’s E35 user exit. ICETOOL
uses its E35 exit to print appropriate titles, headings and data in the list data set.

You must not supply your own DFSORT MODS, INREC, OUTREC, SUM, or
RECORD statement since they override the DFSORT statements passed by
ICETOOL for this operator.

The DYNALLOC option is passed to DFSORT to ensure that work space is
available for the sort. If your installation defaults for dynamic allocation are
inappropriate for an OCCUR operator, you can take one of the following actions:

1. Override the DYNALLOC option using an OPTION control statement such as:

in the DFSPARM data set (applies to all OCCUR, SELECT, SORT, and UNIQUE
operators).

2. Use SORTWKdd DD statements to override the use of dynamic allocation
(applies to all OCCUR, SELECT and UNIQUE operators). Refer to “SORTWKdd
DD Statement” on page 69 for details.

Tape work data sets cannot be used with ICETOOL.

Simple Report
You can produce a simple report by specifying just the required operands. For
example, if you specify FROM and LIST operands, and ON operands for 10-byte
character and 7-byte zoned decimal fields and the value count, the output in the list
data set can be represented as follows:

(p,m,f) (p,m,f) VALUE COUNT
characters sddddddddddddddd ddddddddddddddd
. . .
. . .
. . .

A control character occupies the first byte of each list data set record. Left-justified
standard headings are printed at the top of each page to indicate the contents of
each column, followed by a line for each record showing the characters and
numbers in the fields of that record, and the count of occurrences (value count) of
the specified values.

The fields are printed in columns in the same order in which they are specified in
the OCCUR statement. All fields are left-justified. For numeric fields, leading zeros
are printed, a - is used for the minus sign, and a + is used for the plus sign. For the
value count, leading zeros are printed.

By default, the first column of data starts immediately after the control character,
and three blanks appear between columns. The INDENT operand can be used to
change the number of blanks before the first column of data. The BETWEEN
operand can be used to change the number of blanks between columns.

The standard column widths are as follows:

v Character data: the length of the character field or 20 bytes if the field length is
less than 21 bytes

v Numeric data: 16 bytes

v Value count: 15 bytes

OPTION DYNALLOC=(3390,5)

OCCUR Operator

Chapter 6. Using ICETOOL 447

|

|
|
|
|

HEADER operands can be used to change or suppress the headings. PLUS or
BLANK operands can be used to change the format of numeric fields. PLUS,
BLANK and HEADER operands can be used to change the width of the columns for
numeric and character fields and the justification of headings and fields.

The NOHEADER operand can be used to create list data sets containing only data
records. Data sets created in this way can be processed further by other operators
(for example, STATS or UNIQUE) using CH format for character values or CSF/FS
format for numeric values (including the value count).

Tailored Report
You can tailor the output in the list data set using various operands that control title,
date, time, page number, headings, lines per page and field formats. The optional
operands can be used in many different combinations to produce a wide variety of
report formats. For example, if you specify FROM, LIST, BLANK, TITLE, PAGE,
DATE, TIME, and HEADER operands, and ON operands for 10-byte character and
7-byte zoned decimal fields and the value count, the output in the list data set looks
as follows:

title - p - mm/dd/yy hh:mm:ss

header header header
---------- -------- --------------
characters sd d
. . .
. . .
. . .

A control character occupies the first byte of each list data set record. The title line
is printed at the top of each page of the list data set. It contains the elements you
specify (title string, page number, date and time) in the order in which you specify
them. Eight blanks appear between title elements. A blank line is printed after the
title line.

Your specified headings (underlined) are printed after the title line on each page to
indicate the contents of each column, followed by a line for each record showing
the characters and numbers in the fields of that record. Headings for character
fields are left-justified and headings for numeric fields are right-justified.

The fields are printed in columns in the same order in which they are specified in
the OCCUR statement. Character fields are left-justified and numeric fields are right
justified. For numeric fields, leading zeros are suppressed, a - is used for the minus
sign, and a blank is used for the plus sign (you can specify PLUS rather than
BLANK if you want a + to be used for the plus sign). For the value count, leading
zeros are suppressed.

Formatting items can be used to change the appearance of individual numeric fields
in the report with respect to separators, number of digits, decimal point, decimal
places, signs, leading zeros, leading strings, floating strings, and trailing strings.
Formatting items can also be used to insert leading or trailing strings for character
fields.

The column widths are dynamically adjusted according to the length of the headings
and the maximum number of bytes needed for the character or numeric data.

OCCUR Operator

448 DFSORT R14 Application Programming Guide

|
|
|
|
|

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

ON(p,m,f)
Specifies the position, length, and format of the numeric field to be used for this
operation.

p specifies the first byte of the field relative to the beginning of the input record.
p is 1 for the first data byte of a fixed-length record and 5 for the first data byte
of a variable-length record as illustrated below (RRRR represents the 4-byte
record descriptor word):

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. The maximum length for a field
depends on its format.

f specifies the format of the field as follows:

Format Code Length Description

BI 1 to 4 bytes Unsigned binary

FI 1 to 4 bytes Signed fixed-point

PD 1 to 8 bytes Signed packed decimal

ZD 1 to 15 bytes Signed zoned decimal

CH 1 to 1500 bytes Character

CSF or FS 1 to 16 bytes (15 digit limit) Signed numeric with optional
leading floating sign

DT1 4 bytes SMF date interpreted as
Z’yyyymmdd’

DT2 4 bytes SMF date interpreted as
Z’yyyymm’

DT3 4 bytes SMF date interpreted as
Z’yyyyddd’

TM1 4 bytes SMF time interpreted as
Z’hhmmss’

TM2 4 bytes SMF time interpreted as
Z’hhmm’

TM3 4 bytes SMF time interpreted as Z’hh’

TM4 4 bytes SMF time interpreted as
Z’hhmmssxx’

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

For a CSF or FS format field:

v A maximum of 15 digits is allowed. If a CSF/FS value with 16 digits is found,
ICETOOL issues an error message and terminates the operation.

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

OCCUR Operator

Chapter 6. Using ICETOOL 449

|||

|||
|

|||
|

|||
|

|||
|

|||
|

|||

|||
|

For a ZD or PD format field:

v If a decimal value contains an invalid digit (A-F), ICETOOL identifies the bad
value in a message and terminates the operation.

v F, E, C, A, 8, 6, 4, 2, and 0 are treated as equivalent positive signs. Thus the
zoned decimal values F2F3C1, F2F3F1 and 020301 are counted as only one
unique value.

v D, B, 9, 7, 5, 3, and 1 are treated as equivalent negative signs. Thus the
zoned decimal values F2F3B0, F2F3D0, and 020310 are counted as only
one unique value.

The fields of records that do not meet the specified criteria are not checked for
invalid digits (PD and ZD) or excessive digits (CSF and FS).

For a DT1, DT2 or DT3 format field:

v An invalid SMF date can result in a data exception (0C7 ABEND) or an
incorrect ZD date.

v SMF date values are always treated as positive.

For a TM1, TM2, TM3 or TM4 format field:

v An invalid SMF time can result in an incorrect ZD time.

v SMF time values are always treated as positive.

ON(p,m,f,formatting)
Specifies the position, length and format of a numeric or character field to be
used for this operation and how the data for this field is to be formatted for
printing. The BLANK operand is automatically in effect.

See ON(p,m,f) for further details.

formatting

specifies formatting items that indicate how the data for this field is to be
formatted for printing. Formatting items can be specified in any order, but each
item can only be specified once. Any formatting item can be specified for a
numeric field, but only L’string’ and T’string’ can be specified for a character
field.

The column width is dynamically adjusted to accommodate the maximum bytes
to be inserted as a result of all formatting items specified.

mask See the discussion of mask under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

E’pattern’
See the discussion of E’pattern’ under ON(p,m,f,formatting) in
“DISPLAY Operator” on page 407.

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ
Ndd

��

OCCUR Operator

450 DFSORT R14 Application Programming Guide

|

|
|

|

|

|

|

|
|
|
|

|

|

|
|
|
|
|

|
|

||
|

|
|
|

L’string’
See the discussion of L’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

F’string’
See the discussion of F’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

T’string’
See the discussion of T’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

LZ See the discussion of LZ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

Ndd Specifies the number of digits to be used for the numeric field when
determining the column width. dd specifies the number of digits and
must be a two-digit number between 01 and 15.

If dd is greater than or equal to the default number of digits, dd is used.
If dd is less than the default number of digits, the default is used.

If E’pattern’ is specified, Ndd is ignored since the number of digits is
determined from the pattern.

ON(p,m,HEX)
Specifies the position and length of a character field to be used for this
operation and printed in hexadecimal format (00-FF for each byte). ’ (p,m,HEX)’
is used for the standard column heading (see HEADER(’string’),
HEADER(NONE), and NOHEADER for alternative heading options).

See ON(p,m,f) for a discussion of p.

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. A field can be 1 to 1000 bytes.

ON(VLEN)
Equivalent to specifying ON(1,2,BI); a two-byte binary field starting at position 1.
For variable-length records, ON(VLEN) represents the record-length for each
record. ’RECORD LENGTH’ is used for the standard column heading. See
HEADER(’string’), HEADER(NONE), and NOHEADER in “DISPLAY Operator”
on page 407 for alternative heading options.

ON(VLEN,formatting)
Equivalent to specifying ON(1,2,BI,formatting); a two-byte binary field starting at
position 1, and how the data for this field is to be formatted for printing. The
BLANK operand is automatically in effect.

See ON(VLEN) for further details.

formatting

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ
Ndd

��

OCCUR Operator

Chapter 6. Using ICETOOL 451

|
|
|

|
|
|

|
|
|

||
|

||
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|

specifies formatting items that indicate how the data for this field is to be
formatted for printing. Formatting items can be specified in any order, but each
item can only be specified once.

The column width is dynamically adjusted to accommodate the maximum bytes
to be inserted as a result of all formatting items specified.

mask See the discussion of mask under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

E’pattern’
See the discussion of E’pattern’ under ON(p,m,f,formatting) in
“DISPLAY Operator” on page 407.

L’string’
See the discussion of L’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

F’string’
See the discussion of F’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

T’string’
See the discussion of T’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

LZ See the discussion of LZ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

Ndd Specifies the number of digits to be used for the numeric field when
determining the column width. dd specifies the number of digits and
must be a two-digit number between 01 and 15.

If dd is greater than or equal to the default number of digits, dd is used.
If dd is less than the default number of digits, the default is used.

If E’pattern’ is specified, Ndd is ignored since the number of digits is
determined from the pattern.

ON(VALCNT)
Specifies that the number of occurrences for each unique value is to be printed.
’ VALUE COUNT’ is used for the standard column heading (see
HEADER(’string’), HEADER(NONE) and NOHEADER for alternative heading
options).

ON(VALCNT,formatting)
Specifies that the number of occurrences for each unique value is to be printed,
and how the value count is to be formatted for printing. The BLANK operand is
automatically in effect.

See ON(VALCNT) for further details.

formatting

OCCUR Operator

452 DFSORT R14 Application Programming Guide

|
|
|

|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|

||
|

||
|
|

|
|

|
|

|
|
|
|

|

|

specifies formatting items that indicate how the value count is to be formatted
for printing. Formatting items can be specified in any order, but each item can
only be specified once.

The column width is dynamically adjusted to accommodate the maximum bytes
to be inserted as a result of all formatting items specified.

mask See the discussion of mask under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

E’pattern’
See the discussion of E’pattern’ under ON(p,m,f,formatting) in
“DISPLAY Operator” on page 407.

L’string’
See the discussion of L’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

F’string’
See the discussion of F’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

T’string’
See the discussion of T’string’ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

LZ See the discussion of LZ under ON(p,m,f,formatting) in “DISPLAY
Operator” on page 407.

Ndd Specifies the number of digits to be used for the value count when
determining the column width. dd specifies the number of digits and
must be a two-digit number between 01 and 15.

The default number of digits for the value count is 15. If you know that
your value counts require less than 15 digits, you can use Ndd to
indicate that, thus reducing the column width if it is determined by the
number of digits. For example, if ON(VALCNT,N06) is specified, 6 digits
(from N06) is used instead of 15 (default for value count).

If you use Ndd and a value count overflows the number of digits used,
ICETOOL terminates the operation.

If E’pattern’ is specified, Ndd is ignored since the number of digits is
determined from the pattern.

LIST(listdd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

TITLE(’string’)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

�� E

,

mask
E'pattern'

L'string'
F'string'
T'string'
LZ
Ndd

��

OCCUR Operator

Chapter 6. Using ICETOOL 453

|
|
|

|
|

||
|

|
|
|

|
|
|

|
|
|

|
|
|

||
|

||
|
|

|
|
|
|
|

|
|

|
|

PAGE
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

DATE
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

DATE(abcd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

DATENS(abc)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

TIME
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

TIME(abc)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

TIMENS(ab)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

BLANK
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

PLUS
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

For ON(VALCNT), PLUS is treated as BLANK.

HEADER(’string’)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

HEADER(NONE)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

NOHEADER
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

LINES(n)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

INDENT(n)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

BETWEEN(n)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

OCCUR Operator

454 DFSORT R14 Application Programming Guide

|
|
|

|
|
|

|
|
|

|
|
|

ALLDUPS
Limits the ON values printed to those that occur more than once (that is, those
with duplicate field values). The ON values are printed when value count > 1.

ALLDUPS is equivalent to HIGHER(1).

NODUPS
Limits the ON values printed to those that occur only once (that is, those with
no duplicate field values). The ON values are printed when value count = 1.

NODUPS is equivalent to EQUAL(1) or LOWER(2).

HIGHER(x)
Limits the ON values printed to those that occur more than x times. The ON
values are printed when value count > x.

x must be specified as n or +n where n can be 1 to 15 decimal digits.

LOWER(y)
Limits the ON values printed to those that occur less than y times. The ON
values are printed when value count < y.

y must be specified as n or +n where n can be 1 to 15 decimal digits.

EQUAL(v)
Limits the ON values printed to those that occur v times. The ON values are
printed when value count = v.

v must be specified as n or +n where n can be 1 to 15 decimal digits.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

WIDTH(n)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

UZERO
Specifies that −0 and +0 are to be treated as unsigned zero values, that is, as
the same value. With UZERO, −0 and +0 are treated as positive for ON
processing.

UZERO overrides the default of treating −0 and +0 as signed zero values, that
is, as different values. Without UZERO, −0 is treated as negative and +0 is
treated as positive for ON processing.

OCCUR Examples
Although the OCCUR operators in the examples below could all be contained in a
single ICETOOL job step, they are shown and discussed separately for clarity. See
“DISPLAY Operator” on page 407 for additional examples of tailoring the report
format.

Example 1

OCCUR FROM(SOURCE) LIST(VOLSERS) ON(40,6,CH) ON(VALCNT)

Prints, in the VOLSERS data set:

v A heading line containing the standard headings

v A data line for each unique ON(40,6,CH) value in the standard format containing:

OCCUR Operator

Chapter 6. Using ICETOOL 455

– The characters from positions 40-45 of the SOURCE data set for the unique
value

– The count of occurrences in the SOURCE data set of the unique value

The VOLSERS output starts on a new page and looks as follows (the first 2 records
are shown with illustrative values):

(40,6,CH) VALUE COUNT
ABC001 000000000000025
ABC002 000000000000011
. .
. .
. .

The heading line appears at the top of each page.

Example 2

OCCUR FROM(IN) LIST(LIST1) -
TITLE(’ 3090 Distribution ’) -
PAGE -
HEADER(’Data Centers’) ON(VALCNT) -
HEADER(’State’) ON(1,16,CH) -
HEADER(’3090s’) ON(25,3,PD) -
BLANK

Prints, in the LIST1 data set:

v A title line containing the specified title and the page number

v A heading line containing the specified underlined headings

v A data line for each unique ON(1,16,CH) and ON(25,3,PD) value in the BLANK
format containing:

– The count of occurrences in the IN data set of the unique value

– The characters from positions 1-16 of the IN data set for the unique value

– The packed decimal values from positions 25-27 of the IN data set for the
unique value

The LIST1 output starts on a new page and looks as follows (the first 2 records are
shown with illustrative values):

3090 Distribution - 1 -

Data Centers State 3090s
--------------- ---------------- ------

12 Alabama 1
6 Alabama 2
. . .
. . .
. . .

The title line and underlined heading line appear at the top of each page.

OCCUR Operator

456 DFSORT R14 Application Programming Guide

Example 3

OCCURS FROM(FAILURES) LIST(CHECKIT) -
DATE TITLE(’Possible System Intruders’) PAGE -
HEADER(’ Userid ’) HEADER(’ Logon Failures ’) -
ON(23,8,CH) ON(VALCNT) -
HIGHER(4) -
BLANK

Prints, in the CHECKIT data set:

v A title line containing the date, the specified title, and the page number

v A heading line containing the specified underlined headings

v A data line for each unique ON(23,8,CH) value for which there are more than 4
occurrences, in the BLANK format, containing:

– The characters from positions 23-30 of the FAILURES data set

– The count of occurrences of the characters from positions 23-30 of the
FAILURES data set

The CHECKIT output starts on a new page and looks as follows (the first 2 records
are shown with illustrative values):

10/21/92 Possible System Intruders - 1 -

Userid Logon Failures
-------- ----------------
B7234510 5
D9853267 11
. .
. .
. .

The title line and underlined heading line appear at the top of each page.

Example 4

OCCUR FROM(VARIN) LIST(ONCE) -
TITLE(’Record lengths that occur only once’) -
TIME(12:) DATE(DMY.) -
ON(VLEN) NODUPS BLANK

Prints, in the ONCE data set:

v A title line containing the specified title and the time and date

v A heading line containing the standard heading

v A data line for each record length for which there is only one occurrence, in the
BLANK format, containing the record length

The ONCE output starts on a new page and looks as follows (the first 2 records are
shown with illustrative values):

OCCUR Operator

Chapter 6. Using ICETOOL 457

Record lengths that occur only once 09:52:17 am 21.10.92

RECORD LENGTH
57
61
.
.
.

The title line and heading line appear at the top of each page.

Example 5

OCCUR FROM(BRANCH) LIST(CALLRPT)-
DATENS(4MD)-
TITLE(’Yearly Branch Phone Call Counts’)-
HEADER(’Phone Number’) ON(7,10,ZD,E’(999)-999-9999’)-
HEADER(’Calls’) ON(VALCNT,A1,N05)-
INDENT(5) BETWEEN(10)

Prints, in the CALLRPT data set:

v A title line containing the date (without separators) and the specified title.

v A heading line containing the specified underlined headings.

v A data line for each unique ON(7,10,ZD) value containing:

– The zoned decimal value from positions 7-16 of the BRANCH data set printed
as (ddd)-ddd-dddd according to the E’pattern’ formatting item.

– The count of occurences of this value printed as dd,ddd according to the A1
and N05 formatting items.

The report is indented by five blanks as specified by the INDENT(5) operand, and
ten blanks appear between the columns as specified by the BETWEEN(10)
operand.

The CALLRPT output starts on a new page and looks as follows:

20020316 Yearly Branch Phone Call Counts

Phone Number Calls
-------------- -------
(037)-325-1807 3,125
(216)-721-5530 2,087
(218)-062-7214 872

RANGE Operator

Prints a message containing the count of values in a specified range for a specific
numeric field.

�� RANGE FROM(indd) ON(p,m,f)
ON(VLEN)

HIGHER(x)
LOWER(y)
HIGHER(x) LOWER(y)
EQUAL(v)
NOTEQUAL(w)

VSAMTYPE(x)
��

OCCUR Operator

458 DFSORT R14 Application Programming Guide

|

|
|
|
|
|
|
|
|

|

|

|

|

|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
||

|

DFSORT is called to copy the indd data set to ICETOOL’s E35 user exit. ICETOOL
prints a message containing the range count as determined by its E35 user exit.

The range can be specified as higher than x, lower than y, higher than x and lower
than y, equal to v, or not equal to w, where x, y, v, and w are signed or unsigned
decimal values. If the range is specified as higher than x and lower than y, it must
be a valid range (for example, higher than 5 and lower than 6 is not a valid range
since there is no integer value that satisfies the criteria).

You must not supply your own DFSORT MODS, INREC, or OUTREC statement
since they would override the DFSORT statements passed by ICETOOL for this
operator.

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

ON(p,m,f)
Specifies the position, length, and format of the numeric field to be used for this
operation.

p specifies the first byte of the field relative to the beginning of the input record.
p is 1 for the first data byte of a fixed-length record and 5 for the first data byte
of a variable-length record as illustrated below (RRRR represents the 4-byte
record descriptor word):

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. The maximum length for a field
depends on its format.

f specifies the format of the field as follows:

Format Code Length Description

BI 1 to 4 bytes Unsigned binary

FI 1 to 4 bytes Signed fixed-point

PD 1 to 8 bytes Signed packed decimal

ZD 1 to 15 bytes Signed zoned decimal

CSF or FS 1 to 16 bytes (15 digit limit) Signed numeric with optional
leading floating sign

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

For a CSF or FS format field:

v A maximum of 15 digits is allowed. If a CSF/FS value with 16 digits is found,
ICETOOL issues an error message and terminates the operation.

For a ZD or PD format field:

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

RANGE Operator

Chapter 6. Using ICETOOL 459

v If a decimal value contains an invalid digit (A-F), ICETOOL identifies the bad
value in a message and terminates the operation.

v A value is treated as positive if its sign is F, E, C, A, 8, 6, 4, 2, or 0.

v A value is treated as negative if its sign is D, B, 9, 7, 5, 3, or 1.

For a ZD, PD or CSF/FS format field, a negative zero value is treated as a
positive zero value.

ON(VLEN)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

HIGHER(x)
Values higher than x are counted as contained in the range. If only HIGHER(x)
is specified, the range count is incremented when x < value. If LOWER(y) is
also specified, the range count is incremented when x < value < y.

x must be specified as n, +n, or -n where n can be 1 to 15 digits.

LOWER(y)
Values lower than y are counted as contained in the range. If only LOWER(y) is
specified, the range count is incremented when value < y. If HIGHER(x) is also
specified, the range count is incremented when x < value < y.

y must be specified as n, +n, or -n where n can be 1 to 15 digits.

EQUAL(v)
Values equal to v are counted as contained in the range. The range count is
incremented when v = value.

v must be specified as n, +n, or -n where n can be 1 to 15 decimal digits.

NOTEQUAL(w)
Values not equal to w are counted as contained in the range. The range count
is incremented when w ¬= value.

w must be specified as n, +n, or -n where n can be 1 to 15 decimal digits.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

RANGE Example

RANGE FROM(DATA1) ON(VLEN) HIGHER(10)
RANGE FROM(DATA2) ON(11,6,ZD) LOWER(+3000)
RANGE FROM(DATA3) ON(29001,4,FI) -

HIGHER(-10000) LOWER(27)
RANGE FROM(DATA2) ON(25,3,PD) EQUAL(-999)
RANGE FROM(DATA3) ON(40,1,BI) NOTEQUAL(199)

The first RANGE operator prints a message containing the count of binary values
from positions 1-2 of the DATA1 data set that are higher than 10.

The second RANGE operator prints a message containing the count of zoned
decimal values from positions 11-16 of the DATA2 data set that are lower than
3000.

RANGE Operator

460 DFSORT R14 Application Programming Guide

The third RANGE operator prints a message containing the count of fixed-point
values from positions 29 001-29 004 of the DATA3 data set that are higher than -10
000 but lower than 27.

The fourth RANGE operator prints a message containing the count of packed
decimal values from positions 25-27 of the DATA2 data set that are equal to -999.

The fifth RANGE operator prints a message containing the count of binary values
from position 40 of the DATA3 data set that are not equal to 199. This RANGE
operator could be used to count the number of records that do not have ’G’ in
position 40, since 199 (X’C7’) is the EBCDIC code for ’G’. Alternatively, the COUNT
operator could be used with OMIT COND=(40,1,CH,EQ,C’G’).

SELECT Operator

Selects records from an input data set based on meeting criteria for the number of
times specified numeric or character field values occur. This makes it possible to
only keep records with duplicate field values, only keep records with no duplicate
field values, only keep records with field values that occur more than, less than, or
exactly n times, or only keep the first or last record with each unique or duplicate
field value. From 1 to 10 fields can be specified. At least one ON(VLEN) or
ON(p,m,f) field must be specified; all such ON fields specified will be used to
determine the ″value count″ (that is, the number of times the ON values occur) to
be matched against the criteria.

DISCARD(savedd) can be used to save the records which do not meet the criteria
(that is, the discarded records), in the savedd data set. DISCARD(savedd) can be
used with or without TO(outdd).

DFSORT is called to sort the indd data set. ICETOOL uses its E35 exit to determine
which records to include in the outdd data set or savedd data set.

ICETOOL requires extra storage for SELECT processing, over and above what is
normally needed by ICETOOL and DFSORT, in order to save your records until it
can determine whether or not they meet your specified criteria. In most cases, only
a small amount of storage is needed and can be obtained (above 16MB virtual).
However, for a FROM data set with a large record length and criteria requiring
many saved records, a large amount of storage is needed. For example, with a
record length of 32756 and HIGHER(99), over 3 MBs of storage is needed. If
ICETOOL cannot get the storage it needs, it issues a message and terminates the

�� SELECT FROM(indd) TO(outdd)
DISCARD(savedd)

TO(outdd) DISCARD(savedd)

E ON(p,m,f)
ON(VLEN)

�

� ALLDUPS
NODUPS
HIGHER(x)
LOWER(y)
EQUAL(v)
FIRST
LAST
FIRSTDUP
LASTDUP

VSAMTYPE(x) UZERO
��

RANGE Operator

Chapter 6. Using ICETOOL 461

|
|
|
|
|
|
|
|
|

|
|
|

|
|

SELECT operation. Increasing the REGION by the amount indicated in the
message may allow ICETOOL to run successfully.

The DYNALLOC option is passed to DFSORT to ensure that work space is
available for the sort. If your installation defaults for dynamic allocation are
inappropriate for a SELECT operator, you can take one of the following actions:

1. Override the DYNALLOC option using an OPTION control statement such as:
in the DFSPARM data set (applies to all OCCUR, SELECT, SORT, and UNIQUE

operators).

2. Use SORTWKdd DD statements to override the use of dynamic allocation
(applies to all OCCUR, SELECT and UNIQUE operators). Refer to “SORTWKdd
DD Statement” on page 69 for details.

Tape work data sets cannot be used with ICETOOL.

You must not supply your own DFSORT MODS, INREC, OUTREC or OUTFIL
statement since they would override the DFSORT statements passed by ICETOOL
for this operator.

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

TO(outdd)
Specifies the ddname of the output data set to which DFSORT will write the
records it selects for the operation (that is, the records that meet the specified
criteria). Thus, the outdd data set will contain the records selected by
ALLDUPS, NODUPS, HIGHER(x), LOWER(y), EQUAL(v), FIRST, LAST,
FIRSTDUP or LASTDUP.

An outdd DD statement must be present and must define an output data set
that conforms to the rules for DFSORT’s SORTOUT data set (if the DISCARD
operand is not specified) or OUTFIL data set (if the DISCARD operand is
specified).

TO and DISCARD can both be specified. If DISCARD is not specified, TO must
be specified. If TO is not specified, DISCARD must be specified.

The ddname specified in the TO operand must not be the same as the ddname
specified in the FROM or DISCARD operand.

Refer to “JCL Restrictions” on page 396 for more information.

DISCARD(savedd)
Specifies the ddname of the output data set to which DFSORT will write the
records it does not select for this operation (that is, the records that do not meet
the specified criteria). Thus, the savedd data set will contain the records
discarded by ALLDUPS, NODUPS, HIGHER(x), LOWER(y), EQUAL(v), FIRST,
LAST, FIRSTDUP or LASTDUP.

A savedd DD statement must be present and must define an output data set
that conforms to the rules for DFSORT’s OUTFIL data set.

TO and DISCARD can both be specified. If DISCARD is not specified, TO must
be specified. If TO is not specified, DISCARD must be specified.

OPTION DYNALLOC=(3390,5)

SELECT Operator

462 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|

|
|

|
|

The ddname specified in the DISCARD operand must not be the same as the
ddname specified in the FROM or TO operand.

Refer to “JCL Restrictions” on page 396 for more information.

ON(p,m,f)
Specifies the position, length, and format of a numeric or character field to be
used for this operation.

p specifies the first byte of the field relative to the beginning of the input record.
p is 1 for the first data byte of a fixed-length record and 5 for the first data byte
of a variable-length record as illustrated below (RRRR represents the 4-byte
record descriptor word):

m specifies the length of the field in bytes. A field must not extend beyond
position 32752, or beyond the end of a record. The maximum length for a field
depends on its format.

f specifies the format of the field as shown below.

Format Code Length Description

BI 1 to 1500 bytes Unsigned binary

FI 1 to 256 bytes Signed fixed-point

PD 1 to 8 bytes Signed packed decimal

ZD 1 to 15 bytes Signed zoned decimal

CH 1 to 1500 bytes Character

CSF or FS 1 to 16 bytes Signed numeric with optional
leading floating sign

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

For a ZD or PD format field:

v F, E, C, A, 8, 6, 4, 2, and 0 are treated as equivalent positive signs. Thus the
zoned decimal values F2F3C1, F2F3F1 and 020301 are counted as only one
unique value.

v D, B, 9, 7, 5, 3, and 1 are treated as equivalent negative signs. Thus the
zoned decimal values F2F3B0, F2F3D0, and 020310 are counted as only
one unique value.

v Digits are not checked for validity.

ON(VLEN)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

ALLDUPS
Limits the records selected to those with ON values that occur more than once
(value count > 1). You can use this operand to keep just those records with
duplicate field values.

ALLDUPS is equivalent to HIGHER(1).

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

SELECT Operator

Chapter 6. Using ICETOOL 463

|
|

|

|
|
|

||

|

|||

NODUPS
Limits the records selected to those with ON values that occur only once (value
count = 1). You can use this operand to keep just those records with no
duplicate field values.

NODUPS is equivalent to EQUAL(1) or LOWER(2).

HIGHER(x)
Limits the records selected to those with ON values that occur more than x
times (value count > x). You can use this operand to keep just those records
with field values that occur more than x times.

x must be specified as n or +n where n can be 0 to 99.

LOWER(y)
Limits the records selected to those with ON values that occur less than y times
(value count < y). You can use this operand to keep just those records with field
values that occur less than y times.

y must be specified as n or +n where n can be 0 to 99.

EQUAL(v)
Limits the records selected to those with ON values that occur v times (value
count = v). You can use this operand to keep just those records with field
values that occur v times.

v must be specified as n or +n where n can be 0 to 99.

FIRST
Limits the records selected to those with ON values that occur only once (value
count = 1) and the first record of those with ON values that occur more than
once (value count > 1). You can use this operand to keep just the first record
for each unique field value.

LAST
Limits the records selected to those with ON values that occur only once (value
count = 1) and the last record of those with ON values that occur more than
once (value count > 1). You can use this operand to keep just the last record
for each unique field value.

FIRSTDUP
Limits the records selected to the first record of those with ON values that occur
more than once (value count > 1). You can use this operand to keep just the
first record of those records with duplicate field values.

LASTDUP
Limits the records selected to the last record of those with ON values that occur
more than once (value count > 1). You can use this operand to keep just the
last record of those records with duplicate field values.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

UZERO
See the discussion of this operand on the OCCUR statement in “OCCUR
Operator” on page 446.

SELECT Examples
Although the SELECT operators in the examples below could all be contained in a
single ICETOOL job step, they are shown and discussed separately for clarity.

SELECT Operator

464 DFSORT R14 Application Programming Guide

|
|
|
|

|
|
|
|

Example 1

SELECT FROM(INPUT) TO(DUPS) ON(11,8,CH) ON(30,44,CH) ALLDUPS

Sorts the INPUT data set to the DUPS data set, selecting only the records from
INPUT with characters in positions 11-18 and characters in positions 30-73 that
occur more than once (that is, only records with duplicate ON field values).

The DUPS data set might look as follows (several records are shown for illustrative
purposes):
USR002 EISSLER 12 DOC.EXAMPLES
DFSRT2 EISSLER 5 DOC.EXAMPLES
DFSRT5 MADRID 20 MYDATA
DFSRT1 MADRID 20 MYDATA
SYS003 MADRID 20 MYDATA
DFSRT2 MADRID 20 SORTST1.TEST
USR003 MADRID 20 SORTST1.TEST
. . . .
. . . .
. . . .

Example 2

SELECT FROM(INPUT) TO(ONLYONE) ON(23,3,FS) NODUPS

Sorts the INPUT data set to the ONLYONE data set, selecting only the records from
INPUT with floating sign values in positions 23-25 that occur just once (that is, only
records with no duplicate ON field values).

The ONLYONE data set might look as follows (several records are shown for
illustrative purposes):
DFSRT2 EISSLER 5 DOC.EXAMPLES
DFSRT1 PACKER 8 ICETOOL.SMF.RUNS
USR002 EISSLER 12 DOC.EXAMPLES
SYS003 YAEGER 32 ICETOOL.TEST.CASES
DFSRT2 MCNEILL 108 FS.TEST.CASES
. . . .
. . . .
. . . .

Example 3

SELECT FROM(FAILURES) TO(CHECKOUT) ON(28,8,CH) ON(1,5,CH) -
HIGHER(3)

Sorts the FAILURES data set to the CHECKOUT data set, selecting only the
records from FAILURES with characters in positions 28-35 and characters in
positions 1-5 that occur more than three times (that is only records with four or
more duplicate ON field values).

The CHECKOUT data set might look as follows (several records are shown for
illustrative purposes):
03/12/91 08:36:59 A3275647
03/12/91 09:27:32 A3275647
03/12/91 09:03:18 A3275647
03/12/91 08:56:13 A3275647
03/06/91 15:12:01 C3275647

SELECT Operator

Chapter 6. Using ICETOOL 465

03/06/91 14:57:00 C3275647
03/06/91 15:43:19 C3275647
03/06/91 16:06:39 C3275647
03/06/91 15:22:08 C3275647
. . .
. . .
. . .

Example 4

SELECT FROM(BOOKS) TO(PUBLISHR) ON(29,10,CH) FIRST

Sorts the BOOKS data set to the PUBLISHR data set, selecting only the records
from BOOKS with characters in positions 29-38 that occur only once and the first
record of those with characters in positions 29-38 that occur more than once (that
is, one record for each unique ON field value).

The PUBLISHR data set might look as follows (several records are shown for
illustrative purposes):
Banana Slugs I Have Known Brent Animals
Toads on Parade Cooper Animals
Pets Around the World Davis Animals
. . .
. . .
. . .

Example 5

SELECT FROM(BOOKS) TO(PUBLISHR) ON(29,10,CH) FIRST -
DISCARD(SAVEREST)

This example creates the same PUBLISHR data set as Example 4. In addition, it
creates a SAVEREST data set which contains all of the records not written to the
PUBLISHR data set. The SAVEREST data set might look as follows (several
records are shown for illustrative purposes):
How to Talk to Your Amoeba Brent Animals
What Buzzards Want Davis Animals
Birds of Costa Rica Davis Animals
.
.
.

Example 6

SELECT FROM(MASTPULL) TO(MATCH) ON(5,8,CH) FIRSTDUP

This example shows how you can use a list of account numbers in a ″pull″ data set
to only select records with those account numbers from a ″master″ data set. The
MASTPULL DD would have the ″master″ data set and ″pull″ data set concatenated
together (in that order).

The SELECT operator sorts the concatenated data sets and selects only the first
record of those with characters in positions 5-12 that occur more than once (that is,
one record for each duplicate ON field value). Since the ″master″ data set is first in
the concatenation, the selected records will come from the ″master″ data set.

If the ″master″ data set looked like this:

SELECT Operator

466 DFSORT R14 Application Programming Guide

|

|
|
|

|
|
|
|

|
|
|
|

|

A52 RB172832 2001/03/15
N92 MX328126 2001/01/27
B12 LB018725 2000/12/28
J73 AB007231 2001/02/13
Q28 SP973004 2000/11/19

and the ″pull″ data set looked like this:
AB007231
RS859276
QN005001
MX328126

the MATCH data set would look like this:
J73 AB007231 2001/02/13
N92 MX328126 2001/01/27

Note: This example assumes that there are not any duplicate account numbers in
either the ″master″ or ″pull″ data sets. If that is not true, you can use
SELECT with FIRST or LAST, for the appropriate data set, to make it true.
For example, if your ″master″ data set has duplicate account numbers and
you want to select the first account number from the ″master″ data set for
each account number in the ″pull″ data set, you could use the following
statements:

SELECT FROM(MASTER) TO(TEMP) ON(5,8,CH) FIRST
SELECT FROM(TEMPPULL) TO(MATCH) ON(5,8,CH) FIRSTDUP

The TEMPPULL DD would have the temporary data set and ″pull″ data set
concatenated together (in that order).

SORT Operator

Sorts a data set to one or more output data sets.

DFSORT is called to sort the indd data set to the outdd data sets using the
DFSORT control statements in xxxxCNTL. You must supply a DFSORT SORT
statement in the xxxxCNTL data set to indicate the control fields for the sort. You
can use additional DFSORT statements in the xxxxCNTL data set to sort a subset
of the input records (INCLUDE or OMIT statement; SKIPREC and STOPAFT
options; OUTFIL INCLUDE, OMIT, STARTREC, ENDREC and SPLIT operands;
user exit routines), reformat records for output (INREC and OUTREC statements,
OUTFIL OUTREC operand, user exit routines), and so on.

The active locale’s collating rules affect SORT processing as explained in “SORT
Control Statement” on page 300. If an INCLUDE or OMIT statement or an OUTFIL
INCLUDE or OMIT operand is specified in the xxxxCNTL data set, the active

�� SORT FROM(indd) USING(xxxx)

E

,

TO(outdd)

VSAMTYPE(x)
�

�
LOCALE(name)
LOCALE(CURRENT)
LOCALE(NONE)

SERIAL
��

SELECT Operator

Chapter 6. Using ICETOOL 467

|||||||||||||||||||||||||||||||||
|

|
|||||||||||||||||||||||||

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|

|
|
|
|
|
|
|

|
|

|
|

locale’s collating rules affect INCLUDE and OMIT processing as explained in the
“Cultural Environment Considerations” discussion in “INCLUDE Control Statement”
on page 111.

The DYNALLOC option is passed to DFSORT to ensure that work space is
available for the sort. If your installation defaults for dynamic allocation are
inappropriate for a SORT operator, you can take one of the following actions:

1. Override the DYNALLOC option using an OPTION control statement such as:

in the xxxxCNTL data set (only applies to this operator) or the DFSPARM data
set (applies to all OCCUR, SELECT, SORT and UNIQUE operators).

2. Use xxxxWKdd DD statements (where xxxx is specified in the USING operand)
to override the use of dynamic allocation (only applies to this operator). Refer to
“SORTWKdd DD Statement” on page 69 for details.

Tape work data sets cannot be used with ICETOOL.

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

USING(xxxx)
Specifies the first 4 characters of the ddname for the control statement data set
to be used by DFSORT for this operation. xxxx must be four characters which
are valid in a ddname of the form xxxxCNTL. xxxx must not be SYSx.

An xxxxCNTL DD statement must be present, and the control statements in it
must conform to the rules for DFSORT’s SORTCNTL data set.

The xxxxCNTL data set must contain a SORT statement. If TO is not specified,
the xxxxCNTL data set must also contain either one or more OUTFIL
statements or a MODS statement for an E35 routine that disposes of all
records. Other statements are optional.

If you want to override dynamic allocation of work data sets for this operation,
you can use xxxxWKdd DD statements for that purpose.

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

TO(outdd,...)
Specifies the ddnames of the output data sets to be written by DFSORT for this
operation. From 1 to 10 outdd names can be specified. An outdd DD statement
must be present for each outdd name specified. If a single outdd data set is
specified, DFSORT is called once to sort the indd data set to the outdd data set
using SORTOUT processing; the outdd data set must conform to the rules for
DFSORT’s SORTOUT data set. If multiple outdd data sets are specified and
SERIAL is not specified, DFSORT is called once to sort the indd data set to the
outdd data sets using OUTFIL processing; the outdd data sets must conform to
the rules for DFSORT’s OUTFIL data sets.

A ddname specified in the FROM operand must not also be specified in the TO
operand.

OPTION DYNALLOC=(3390,5)

SORT Operator

468 DFSORT R14 Application Programming Guide

|
|
|

|
|

Refer to “JCL Restrictions” on page 396 for more information regarding the
selection of ddnames.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

LOCALE(name)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

LOCALE(CURRENT)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

LOCALE(NONE)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

SERIAL
Specifies that OUTFIL processing is not to be used when multiple outdd data
sets are specified. DFSORT is called multiple times and uses SORTOUT
processing; the outdd data sets must conform to the rules for DFSORT’s
SORTOUT data set. SERIAL is not recommended because the use of serial
processing (that is, multiple calls to DFSORT) instead of OUTFIL processing
can degrade performance and imposes certain restrictions as detailed below.
SERIAL is ignored if a single outdd data set is specified.

DFSORT is called to sort the indd data set to the first outdd data set using the
DFSORT control statements in the xxxxCNTL data set. If the sort operation is
successful, DFSORT is called as many times as necessary to copy the first
outdd data set to the second and subsequent outdd data sets. Therefore, for
maximum efficiency, use a DASD data set as the first in a list of outdd data sets
on both DASD and tape. If more than one outdd data set is specified, DFSORT
must be able to read the first outdd data set after it is written in order to copy it
to the other outdd data sets. Do not use a SYSOUT or DUMMY data set as the
first in a list of outdd data sets because:

v If the first data set is SYSOUT, DFSORT abends when it tries to copy the
SYSOUT data set to the second outdd data set.

v If the first data set is DUMMY, DFSORT copies the empty DUMMY data set
to the other outdd data sets (that is, all of the resulting outdd data sets are
empty).

SORT Examples
Although the SORT operators in the examples below could all be contained in a
single ICETOOL job step, they are shown and discussed separately for clarity.

Example 1

* Method 1
SORT FROM(MASTER) TO(PRINT,TAPE,DASD) USING(ABCD)

* Method 2
SORT FROM(MASTER) TO(DASD,TAPE,PRINT) USING(ABCD) SERIAL

This example shows two different methods for creating multiple sorted output data
sets. Assume that the ABCDCNTL data set contains:

SORT Operator

Chapter 6. Using ICETOOL 469

SORT FIELDS=(15,20,CH,A,1,5,PD,D)

Method 1 requires one call to DFSORT, one pass over the input data set, and
allows the output data sets to be specified in any order. The SORT operator sorts
all records from the MASTER data set to the PRINT (SYSOUT), TAPE, and DASD
data sets, using the SORT statement in the ABCDCNTL data set and OUTFIL
processing.

Method 2 requires three calls to DFSORT, three passes over the input data set, and
imposes the restriction that the SYSOUT data set must not be the first TO data set.
The SORT operator sorts all records from the MASTER data set to the DASD data
set, using the SORT statement in the ABCDCNTL data set, and then copies the
resulting DASD data set to the TAPE and PRINT (SYSOUT) data sets. Since the
first TO data set is processed three times (written, read, read), placing the DASD
data set first is more efficient than placing the TAPE data set first. PRINT must not
be the first in the TO list because a SYSOUT data set cannot be read.

Example 2

* Method 1
SORT FROM(IN) TO(DEPT1) USING(DPT1)
SORT FROM(IN) TO(DEPT2) USING(DPT2)
SORT FROM(IN) TO(DEPT3) USING(DPT3)

* Method 2
SORT FROM(IN) USING(ALL3)

This example shows two different methods for creating sorted subsets of an input
data set. Assume that:

v The DPT1CNTL data set contains:
SORT FIELDS=(51,2,BI,A,18,5,CH,A,58,4,BI,A)
INCLUDE COND=(5,3,CH,EQ,C’D01’)

v The DPT2CNTL data set contains:
SORT FIELDS=(51,2,BI,A,18,5,CH,A,58,4,BI,A)
INCLUDE COND=(5,3,CH,EQ,C’D02’)

v The DPT3CNTL data set contains:
SORT FIELDS=(51,2,BI,A,18,5,CH,A,58,4,BI,A)
INCLUDE COND=(5,3,CH,EQ,C’D03’)

v The ALL3CNTL data set contains:
SORT FIELDS=(51,2,BI,A,18,5,CH,A,58,4,BI,A)
OUTFIL FNAMES=DEPT1,INCLUDE=(5,3,CH,EQ,C’D01’)
OUTFIL FNAMES=DEPT2,INCLUDE=(5,3,CH,EQ,C’D02’)
OUTFIL FNAMES=DEPT3,INCLUDE=(5,3,CH,EQ,C’D03’)

Method 1 requires three calls to DFSORT and three passes over the input data set:

v The first SORT operator sorts the records from the IN data set that contain D01
in positions 5-7 to the DEPT1 data set

v The second COPY operator sorts the records from the IN data set that contain
D02 in positions 5-7 to the DEPT2 data set

v The third COPY operator sorts the records from the IN data set that contain D03
in positions 5-7 to the DEPT3 data set.

SORT Operator

470 DFSORT R14 Application Programming Guide

Method 2 accomplishes the same result as method 1 but, because it uses OUTFIL
statements instead of TO operands, requires only one call to DFSORT and one
pass over the input data set.

Example 3

SORT FROM(IN1) TO(FRANCE) USING(SRT1) LOCALE(FR_FR)
SORT FROM(IN1) TO(CANADA) USING(SRT1) LOCALE(FR_CA)
SORT FROM(IN1) TO(BELGIUM) USING(SRT1) LOCALE(FR_BE)

This example shows how sorted data for three different countries can be produced.
Assume that the SRT1CNTL data set contains:

SORT FIELDS=(5,20,CH,A,31,15,CH,A,1,4,FI,D,63,10,CH,D)

The first SORT operator sorts all records from the IN1 data set to the FRANCE data
set, using the SORT statement in the SRT1CNTL data set. The character (CH)
control fields are sorted according to the collating rules defined in locale FR_FR
(French language for France).

The second SORT operator sorts all records from the IN1 data set to the CANADA
data set, using the SORT statement in the SRT1CNTL data set. The character (CH)
control fields are sorted according to the collating rules defined in locale FR_CA
(French language for Canada).

The third SORT operator sorts all records from the IN1 data set to the BELGIUM
data set, using the SORT statement in the SRT1CNTL data set. The character (CH)
control fields are sorted according to the collating rules defined in locale FR_BE
(French language for Belgium).

STATS Operator

Prints messages containing the minimum, maximum, average, and total for
specified numeric fields. From 1 to 10 fields can be specified.

DFSORT is called to copy the indd data set to ICETOOL’s E35 user exit. ICETOOL
prints messages containing the minimum, maximum, average, and total for each
field as determined by its E35 exit.

The average (or mean) is calculated by dividing the total by the record count and
rounding down to the nearest integer (examples: 23 / 5 = 4, -23 / 5 = - 4).

You must not supply your own DFSORT MODS, INREC, or OUTREC statement
since they would override the DFSORT statements passed by ICETOOL for this
operator.

Operand Descriptions
The operands described below can be specified in any order.

�� STATS FROM(indd) E ON(p,m,f)
ON(VLEN) VSAMTYPE(x)

��

SORT Operator

Chapter 6. Using ICETOOL 471

FROM(indd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

ON(p,m,f)
Specifies the position, length, and format of a numeric field to be used for this
operation.

p specifies the first byte of the field relative to the beginning of the input record.
p is 1 for the first data byte of a fixed-length record and 5 for the first data byte
of a variable-length record as illustrated below (RRRR represents the 4-byte
record descriptor word):

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. The maximum length for a field
depends on its format.

f specifies the format of the field as follows:

Format Code Length Description

BI 1 to 4 bytes Unsigned binary

FI 1 to 4 bytes Signed fixed-point

PD 1 to 8 bytes Signed packed decimal

ZD 1 to 15 bytes Signed zoned decimal

CSF or FS 1 to 16 bytes Signed numeric with optional
leading floating sign

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

If the total for a field overflows, ICETOOL continues processing, but prints
asterisks for the average and total for that field.

For a CSF or FS format field:

v A maximum of 15 digits is allowed. If a CSF/FS value with 16 digits is found,
ICETOOL issues an error message and terminates the operation.

For a ZD or PD format field:

v If a decimal value contains an invalid digit (A-F), ICETOOL identifies the bad
value in a message and prints asterisks for the minimum, maximum, average
and total for that field.

v A value is treated as positive if its sign is F, E, C, A, 8, 6, 4, 2, or 0.

v A value is treated as negative if its sign is D, B, 9, 7, 5, 3, or 1.

For a ZD, PD or CSF/FS format field, a negative zero value is treated as a
positive zero value.

ON(VLEN)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

STATS Operator

472 DFSORT R14 Application Programming Guide

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

STATS Example

STATS FROM(DATA1) ON(VLEN) ON(15,4,ZD)

Prints messages containing the minimum, maximum, average and total of the binary
values in positions 1-2 of the DATA1 data set. For variable-length records, this gives
statistics about the length of the records. Prints messages containing the minimum,
maximum, average and total of the zoned decimal values in positions 15-18 of the
DATA1 data set.

UNIQUE Operator

Prints a message containing the count of unique values for a specified numeric or
character field.

DFSORT is called to sort the indd data set to ICETOOL’s E35 user exit. ICETOOL
prints a message containing the unique count as determined by its E35 user exit.

The DYNALLOC option is passed to DFSORT to ensure that work space is
available for the sort. If your installation defaults for dynamic allocation are
inappropriate for a UNIQUE operator, you can take one of the following actions:

1. Override the DYNALLOC option using an OPTION control statement such as:
in the DFSPARM data set (applies to all OCCUR, SELECT, SORT and UNIQUE

operators).

2. Use SORTWKdd DD statements to override the use of dynamic allocation
(applies to all OCCUR, SELECT, and UNIQUE operators). Refer to
“SORTWKdd DD Statement” on page 69 for details.

Tape work data sets cannot be used with ICETOOL.

You must not supply your own DFSORT MODS, INREC, OUTREC, SUM or
RECORD statement since they override the DFSORT statements passed by
ICETOOL for this operator.

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

ON(p,m,f)
Specifies the position, length, and format of a numeric or character field to be
used with this operation.

�� UNIQUE FROM(indd) ON(p,m,f)
ON(VLEN) VSAMTYPE(x) UZERO

��

OPTION DYNALLOC=(3390,5)

STATS Operator

Chapter 6. Using ICETOOL 473

p specifies the first byte of the field relative to the beginning of the input record.
p is 1 for the first data byte of a fixed-length record and 5 for the first data byte
of a variable-length record as illustrated below (RRRR represents the 4-byte
record descriptor word):

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. The maximum length for a field
depends on its format.

f specifies the format of the field as shown below:

Format Code Length Description

BI 1 to 256 bytes Unsigned binary

FI 1 to 256 bytes Signed fixed-point

PD 1 to 32 bytes Signed packed decimal

ZD 1 to 32 bytes Signed zoned decimal

CH 1 to 1500 bytes Character

CSF or FS 1 to 16 bytes Signed numeric with optional
leading floating sign

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

For a ZD or PD format field:

v F, E, C, A, 8, 6, 4, 2, and 0 are treated as equivalent positive signs. Thus the
zoned decimal values F2F3C1, F2F3F1, and 020301 are counted as only
one unique value.

v D, B, 9, 7, 5, 3, and 1 are treated as equivalent negative signs. Thus the
zoned decimal values F2F3B0, F2F3D0, and 020310 are counted as only
one unique value.

v Digits are not checked for validity.

ON(VLEN)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

UZERO
See the discussion of this operand on the OCCUR statement on “OCCUR
Operator” on page 446.

UNIQUE Example

UNIQUE FROM(DATAIN) ON(20,40,CH)
UNIQUE FROM(DATAIN) ON(5,3,ZD)

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

UNIQUE Operator

474 DFSORT R14 Application Programming Guide

|||

The first UNIQUE operator prints a message containing the count of unique
character data in positions 20-59 of the DATAIN data set.

The second UNIQUE operator prints a message containing the count of unique
zoned decimal values in positions 5-7 of the DATAIN data set.

VERIFY Operator

Examines particular decimal fields in a data set and prints a message identifying
each invalid value found for each field. From 1 to 10 fields can be specified.

DFSORT is called to copy the indd data set to ICETOOL’s E35 user exit. ICETOOL
uses its E35 user exit to examine the digits and sign of each value for validity, and
for each invalid value found, prints an error message containing the record number
and field value (in hexadecimal).

You must not supply your own DFSORT MODS, INREC, or OUTREC statement
since they would override the DFSORT statements passed by ICETOOL for this
operator.

Notes:

1. Values with invalid decimal digits are also identified for the DISPLAY, OCCUR,
RANGE, and STATS operators.

2. The DISPLAY operator can be used to print a report identifying the relative
record number, hexadecimal value, and associated fields for each invalid (and
valid) decimal value, as shown in Example 9 under “DISPLAY Operator” on
page 407.

Operand Descriptions
The operands described below can be specified in any order.

FROM(indd)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

ON(p,m,f)
Specifies the position, length, and format of a decimal field to be used for this
operation.

p specifies the first byte of the field relative to the beginning of the input record.
p is 1 for the first data byte of a fixed-length record and 5 for the first data byte
of a variable-length record as illustrated below (RRRR represents the 4-byte
record descriptor word):

�� VERIFY FROM(indd) E ON(p,m,f)
NOSIGN LIMIT(n)

�

�
VSAMTYPE(x)

��

Fixed-length record | Variable-length record
| D | A | T | A | ... | | R | R | R | R | D | A | T | A | ...

p= 1 2 3 4 | p= 1 2 3 4 5 6 7 8

UNIQUE Operator

Chapter 6. Using ICETOOL 475

m specifies the length of the field in bytes. A field must not extend beyond
position 32752 or beyond the end of a record. The maximum length for a field
depends on its format.

f specifies the format of the field as shown below:

Format Code Length Description

PD 1 to 16 bytes Signed packed decimal

ZD 1 to 18 bytes Signed zoned decimal

Note: See Appendix C, “Data Format Descriptions” on page 633 for detailed format
descriptions.

A value is considered invalid under one of the following circumstances:

v it contains A-F as a digit (examples: a PD field of 00AF or a ZD field of
F2FB)

v it contains 0-9 as a sign and the NOSIGN operand is not specified
(examples: a PD field of 3218 or a ZD field of F235).

If the number of bad values reaches the LIMIT for invalid decimal values,
ICETOOL terminates the operation. If the LIMIT operand is not specified, a
default of 200 is used for the invalid decimal value limit.

NOSIGN
Specifies that the sign of the decimal values is not to be validity checked
(overriding the default of checking for 0-9 as invalid signs).

LIMIT(n)
See the discussion of this operand on the DISPLAY statement in “DISPLAY
Operator” on page 407.

VSAMTYPE(x)
See the discussion of this operand on the COPY statement in “COPY Operator”
on page 397.

VERIFY Example

VERIFY FROM(NEW) ON(22,16,PD) ON(7,9,ZD)
VERIFY FROM(NEW) ON(22,16,PD) ON(7,9,ZD) NOSIGN LIMIT(10)

The first VERIFY operator checks for invalid digits (A-F) and invalid signs (0-9) in
the packed decimal values from positions 22-37 and the zoned decimal values from
positions 7-15 of the NEW data set. A message is printed identifying each value (if
any) that contains an invalid digit or sign. If 200 invalid values are found, the
operation is terminated.

The second VERIFY operator checks for invalid digits (A-F) in the packed decimal
values from positions 22-37 and the zoned decimal values from positions 7-15 of
the NEW data set. A message is printed identifying each value (if any) that contains
an invalid digit. If 10 invalid values are found, the operation is terminated.

Note: The DISPLAY operator can be used to print a report identifying the relative
record number, hexadecimal value, and associated fields for each invalid
(and valid) decimal value, as shown in Example 9 under “DISPLAY Operator”
on page 407.

VERIFY Operator

476 DFSORT R14 Application Programming Guide

Calling ICETOOL from a Program
ICETOOL can be called from an assembler program using the LINK, ATTACH, or
XCTL system macros. Standard linkage conventions must be used. When
ICETOOL finishes processing, it returns to the calling program with register 15 set
to the highest operation return code encountered. See “ICETOOL Return Codes” on
page 484 for an explanation of the ICETOOL return codes.

When you call ICETOOL from a program, you have a choice of two different
interfaces: the TOOLIN Interface and the Parameter List Interface.

TOOLIN Interface
With the TOOLIN Interface, you supply ICETOOL statements in the TOOLIN data
set. ICETOOL prints messages in the TOOLMSG data set, but does not return
information directly to your program.

To use the TOOLIN interface, set a value of 0 in register 1, or place the address of
a 4-byte field containing X’80000000’ in register 1, before calling ICETOOL as
shown below:

Parameter List Interface
The Parameter List Interface allows you to use the information derived by ICETOOL
in your program. With this interface, you supply ICETOOL statements in a
parameter list. ICETOOL prints messages in the TOOLMSG data set, and puts an
operation status indicator and “operation-specific values” in the parameter list for
use by your calling program.

Figure 40 on page 478 shows the format of the parameter list used with the
Parameter List Interface. Table 67 on page 480 shows the operation-specific values
returned to the calling program.

...
SLR R1,R1 TOOLIN INTERFACE - METHOD 1
LINK EP=ICETOOL CALL ICETOOL
...
LA R1,NOPLIST TOOLIN INTERFACE - METHOD 2
LINK EP=ICETOOL CALL ICETOOL
...

NOPLIST DC X’80’,AL3(0) TOOLIN INTERFACE INDICATOR
...

Calling ICETOOL from a Program

Chapter 6. Using ICETOOL 477

The flags field must be specified. A 4-byte field containing X’ FFFFFFFF’ must be
used to indicate the end of the parameter list. It can be coded after any pair of
statement/return addresses.

All addresses in the parameter list must be 31-bit addresses or clean 24-bit
addresses (the first 8 bits contain zeros).

Explanation of Fields
Flags

Bit 0 = 0:
Use the Parameter List Interface. Process ICETOOL statements from
this parameter list and return information to this parameter list. Ignore
TOOLIN.

Bit 0 = 1:
Use the TOOLIN Interface. Process ICETOOL statements from
TOOLIN. Ignore this parameter list.

Bits 1-31:
Reserved. Must be set to zero to ensure future extendibility.

Statement Area Address and Statement Area
Each statement area address gives the location of a statement area which
describes an ICETOOL operation to be performed. If the statement area
address is 0, ICETOOL ignores this statement area/return area pair. Otherwise,
the statement area address must point to a statement area in the following
format:

v A 2-byte length field containing the length of the statement area for this
operation. If this field is 0, ICETOOL ignores this statement area/return area
pair.

v One or more 80-character ICETOOL statement images in the format
described in “ICETOOL Statements” on page 396. Each statement area must
have one operator statement. Comment and blank statements before the
operator statement are processed. Comment, blank, and additional operator
statements after the end of the first operator statement are ignored.

Return Area Address and Return Area
Each return area address gives the location of a return area in which ICETOOL
is to return operation-specific information for the operation described in the
corresponding statement area. If the return area address is 0, ICETOOL does

Register 1 Flags

Statement Area 1 Address

Return Area 1 address

Starement Area n Address

Return Area n Address

X'FFFFFFFF"

Figure 40. Parameter List for Parameter List Interface

Calling ICETOOL from a Program

478 DFSORT R14 Application Programming Guide

not return any information for this operation. Otherwise, the return area address
must point to a return area in the following general format:

v A 2-byte length field containing the length of the return area for this
operation. If this field is 0, ICETOOL does not return any information for this
operation.

v A 1-byte operation status indicator which is set by ICETOOL as follows:

0 = This operation was run and completed with return code 0 or 4.
Operation-specific values (see below) were returned.

4 = This operation was not run (for example, scan mode was in effect) or
did not complete with return code 0 or 4. Operation-specific values
(see below) were not returned.

v Operation-specific values. Each value returned by ICETOOL is an 8-byte
packed decimal value with a C for a positive sign or a D for a negative sign.
If ICETOOL set the operation status to 4, it did not return any values for this
operation.

Note: Programs in LPALIB which call ICETOOL must provide return areas
which ICETOOL can store into.

The required return area length and the operation-specific values returned for
each operator are shown in Table 67 on page 480. If the return area length is
less than the length required, ICETOOL issues a message and terminates the
operation.

Calling ICETOOL from a Program

Chapter 6. Using ICETOOL 479

Table 67. Return Area Lengths/Operation-Specific Values

Operator Return Area Length (Bytes) Operation-Specific Values
Returned

COPY 1 None

COUNT 9 Count of records processed,
or 0 if any criteria specified

DEFAULTS 1 None

DISPLAY 9 Count of records processed

MODE 1 None

OCCUR 17 Count of records processed,
count of records resulting
from criteria

RANGE 17 Count of records processed,
count of values in range

SELECT 17 Count of records processed,
count of records resulting
from criteria

SORT 1 None

STATS 32*n+9 Count of records processed,
minimum for ON field 1,
maximum for ON field 1,
average for ON field 1, total
for ON field 1, ... minimum for
ON field n, maximum for ON
field n, average for ON field
n, total for ON field n

UNIQUE 17 Count of records processed,
count of unique values

VERIFY 9 Count of records processed

Parameter List Interface Example
The example in Figure 41 on page 481 shows a portion of an assembler language
program that uses the Parameter List Interface. Table 68 on page 483 shows the
JCL you might use to run the program in Figure 41 on page 481.

Calling ICETOOL from a Program

480 DFSORT R14 Application Programming Guide

|||
|

DEPTVIEW CSECT
...

* SET UP PARAMETER LIST AND CALL ICETOOL
LA R1,PARLST LOAD ADDRESS OF PARAMETER LIST
LINK EP=ICETOOL CALL ICETOOL
LTR R15,R15 IF ANY OPERATIONS WERE NOT SUCCESSFUL,
BNZ CKSTAT1 DETERMINE WHICH ONE FAILED

* ALL OPERATIONS WERE SUCCESSFUL
* CHECK EMPLOYEES PER DEPARTMENT AGAINST ACCEPTABLE LEVEL

CP RT2AVG1,EMAVGCK IF AVERAGE IS ACCEPTABLE,
BNH CKQUAL NO MESSAGE IS NEEDED

* ISSUE A MESSAGE SHOWING AVERAGE, MINIMUM, MAXIMUM, AND
* TOTAL NUMBER OF EMPLOYEES PER DEPARTMENT.

...
* CHECK EXPENSES PER DEPARTMENT AGAINST ACCEPTABLE LEVEL
CKQUAL CP RT2AVG2,TLAVGCK IF AVERAGE IS ACCEPTABLE,

BNH PCTCALC NO MESSAGE IS NEEDED
* ISSUE A MESSAGE SHOWING AVERAGE, MINIMUM, MAXIMUM, AND
* TOTAL EXPENSES PER DEPARTMENT.

...
* CALCULATE THE PERCENTAGE OF DEPARTMENTS OVER/UNDER EMPLOYEE LIMIT
PCTCALC MVC WORK+2(4),RT3RCDS+4 COPY NUMBER OF DEPARTMENTS

SP WORK+2(4),RT3RNG+4(4) SUBTRACT ’NUMBER WITHIN LIMITS’ TO
* GET ’NUMBER OVER/UNDER LIMIT’

CP WORK+2(4),P0 IF NONE OVER/UNDER LIMIT,
BE PCTPRT PERCENTAGE IS ZERO
MP WORK+2(4),P100 MULTIPLY NUMBER OVER/UNDER BY 100
DP WORK(6),RT3RCDS+4(4) DIVIDE BY NUMBER OF DEPARTMENTS

* ISSUE A MESSAGE SHOWING THE PERCENTAGE OF DEPARTMENTS THAT ARE
* OVER/UNDER EMPLOYEE LIMIT
PCTPRT UNPK PCTVAL,WORK(2) CONVERT AVERAGE TO PRINTABLE EBCDIC

OI PCTVAL+2,X’F0’ ENSURE LAST DIGIT IS PRINTABLE
...

* ONE OR MORE OPERATIONS FAILED
CKSTAT1 CLI RT1STAT,0 IF OPERATION 1 WORKED,

BNE CKSTAT2 CHECK OPERATION 2
* ISSUE MESSAGE: OPERATION 1 FAILED - CHECK TOOLMSG

...
* PARAMETER LIST
PARLST DC A(0) USE PARAMETER LIST INTERFACE

DC A(ST1A) STATEMENT AREA 1 ADDRESS
DC A(RT1A) RETURN AREA 1 ADDRESS
DC A(ST2A) STATEMENT AREA 2 ADDRESS
DC A(RT2A) RETURN AREA 2 ADDRESS
DC A(ST3A) STATEMENT AREA 3 ADDRESS
DC A(RT3A) RETURN AREA 3 ADDRESS
DC F’.*-1’ END OF PARAMETER LIST* OPERATOR STATEMENT AREAS

Figure 41. ICETOOL Parameter List Interface Example (Part 1 of 2)

Calling ICETOOL from a Program

Chapter 6. Using ICETOOL 481

* COPY OPERATION
ST1A DC AL2(ST1E-ST1) LENGTH OF STATEMENT AREA 1
ST1 DC CL80’* CREATE TWO COPIES OF THE DENVER SITE’

DC CL80’* DEPARTMENT RECORDS’
DC CL80’COPY FROM(IN) TO(OUT1,OUT2) USING(CTL1)’

ST1E EQU *
* STATS OPERATION
ST2A DC AL2(ST2E-ST2) LENGTH OF STATEMENT AREA 2
ST2 DC CL80’* GET STATISTICS FOR NUMBER OF EMPLOYEES’

DC CL80’* AND TRAVEL EXPENSES PER DEPARTMENT’
DC CL80’STATS FROM(OUT1) ON(15,2,PD) ON(28,8,ZD)’

ST2E EQU *
* RANGE OPERATION
ST3A DC AL2(ST3E-ST3) LENGTH OF STATEMENT AREA 3
ST3 DC CL80’* DETERMINE THE NUMBER OF DEPARTMENTS THAT ARE’

DC CL80’* WITHIN THE LIMIT FOR NUMBER OF EMPLOYEES’
DC CL80’RANGE FROM(OUT1) ON(15,2,PD) -’
DC CL80’ HIGHER(10) LOWER(21)’

ST3E EQU *
* RETURN AREAS

COPY OPERATION
RT1A DC AL2(RT1E-RT1STAT) LENGTH OF RETURN AREA 1
RT1STAT DS C OPERATION STATUS
RT1E EQU *
* STATS OPERATION
RT2A DC AL2(RT2E-RT2STAT) LENGTH OF RETURN AREA 2
RT2STAT DS C OPERATION STATUS
RT2RCDS DS PL8 COUNT OF RECORDS PROCESSED
RT2MIN1 DS PL8 FIELD 1 - MINIMUM VALUE
RT2MAX1 DS PL8 FIELD 1 - MAXIMUM VALUE
RT2AVG1 DS PL8 FIELD 1 - AVERAGE VALUE
RT2TOT1 DS PL8 FIELD 1 - TOTAL VALUE
RT2MIN2 DS PL8 FIELD 2 - MINIMUM VALUE
RT2MAX2 DS PL8 FIELD 2 - MAXIMUM VALUE
RT2AVG2 DS PL8 FIELD 2 - AVERAGE VALUE
RT2TOT2 DS PL8 FIELD 2 - TOTAL VALUE
RT2E EQU *
* RANGE OPERATION
RT3A DC AL2(RT3E-RT3STAT) LENGTH OF RETURN AREA 3
RT3STAT DS C OPERATION STATUS
RT3RCDS DS PL8 COUNT OF RECORDS PROCESSED
RT3RNG DS PL8 COUNT OF VALUES IN RANGE
RT3E EQU *
* VARIABLES/CONSTANTS
WORK DS PL6 WORKING VARIABLE
P100 DC P’100’ CONSTANT 100
P0 DC P’0’ CONSTANT 0
EMAVGCK DC P’17’ ACCEPTABLE AVERAGE EMPLOYEE COUNT
TLAVGCK DC P’5000’ ACCEPTABLE AVERAGE TRAVEL EXPENSES
PCTVAL DS PL3 PERCENTAGE OF DEPARTMENTS THAT ARE
* OVER/UNDER EMPLOYEE LIMIT

...

Figure 41. ICETOOL Parameter List Interface Example (Part 2 of 2)

Calling ICETOOL from a Program

482 DFSORT R14 Application Programming Guide

Table 68. JCL for Parameter List Interface Program Example

//EXAMP JOB A402,PROGRAMMER
//INVOKE EXEC PGM=DEPTVIEW,REGION=1024K
//STEPLIB DD DSN=... Link library containing DEPTVIEW
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//IN DD DSN=ALL.DEPTS,DISP=SHR
//OUT1 DD DSN=ALL.DEPTS.BACKUP1,DISP=OLD
//OUT2 DD DSN=ALL.DEPTS.BACKUP2,DISP=OLD
//CTL1CNTL DD *
* SELECT ONLY THE DENVER SITE DEPARTMENT RECORDS

INCLUDE COND=(1,12,CH,EQ,C’DENVER’)
/*

ICETOOL Notes and Restrictions
v Small REGION values can cause storage problems when ICETOOL calls

DFSORT. Large REGION values give DFSORT the flexibility to use the storage it
needs for best performance. We recommend that you use a REGION value of at
least 1024K for ICETOOL.

v Each ICETOOL operation results in a set of ICETOOL messages in the
TOOLMSG data set, and a corresponding set of DFSORT messages in the
DFSMSG data set. For a particular call to DFSORT, you can relate the sets of
messages in the TOOLMSG and DFSMSG data sets by using the unique
identifier for that call. Just match the identifier printed in ICETOOL message
ICE606I or ICE627I to the same identifier printed in DFSORT message ICE200I.
This is particularly important if an ICETOOL operation fails due to an error
detected by DFSORT (return code 16).

v Since ICETOOL calls DFSORT, the installation options used for DFSORT are
those in effect for the appropriate program-invoked environment, that is, ICEAM2
or ICEAM4 or an ICETDx module activated for the ICEAM2 or ICEAM4
environment. The DFSORT installation options apply only to DFSORT, not to
ICETOOL. For example, ICEMAC option MSGCON=ALL causes DFSORT, but
not ICETOOL, to write messages to the master console. The one exception is
ICEMAC option SDBMSG; the value in effect from ICEAM2 or ICEAM4 is used
for ICETOOL’s TOOLMSG data set.

v When ICETOOL calls DFSORT, it passes control statements and options
appropriate to the specific operations being performed. You should not override
the DFSORT control statements or options passed by ICETOOL unless you
understand the ramifications of doing so.

For example, ICETOOL passes the NOABEND option to DFSORT to ensure that
ICETOOL will regain control if DFSORT issues an error message. If you specify:

you cause DFSORT to abend when it issues an error message, thus preventing
ICETOOL from performing subsequent operators.

v Tape work data sets cannot be used with ICETOOL.

v An ON field must not include bytes beyond the fixed part of variable length input
records. The entire field specified must be present in every input record,
otherwise, DFSORT issues message ICE015A, ICE218A, or ICE027A and
terminates.

v If a SmartBatch pipe data set is used for FROM, TO, LIST, or DISCARD and an
error is detected by ICETOOL or DFSORT, an ABEND is generated in order to

//DFSPARM DD *
DEBUG ABEND

Calling ICETOOL from a Program

Chapter 6. Using ICETOOL 483

allow appropriate error propagation by the system to other applications that may
be accessing the same SmartBatch pipe data set. See “SmartBatch Pipe
Considerations” on page 15 for information about special user abend processing
in conjunction with SmartBatch pipe data sets.

If DFSORT detects the error, it issues the appropriate ABEND as directed by the
ABCODE installation option (see DFSORT Installation and Customization R14).

If ICETOOL detects the error, it issues ABEND 2222.

ICETOOL Return Codes
ICETOOL sets a return code for each operation it performs in STOP or CONTINUE
mode and passes back the highest return code it encounters to the operating
system or the invoking program.

For successful completion of all operations, ICETOOL passes back a return code of
0 or 4 to the operating system or the invoking program.

For unsuccessful completion due to an unsupported operating system, ICETOOL
passes back a return code of 24 to the operating system or invoking program.

For unsuccessful completion of one or more operations, ICETOOL passes back a
return code of 12, 16, or 20 to the operating system or the invoking program.

The meanings of the return codes that ICETOOL passes back (in register 15) are:

0 Successful completion. All operations completed successfully.

4 Successful completion. All operations completed successfully. DFSORT
passed back a return code of 4 for one or more operations. See “DFSORT
Messages and Return Codes” on page 22 for details.

12 Unsuccessful completion. ICETOOL detected one or more errors that
prevented it from completing successfully. Messages for these errors were
printed in the TOOLMSG data set.

16 Unsuccessful completion. DFSORT detected one or more errors that
prevented ICETOOL from completing successfully. Messages for these
errors were printed in the DFSMSG data set.

20 Message data set error. The TOOLMSG DD statement was not present or
the TOOLMSG data set was not opened.

24 Unsupported operating system. This operating system is not supported
by this release of DFSORT.

ICETOOL Notes and Restrictions

484 DFSORT R14 Application Programming Guide

||
|

Chapter 7. Using Symbols for Fields and Constants

Field and Constant Symbols Overview 485
DFSORT Example . 486

SYMNAMES DD Statement . 488
SYMNOUT DD Statement . 488
SYMNAMES Statements . 488

Comment and Blank Statements 488
Symbol Statements . 489
Keyword Statements . 495
Using SYMNOUT to Check Your SYMNAMES Statements 498

Using Symbols in DFSORT Statements 498
SORT and MERGE . 499
SUM . 499
INCLUDE and OMIT . 500
INREC and OUTREC . 500
OUTFIL . 501

Using Symbols in ICETOOL Operators. 503
COUNT . 503
DISPLAY . 503
OCCUR . 503
RANGE . 504
SELECT . 504
STATS, UNIQUE and VERIFY 504
ICETOOL Example . 504

Notes for Symbols . 505

Field and Constant Symbols Overview
This chapter describes DFSORT’s simple and flexible method for using symbols in
DFSORT and ICETOOL statements. You can define and use a symbol for any field
or constant that is recognized in a DFSORT control statement or ICETOOL
operator. This makes it easy to create and reuse collections of symbols (that is,
mappings) representing information associated with various record layouts.

In addition, you can obtain and use collections of DFSORT symbols created
specifically for records produced by other products (for example, RACF,
DFSMSrmm and DCOLLECT) or by your site. Visit the DFSORT home page at the
following URL to obtain information about downloading DFSORT symbol mappings
for records produced by other products, and examples that use these symbols:

http://www.ibm.com/storage/dfsort/

Symbols can increase your productivity by automatically providing the positions,
lengths and formats of the fields, and the values of the constants, associated with
the particular records you are processing with DFSORT or ICETOOL.

To use symbols for DFSORT or ICETOOL, you just:

1. Create or obtain the DFSORT symbol data sets you need. Symbol data sets
contain symbols that map the fields in your records, and constants used for
comparisons, titles, headings and so on. The symbols are specified in
DFSORT’s simple but flexible SYMNAMES statement format. Symbols can be
easily added or modified using an editor, such as ISPF EDIT.

2. Include a SYMNAMES DD statement in your job. SYMNAMES specifies one or
more symbol data sets (sequential, partitioned member, DD *) to be used for

© Copyright IBM Corp. 1973, 2002 485

||

your DFSORT or ICETOOL application. SYMNAMES can be used to
concatenate as many symbol data sets as you like.

3. Use the symbols from SYMNAMES where appropriate in DFSORT control
statements or ICETOOL operators. You can mix symbols (for example,
Last_Name) with regular fields (for example, p,m,f) and constants (for example,
C’string’).

DFSORT or ICETOOL will read SYMNAMES and use the symbols it contains to
″transform″ your statements by performing symbol substitution. DFSORT or
ICETOOL will then use the transformed statements as if you had specified them
directly.

If your record layout changes, just make a corresponding change to your DFSORT
symbol data set. DFSORT will use the new mapping to ″transform″ your symbols
correctly, even if positions change, so you won’t have to change your statements.
Be sure that your symbol definitions match your record layout before you attempt to
use them.

DFSORT Example
The example below shows the JCL and control statements for a simple DFSORT
job that uses symbols.

Let’s say you created a symbols data set named MY.SYMBOLS that contains the
following SYMNAMES statements:
* Fields
First_Name,6,20,CH
Last_Name,*,=,=
Account_Number,53,3,PD
SKIP,2
Balance,*,6,ZD
Type,*,8,CH

* Constants
Loan,’LOAN’
Check,’CHECKING’
Level1,50000
Level2,-100

Here’s the JCL and control statements for the example:
//EXAMP JOB A402,PROGRAMMER
//RUNIT EXEC PGM=ICEMAN
//SYMNAMES DD DSN=MY.SYMBOLS,DISP=SHR
//SYMNOUT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SORTIN DD ...
//SORTOUT DD ...
//SYSIN DD *

INCLUDE COND=((Type,EQ,Loan,AND,Balance,GT,Level1),OR,
(Type,EQ,Check,AND,Balance,LE,Level2))

SORT FIELDS=(Last_Name,A,First_Name,A,
Type,A,Account_Number,D)

/*

This example is only meant to give you a quick overview of how symbols can be
used. The rest of this chapter will explain all of the details, but here are a few
important things to take note of:

v The SYMNAMES DD indicates you want DFSORT or ICETOOL to do symbol
processing. The SYMNAMES data set contains the symbols for fields and
constants.

Using Symbols for Fields and Constants

486 DFSORT R14 Application Programming Guide

v DFSORT or ICETOOL will print your original symbols and the symbol table
constructed from them in the SYMNOUT data set, if you specify it. You might
want to use SYMNOUT while debugging a set of symbols and then remove it, or
you might want to keep SYMNOUT permanently so you can always see your
original symbols and the symbol table.

v The simple, yet flexible, format for SYMNAMES statements is:
symbol,value remark

where value can represent a field (p,m,f or p,m or p) or a constant (C’string’,
c’string’, ’string’, X’string’, x’string’, B’string’, b’string’, n, +n or -n). Leading blanks
are allowed before symbol so indentation can be used. For example, the
following SYMNAMES statements could be specified:
Div1_Department,8,1,BI Division 1 Department

Research,B’0001....’ Research Departments
Marketing,B’0010....’ Marketing Departments
Development,B’0100....’ Development Departments

v Symbols are case-sensitive: Frank, FRANK and frank are three different
symbols.

v An asterisk (*) can be used to assign the next position to p. For example:
Symbola,6,20,CH
Symbolb,*,5,BI
Symbolc,*,12,ZD

is the same as specifying:
Symbola,6,20,CH
Symbolb,26,5,BI
Symbolc,31,12,ZD

By using * for p, you can map consecutive fields in your records without having
to compute their actual positions.

v SKIP,n can be used to advance the next position by n bytes so it can be used for
*. For example:
Symbola,6,20,CH
SKIP,2
Symbolb,*,5,BI

is the same as specifying:
Symbola,6,20,CH
Symbolb,28,5,BI

SKIP,n gives you an easy way to skip unused bytes. Other mapping aids allow
you to reset the next position (POSITION,q or POSITION,symbol), or align the
next position on a halfword (ALIGN,H), fullword (ALIGN,F) or doubleword
(ALIGN,D).

v An equal sign (=) can be used for p, m or f to assign the previous position, length
or format to p, m, or f, respectively. For example:
Symbola,6,20,CH

Symbola1,=,8,=
Symbola2,*,12,=

Symbold,*,=,ZD

is the same as specifying:
Symbola,6,20,CH

Symbola1,6,8,CH
Symbola2,14,12,CH

Symbold,26,12,ZD

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 487

By using = and *, you can easily map fields onto other fields.

v Symbols for fields and constants can be specified in any order. However, the use
of * and = imposes order dependencies on symbols for fields.

v Comment statements and blank statements are allowed in SYMNAMES.

SYMNAMES DD Statement

A SYMNAMES DD statement indicates you want DFSORT or ICETOOL to do
symbol processing. It specifies the SYMNAMES data set (SYMNAMES for short),
which can consist of one DFSORT symbol data set or many concatenated symbol
data sets.

A symbol data set can be a sequential data set, a partitioned member or a DD *
data set; all three types can be concatenated together for the SYMNAMES DD.
Each symbol data set must contain SYMNAMES statements describing the symbols
for fields and constants to be used for the DFSORT or ICETOOL application. Each
symbol data set must have the following attributes: RECFM=F or RECFM=FB and
LRECL=80.

For best performance, use a large block size, such as the system determined
optimum block size, for all DFSORT symbol data sets.

If a SYMNAMES DD statement is not present, or SYMNAMES is empty, symbol
processing is not performed.

SYMNOUT DD Statement
A SYMNOUT DD statement specifies a data set in which you want DFSORT or
ICETOOL to print your original SYMNAMES statements and the symbol table
constructed from them. DFSORT or ICETOOL uses RECFM=FBA, LRECL=121 and
the specified BLKSIZE for the SYMNOUT data set (SYMNOUT for short).

If the BLKSIZE you specify is not a multiple of 121, or you do not specify the
BLKSIZE:

v the system determined optimum block size is used, if supported

v otherwise, BLKSIZE=121 is used.

For best performance, use a large block size, such as the system determined
optimum block size, for the SYMNOUT data set.

SYMNAMES Statements

Each symbol in SYMNAMES must be described using a SYMNAMES statement. A
SYMNAMES statement can be a symbol statement, keyword statement, comment
statement or blank statement.

Comment and Blank Statements

A statement with an asterisk (*) in column 1 is treated as a comment statement. It is
printed in SYMNOUT (if specified), but otherwise not processed. A statement with
blanks in columns 1 through 80 is treated as a blank statement. It is printed in
SYMNOUT (if specified), but otherwise not processed.

Using Symbols for Fields and Constants

488 DFSORT R14 Application Programming Guide

Symbol Statements

The general format for a symbol statement is:
symbol,value remark

The general coding rules are as follows:

v Columns 1 through 80 are scanned.

v The symbol can start in column 1 or in any column after 1.

v A remark is optional, but if specified, must be separated from the value by at
least one blank. A remark is printed in SYMNOUT (if specified), but otherwise not
processed.

v A semicolon (;) can be used instead of a comma (,) between the symbol and the
value.

v Continuation is not allowed. Each symbol and value must be completely specified
on one line.

The specific syntax for symbol statements is:

�� symbol, constant
field

��

Symbol: A symbol can be 1 to 50 EBCDIC characters consisting of uppercase
letters (A-Z), lowercase letters (a-z), numbers (0-9), the number sign (#), the dollar
sign ($), the commercial at sign (@), the underscore(_) and the hyphen(-). The first
character of a symbol must not be a number or a hyphen. Symbols are treated as
case-sensitive: Frank, FRANK and frank are three different symbols.

The following DFSORT/ICETOOL reserved words (uppercase only as shown) are
not allowed as symbols: A, AC, ALL, AND, AQ, ASL, AST, BI, CH, CLO, COPY,
COUNT, COUNT15, CSF, CSL, CST, CTO, D, DATE, DATE1, DATE1P, DATE2,
DATE2P, DATE3, DATE3P, DT1, DT2, DT3, D1, D2, E, F, FI, FL, FS, H, HEX, LS,
Mn, Mnn, NONE, NUM, OL, OR, OT, PAGE, PAGEHEAD, PD, PD0, SEQNUM, SS,
SUBCOUNT, SUBCOUNT15, TIME, TIME1, TIME1P, TIME2, TIME2P, TIME3,
TIME3P, TM1, TM2, TM3, TM4, TS, VALCNT, VLEN, X, Y2x, Y2xx, Z and ZD where
n is 0-9 and x is any character. Lower case and mixed case forms of these words,
such as None and page, can be used as symbols.

POSITION, SKIP and ALIGN (uppercase only) are treated as keywords as
discussed in “Keyword Statements” on page 495 and thus are not recognized as
symbols. However, lowercase and mixed case forms of these words, such as
Position and skip, can be used as symbols.

Some examples of valid symbols are: Account_Number, CON12, PHONE#, count,
SORT-KEY, and _Invalid.

Some examples of invalid symbols are: 123_Account (starts with a number),
COUNT (reserved word), and -Invalid (starts with a hyphen).

Constant: A constant can be a character string, hexadecimal string, bit string,
decimal number, or two-digit year date string.

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 489

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|

A symbol for a constant value must be used only where such a constant is allowed
and has the desired result. Otherwise, substitution of the constant for the symbol
will result in an error message or unintended processing. For example, if the
following SYMNAMES statement is specified:
SYMB,B’10110001’

, SYMB can be used in this INCLUDE statement:
INCLUDE COND=(12,1,BI,EQ,SYMB)

since a bit string can be compared to a binary field. However, SYMB will result in
an error message if used in this INCLUDE statement:

INCLUDE COND=(12,1,CH,EQ,SYMB)

since a bit string cannot be compared to a character field.

Make sure the constants that will be substituted for your symbols are appropriate. If
in doubt, check the rules for constants given in the description of the relevant
operand.

A symbol can represent one of the following types of constants:

v A character string in the format ’xx...x’, C’xx...x’ or c’xx...x’.

The value x may be any EBCDIC character. You can specify up to 64 characters
for the string. c’xx...x’ will be treated like C’xx...x’.

If you want to include a single apostrophe in the character string, you must
specify it as two single apostrophes (each pair of apostrophes counts as two
characters towards the 64 character limit for the string). Thus:
Required: O’Neill Specify: C’O’’Neill’

Double-byte data may be used in a character string (each pair of shift-in/shift-out
characters and each double-byte character counts as two characters towards the
64 character limit for the string). See “INCLUDE Control Statement” on page 111
for details on double-byte data.

Some examples of valid character strings are: ’+0.193’, c’Title’, C’O’’Neil’,
C’J62,J82,M72’ and ’’.

Some examples of invalid character strings are: C’AB’’ (apostrophes not paired),
c’title (ending apostrophe missing) and C’O’NEIL’ (one apostrophe after O
instead of two).

You can use C’xx...x’ and ’xx...x’ interchangeably. ’xx...x’ will be substituted for
symbols where appropriate even if C’xx...x’ is specified in SYMNAMES. Likewise,
C’xx...x’ will be substituted for symbols where appropriate even if ’xx...x’ is
specified in SYMNAMES. For example, if these SYMNAMES statements are
specified:
My_Title,c’My Report’
My_Heading,C’January’
DEPT1,’J82’
DEPT2,c’M72’

the ICETOOL operator:
DISPLAY TITLE(My_Title) HEADER(My_Heading) ...

will be transformed to:
DISPLAY TITLE(’My Report’) HEADER(’January’) ...

Using Symbols for Fields and Constants

490 DFSORT R14 Application Programming Guide

and the INCLUDE statement:
INCLUDE COND=(5,3,EQ,DEPT1,OR,5,3,EQ,DEPT2),FORMAT=CH

will be transformed to:
INCLUDE COND=(5,3,EQ,C’J82’,OR,5,3,EQ,C’M72’),FORMAT=CH

Although the rules for character strings used as symbols generally follow the
rules for INCLUDE/OMIT character strings, keep in mind that the same rules do
not apply for character strings in all DFSORT and ICETOOL operands, so use
symbols representing character strings appropriately. For example, ICETOOL
only allows up to 50 characters for a TITLE string, so TITLE(MYCON) would
result in an error message if MYCON is a 64-character string, even though
MYCON could be used without error in an INCLUDE statement. As another
example, double-byte characters would be recognized in a character string
substituted for a symbol in an INCLUDE statement, but would not be recognized
in a character string substituted in an OUTREC statement.

v A hexadecimal string in the format X’yy...yy’ or x’yy...yy’.

The value yy represents any pair of hexadecimal digits. Each hexadecimal digit
must be 0-9, A-F or a-f. You can specify up to 32 pairs of hexadecimal digits.
x’yy...yy’ will be treated like X’yy...yy’. a-f will be treated like A-F.

Some examples of valid hexadecimal strings are: X’F2C3’, x’2fa71e’, and X’07’.

Some examples of invalid hexadecimal strings are: X’F2G301’ (G is not a valid
hexadecimal digit), x’bf3’ (unpaired hexadecimal digits) and X’’ (no hexadecimal
digits).

v A bit string in the format B’bbbbbbbb...bbbbbbbb’ or b’bbbbbbbb...bbbbbbbb’.

The value bbbbbbbb represents 8 bits that constitute a byte. Each bit must be 1,
0 or . (period). You can specify up to 8 groups of 8 bits. b’bbbbbbbb...bbbbbbbb’
will be treated like B’bbbbbbbb...bbbbbbbb’.

Some examples of valid bit strings are: B’01100100’, b’11..00..000..111’ and
B’11......’.

Some examples of invalid bit strings are: B’0101’ (not a multiple of eight bits),
b’00..11....’ (not a multiple of eight bits), b’00000002’ (2 is not a valid bit) and B’’
(no bits).

v A decimal number in the format n, +n or -n. You can specify from 1 to 15
significant digits.

Some examples of valid decimal numbers are: +270, 270, 000036, +0 and
-2000000.

Some examples of invalid decimal numbers are: ++15 (too many plus signs),
280- (sign in wrong place) and 2.8 (period is not allowed).

v A two-digit year date string in the format Y’string’ or y’string’.

string can be:

– yy, yyx,yyxx, yyxxx or yyxxxx where y is a hexadecimal year digit (0-9) and x
is a hexadecimal non-year digit (0-9).

– Uppercase, lowercase or mixed case forms of DATE1, DATE2, DATE3, LOW,
BLANKS or HIGH.

Some examples of valid two-digit year date strings are: Y’99’, y’00123’, y’date2’,
and Y’Blanks’.

Some examples of invalid two-digit year date strings are: Y’9’, y’AB123’, and
Y’blank’.

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 491

|

|
|

|
|

|
|

|
|

,

Field: A field can be specified as p,m,f (position, length and format), p,m (position
and length) or p (position only).

A symbol for a field value must be used only where such a field is allowed and has
the desired result. Otherwise, substitution of the field for the symbol will result in an
error message or unintended processing. For example, if the following SYMNAMES
statement is specified:
Field1,15,2,CH

Field1 can be used in a SORT statement such as:
SORT FIELDS=(Field1,A)

since a character field is allowed in a SORT statement. However, Field1 will result
in an error message if used in a SUM statement such as:

SUM FIELDS=(Field1)

since a character field is not allowed in a SUM statement.

Make sure the fields that will be substituted for your symbols are appropriate. If in
doubt, check the rules for p, m and f given in the description of the relevant
operand.

You can specify p,m,f for your field symbols and then use them where p,m is
required because DFSORT or ICETOOL will substitute just p,m when appropriate.
For example, if you specify the following in SYMNAMES:
First_Field,12,2,BI
Second_Field,18,6,CH
Third_Field,28,5,PD
Fourth_Field,36,3
Fifth_Field,52,4,PD
Max,200000

These DFSORT control statements:
OMIT COND=(Fifth_Field,GT,Max)
SORT FIELDS=(First_Field,A,Fourth_Field,A),FORMAT=CH
SUM FIELDS=(Second_Field,ZD)
OUTFIL OUTREC=(First_Field,2X,Third_Field,M11,Fourth_Field)

will be transformed to:
OMIT COND=(52,4,PD,GT,200000)
SORT FIELDS=(12,2,A,36,3,A),FORMAT=CH
SUM FIELDS=(18,6,ZD)
OUTFIL OUTREC=(12,2,2X,28,5,PD,M11,36,3)

Note that DFSORT did the following substitutions:

v OMIT statement: p,m,f for Fifth_Field as required by COND without FORMAT.

v SORT statement: p,m for First_Field and Fourth_Field as required by FIELDS
with FORMAT.

v SUM statement: p,m for Second_Field as required for symbol,f (that is,
Second_Field,ZD).

v OUTFIL statement: p,m for First_Field as required by the OUTREC operand for
an unedited field (that is, First_Field), but p,m,f for Third_Field as required by the
OUTREC operand for an edited field (that is, Third_Field,M11).

Using Symbols for Fields and Constants

492 DFSORT R14 Application Programming Guide

The general rules for using p, m and f in symbol statements are as follows:

v p can be a number, an asterisk (*) or an equal sign (=). A number from 1 to
32752 is allowed in p,m or p,m,f. Since p (position only) cannot be distinguished
from the constant n, 1 to 15 significant digits are allowed for p (position only).

An asterisk (*) can be used to assign the next position to p. Each time a symbol
for p,m,f or p,m is read, the next position is set to p+m. Additionally, the next
position can be modified by keyword statements (see “Keyword Statements” on
page 495). When * is specified for p, the next position is assigned to p. If the
next position has not been set when * is used for p (for example, * is used in the
first symbol), p is set to 1.

The symbol table printed in the SYMNOUT data set (if specified) will show you
the actual positions assigned when you specify * for p.

As an example of how * can be used, if you specify the following SYMNAMES
statements:
Sym1,*,5,ZD
Con1,27
Sym2,*,2,BI
Field1,8,13,CH
Field2,*,5,PD
Field3,*,2,FI

SYMNOUT will show the following symbol table:
Sym1,1,5,ZD
Con1,27
Sym2,6,2,BI
Field1,8,13,CH
Field2,21,5,PD
Field3,26,2,FI

By using * for p, you can map consecutive fields in your records without having
to compute their actual positions. You can also map fields added between other
fields without having to change the p values for the original or inserted fields. * is
also useful for creating mappings of contiguous fields using concatenated symbol
data sets. As a simple example, if you specify:
//SYMNAMES DD DSN=MY.SYMPDS(RDW),DISP=SHR
// DD DSN=MY.SYMPDS(SECTION1),DISP=SHR
// DD DSN=MY.SYMPDS(SECTION2),DISP=SHR

and the RDW member contains:
RDW,1,4,BI

the SECTION1 member contains:
Flag_Byte,*,1,BI

Error1,X’80’
Error2,X’40’

Count_of_Parts,*,5,ZD

and the SECTION2 member contains:
New_Parts,*,5,ZD
Old_Parts,*,5,ZD
Variable_Fields,*

SYMNOUT will show the following symbol table:
RDW,1,4,BI
Flag_Byte,5,1,BI
Error1,X’80’

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 493

Error2,X’40’
Count_of_Parts,6,5,ZD
New_Parts,11,5,ZD
Old_Parts,16,5,ZD
Variable_Fields,21

You might use these symbols in the following statements:
OPTION COPY
OUTFIL FNAMES=ERR1,INCLUDE=(Flag_Byte,EQ,Error1),

OUTREC=(RDW,Count_of_Parts,Variable_Fields)
OUTFIL FNAMES=ERR2,INCLUDE=(Flag_Byte,EQ,Error2),

OUTREC=(RDW,New_Parts,Old_Parts,Variable_Fields)

An equal sign (=) can be used to assign the previous position to p. Each time a
symbol for p,m,f or p,m is read, the previous position is set to p. Additionally, the
previous position can be modified by a POSITION keyword statement (see
below). When = is specified for p, the previous position is assigned to p. If the
previous position has not been set when = is used for p, an error message is
issued.

The symbol table printed in the SYMNOUT data set (if specified) will show you
the actual positions assigned when you specify = for p.

As an example of how = can be used for p, if you specify the following
SYMNAMES statements:
Sym1,5,4,CH

Sym2,=,2,CH
Sym3,*,2,CH

SYMNOUT will show the following symbol table:
Sym1,5,4,CH
Sym2,5,2,CH
Sym3,7,2,CH

By using = and * for p, you can easily map fields onto other fields.

Whenever you use = for p, you must ensure that the previous position is the one
you want. In particular, if you insert a new field symbol with the wrong position
before a symbol that uses = for p, you will need to change = to the actual
position you want.

v m can be an equal sign (=) or a number from 1 to 32752. An equal sign (=) can
be used to assign the previous length to m. Each time a symbol for p,m,f or p,m
is read, the previous length is set to m. When = is specified for m, the previous
length is assigned to m. If the previous length has not been set when = is used
for m, an error message is issued.

The symbol table printed in the SYMNOUT data set (if specified) will show you
the actual lengths assigned when you specify = for m.

As an example of how = can be used for m, if you specify the following
SYMNAMES statements:
Flags1,5,1,BI

Error1,X’08’
Flags2,15,=,BI

Error2,X’04’
Flags3,22,=,BI

Error3,X’23’

SYMNOUT will show the following symbol table:

Using Symbols for Fields and Constants

494 DFSORT R14 Application Programming Guide

Flags1,5,1,BI
Error1,X’08’
Flags2,15,1,BI
Error2,X’04’
Flags3,22,1,BI
Error3,X’23’

Whenever you use = for m, you must ensure that the previous length is the one
you want. In particular, if you insert a new field symbol with the wrong length
before a symbol that uses = for m, you will need to change = to the actual length
you want.

v f can be an equal sign (=) or one of the following formats: AC, AQ, ASL, AST, BI,
CH, CLO, CSF, CSL, CST, CTO, DT1, DT2, DT3, D1, D2, FI, FL, FS, LS, OL,
OT, PD, PD0, SS, TM1, TM2, TM3, TM4, TS, Y2B, Y2C, Y2D, Y2DP, Y2P, Y2PP,
Y2S, Y2T, Y2TP, Y2U, Y2UP, Y2V, Y2VP, Y2W, Y2WP, Y2X, Y2XP, Y2Y, Y2YP,
Y2Z or ZD.

You can specify f using uppercase letters (for example, CH), lowercase letters
(for example, ch) or mixed case letters (for example, Ch). f specified in any case
will be treated like uppercase.

An equal sign (=) can be used to assign the previous format to f. Each time a
symbol for p,m,f is read, the previous format is set to f. When = is specified for f,
the previous format is assigned to f. If the previous format has not been set when
= is used for f, an error message is issued.

The symbol table printed in the SYMNOUT data set (if specified) will show you
the actual formats assigned when you specify = for f.

As an example of how = can be used for f, if you specify the following
SYMNAMES statements:
Field1,5,8,CH
Field1a,=,3
Field2,*,12,=
Field3,*,20,=

SYMNOUT will show the following symbol table:
Field1,5,8,CH
Field1a,5,3
Field2,8,12,CH
Field3,20,20,CH

Whenever you use = for f, you must ensure that the previous format is the one
you want. In particular, if you insert a new field symbol with the wrong format
before a symbol that uses = for f, you will need to change = to the actual format
you want.

Keyword Statements
The general format for a keyword statement is:
keyword,value remark

The general coding rules are as follows:

v Columns 1 through 80 are scanned.

v The keyword can start in column 1 or in any column after 1.

v The keyword must be specified in all uppercase letters. Otherwise, it will be
treated as a symbol.

v A remark is optional, but if specified, must be separated from the value by at
least one blank. A remark is printed in SYMNOUT (if specified), but otherwise not
processed.

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 495

|
|
|
|
|

v A semicolon (;) can be used instead of a comma (,) between the keyword and
the value.

v Continuation is not allowed. Each keyword and value must be completely
specified on one line.

The specific syntax for keyword statements is:

�� POSITION,q
POSITION,symbol
SKIP,n
ALIGN,H
ALIGN,F
ALIGN,D

��

Keyword statements can help you map the fields in your records by letting you set
a starting position, skip unused bytes and align fields on specific boundaries.

v POSITION,q can be used to set the next position and the previous position to q.
As discussed under p above, the next position is used when an asterisk (*) is
specified for p in a symbol statement, and the previous position is used when an
equal sign (=) is specified for p in a symbol statement. q can be a number from 1
to 32752. When you use POSITION,q you can use either * or = interchangably
for p of the next symbol.

As an example of how POSITION,q can be used, if you specify the following
SYMNAMES statements:
POSITION,27
Account_Balance,*,5,PD
Account_Id,*,8,CH
POSITION,84
New_Balance,=,20

SYMNOUT will show the following symbol table:
Account_Balance,27,5,PD
Account_Id,32,8,CH
New_Balance,84,20

v POSITION,symbol can be used to set the next position and the previous position
to the position established for the indicated symbol. As discussed under p above,
the next position is used when an asterisk (*) is specified for p in a symbol
statement, and the previous position is used when an equal sign (=) is specified
for p in a symbol statement. When you use POSITION,symbol you can use either
* or = interchangeably for p of the next symbol.

symbol can be any previously defined field symbol. Thus, POSITION,symbol can
be used like the Assembler ORG instruction to map different fields onto the same
area.

As an example of how POSITION,symbol can be used, if you specify the
following SYMNAMES statements:
Workarea,21,100 Use workarea for volsers

volser1,=,6,CH
volser2,*,6,CH

POSITION,Workarea Reuse workarea for status and dsname
status,=,1,BI
dsname,*,44,CH

SYMNOUT will show the following symbol table:

Using Symbols for Fields and Constants

496 DFSORT R14 Application Programming Guide

Workarea,21,100
volser1,21,6,CH
volser2,27,6,CH
status,21,1,BI
dsname,22,44,CH

v SKIP,n can be used to add n bytes to the next position. As discussed under p
above, the next position is used when an asterisk (*) is specified for p in a
symbol statement. n can be a number from 1 to 32752.

As an example of how SKIP,n can be used, if you specify the following
SYMNAMES statements:
Field#1,15,6,FS
SKIP,4 Unused bytes
Field#2,*,5,=
SKIP,2 Unused bytes
Field#3,*,8,CH

SYMNOUT will show the following symbol table:
Field#1,15,6,FS
Field#2,25,5,FS
Field#3,32,8,CH

v ALIGN,H can be used to align the next position on a halfword boundary, that is,
1, 3, 5 and so on. As discussed under p above, the next position is used when
an asterisk (*) is specified for p in a symbol statement. ALIGN,h will be treated
like ALIGN,H.

As an example of how ALIGN,H can be used, if you specify the following
SYMNAMES statements:
A1,7,3,CH
ALIGN,H
A2,*,2,BI

SYMNOUT will show the following symbol table:
A1,7,3,CH
A2,11,2,BI

v ALIGN,F can be used to align the next position on a fullword boundary, that is, 1,
5, 9 and so on. As discussed under p above, the next position is used when an
asterisk (*) is specified for p in a symbol statement. ALIGN,f will be treated like
ALIGN,F.

As an example of how ALIGN,F can be used, if you specify the following
SYMNAMES statements:
B1,7,3,CH
ALIGN,f
B2,*,4,BI

SYMNOUT will show the following symbol table:
B1,7,3,CH
B2,13,4,BI

v ALIGN,D can be used to align the next position on a doubleword boundary, that
is, 1, 9, 17 and so on. As discussed under p above, the next position is used
when an asterisk (*) is specified for p in a symbol statement. ALIGN,d will be
treated like ALIGN,D.

As an example of how ALIGN,D can be used, if you specify the following
SYMNAMES statements:
C1,7,3,CH
ALIGN,D
C2,*,8,BI

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 497

SYMNOUT will show the following symbol table:
C1,7,3,CH
C2,17,8,BI

Using SYMNOUT to Check Your SYMNAMES Statements
To avoid surprises, it’s a good idea to check for errors and incorrect positions,
lengths and formats in any SYMNAMES statements you create before you use
them in DFSORT or ICETOOL statements.

The following simple job will cause DFSORT to issue messages in SYSOUT for any
errors it detects in your SYMNAMES statements, allowing you to correct these
errors before proceeding. Once your SYMNAMES statements are free of errors, the
job will cause DFSORT to show the Symbol Table in SYMNOUT, allowing you to
correct any incorrect positions, lengths or formats for your symbols (for example,
those caused by incorrect use of *, =, SKIP, and so on).
//CHECK JOB A402,PROGRAMMER
//DOIT EXEC PGM=ICEMAN
//SYMNAMES DD ... SYMNAMES statements to be checked
//SYMNOUT DD SYSOUT=*
//SORTIN DD *
//SORTOUT DD DUMMY
//SYSIN DD *

OPTION COPY
/*

Once you’ve ″debugged″ your SYMNAMES statements, you can use them in
DFSORT and ICETOOL statements.

Using Symbols in DFSORT Statements
You can use symbols in the following DFSORT control statements: INCLUDE,
INREC, MERGE, OMIT, OUTFIL, OUTREC, SORT and SUM. In general, you can
use symbols in these DFSORT statements where you can use constants (’string’,
C’string’, X’string’, B’string’, n, +n or -n) and fields (p,m,f or p,m or p). See the
discussion of each control statement in Chapter 3, “Using DFSORT Program
Control Statements” on page 95 for a description of its syntax.

You can use symbols in these control statements in any source (that is, DFSPARM,
SYSIN, SORTCNTL, and parameter lists).

When DFSORT transforms these control statements, it removes labels and
remarks, and continues statements by placing an asterisk in column 72 and
beginning the next line in column 16. DFSORT will list the original control
statements as specified (with labels, remarks, comment statements and blank
statements) by source, as well as the transformed statements.

Details and examples of the use of symbols for each applicable DFSORT control
statement is given below. The examples are meant to illustrate variations in how
symbols can be used and how they will be transformed. Therefore, the examples do
not necessarily correspond to how symbols would be used in real applications.

The examples use these SYMNAMES statements:
C_Field1,6,5,CH
Any_Format,12,3
Z_Field1,22,8,ZD
P_Field1,30,4,PD
C_Field2,4,2,ch

Using Symbols for Fields and Constants

498 DFSORT R14 Application Programming Guide

SubString,16,3,SS
LIMIT,+12500
Depts,’J82,L92,M72’
Code_1,c’86A4Z’
QCON,C’Carrie’’s Constant’
Stopper,X’FFFFFF’
Flags,35,1,BI

Error,B’11010000’
Empty,B’......01’
Full,X’FF’

Lookup,52,1,BI
Entry1,X’05’
Value1,’Read’
Entry2,X’20’
Value2,’Update’

RDW,1,4 Record Descriptor Word
Variable_Fields,451 Variable fields at end of variable-length record
* Constants for report
Div_Title,’Division: ’

BO_Title,’Branch Office’
BO_Hyphens,’-------------’
BO_Equals,’=============’
PL_Title,’ Profit/(Loss)’

PL_Hyphens,’--------------------’
PL_Equals,’====================’
Total,’Total’
Lowest,’Lowest’
* Fields for report
Division,3,10,CH
Branch_Office,16,13,CH
Profit_or_Loss,31,10,ZD

SORT and MERGE
FIELDS operand: You can use symbols where you can use fields (p,m,f and p,m).
A symbol for p,m,f results in substitution of p,m if FORMAT=f or symbol,f is
specified.

Example 1
SORT FIELDS=(C_Field1,A,Z_Field1,D,

C_Field2,ZD,A),EQUALS

will be transformed to:
SORT FIELDS=(6,5,CH,A,22,8,ZD,D,4,2,ZD,A),EQUALS

Example 2
MERGE FIELDS=(Any_Format,A,C_Field1,A),FORMAT=CH

will be transformed to:
MERGE FIELDS=(12,3,A,6,5,A),FORMAT=CH

SUM
FIELDS operand: You can use symbols where you can use fields (p,m,f and p,m).
A symbol for p,m,f results in substitution of p,m if FORMAT=f or symbol,f is
specified.

Example 1
SUM FIELDS=(Z_Field1,C_Field1,ZD)

will be transformed to:

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 499

SUM FIELDS=(22,8,ZD,6,5,ZD)

Example 2
SUM FORMAT=ZD,FIELDS=(C_Field1,Any_Format)

will be transformed to:
SUM FORMAT=ZD,FIELDS=(6,5,12,3)

INCLUDE and OMIT
COND operand: You can use symbols where you can use fields (p1,m1,f1 and
p1,m1 and p2,m2,f2 and p2,m2) and constants (n, +n, -n, C’xx...x’, X’yy...yy’,
Y’yyx...x’ and B’bbbbbbbb...bbbbbbbb’). A symbol for p,m,f results in substitution of
p,m if FORMAT=f or symbol,f is specified. A symbol for ’string’ always results in
substitution of C’string’.

Example 1
INCLUDE COND=((Z_Field1,GT,LIMIT,AND,Any_Format,CH,EQ,C_Field2),OR,

(SubString,NE,Depts),OR,
(Flags,ALL,Error,AND,Flags,NE,Empty))

will be transformed to:
INCLUDE COND=((22,8,ZD,GT,+12500,AND,12,3,CH,EQ,4,2,CH),OR,(16,3,SS,NE*

,C’J82,L92,M72’),OR,(35,1,BI,ALL,B’11010000’,AND,35,1,BI*
,NE,B’......01’))

Example 2
OMIT FORMAT=BI,COND=(C_Field1,EQ,Code_1,OR,

Any_Format,EQ,Stopper,OR,
Flags,EQ,Full)

will be transformed to:
OMIT FORMAT=BI,COND=(6,5,EQ,C’86A4Z’,OR,12,3,EQ,X’FFFFFF’,OR,35,1,EQ,X*

’FF’)

INREC and OUTREC
FIELDS operand:You can use symbols where you can use fields (p,m,f and p,m
and p) and non-repeated constants (C’xx...x’ and X’yy...yy’, but not nC’xx...x’ or
nX’yy...yy’). You cannot use symbols for edit patterns (’pattern’).

In the CHANGE and NOMATCH suboperands, you can use symbols where you can
use fields (q,n) and constants (C’xx...x’, X’yy...yy’ and B’bbbbbbbb’).

A symbol for p,m,f or p,m,Y2x results in substitution of p,m,f or p,m,Y2x respectively
if symbol,TO=fo is specified, but results in substitution of p,m if symbol,fo is
specified because fo cannot be distinguished from f. For example, if Sym1 is
defined as 5,4,ZD, SYM1,TO=PD is transformed to 5,4,ZD,TO=PD whereas
SYM1,PD is transformed to 5,4,PD. Thus, you should always use symbol,TO=fo
rather than symbol,fo.

A symbol for p,m,Y2x results in substitution of p,m,Y2x unless symbol,f or
symbol,HEX or symbol,TRAN=LTOU or symbol,TRAN=UTOL or
symbol,TRAN=ALTSEQ is specified. A symbol for p,m,Y2xP results in substitution of
p,m,Y2xP unless symbol,f or symbol,HEX or symbol,TRAN=LTOU or

Using Symbols for Fields and Constants

500 DFSORT R14 Application Programming Guide

|
|
|
|

symbol,TRAN=UTOL or symbol,TRAN=ALTSEQ is specified. A symbol for p,m,f
where f is not Y2x or Y2xP results in substitution of p,m unless symbol,edit or
symbol,to is specified.

A symbol for ’string’ always results in substitution of C’string’.

Example 1
INREC FIELDS=(11:C_Field2,2X,C_Field1,F,Stopper,5C’*’,

Z_Field1,55:Depts,X,P_Field1,TO=FS,X,Z_Field1,M10)

will be transformed to:
INREC FIELDS=(11:4,2,2X,6,5,F,X’FFFFFF’,5C’*’,22,8,55:C’J82,L92,M72’,X*

,30,4,PD,TO=FS,X,22,8,ZD,M10)

Example 2
OUTREC FIELDS=(RDW, ** Record Descriptor Word **

Z_Field1,2Z,
3C’Symbol cannot be used for a repeated constant’,
Code_1,Flags,
Variable_Fields) ** Variable part of input record

will be transformed to:
OUTREC FIELDS=(1,4,22,8,2Z,3C’Symbol cannot be used for a repeated con*

stant’,C’86A4Z’,35,1,451)

OUTFIL
INCLUDE and OMIT operands: You can use symbols where you can use fields
(p1,m1,f1 and p1,m1 and p2,m2,f2 and p2,m2) and constants (n, +n, -n, C’xx...x’,
X’yy...yy’, Y’yyx...x’ and B’bbbbbbbb...bbbbbbbb’). A symbol for p,m,f results in
substitution of p,m if symbol,f is specified. A symbol for ’string’ always results in
substitution of C’string’.

OUTREC operand: You can use symbols where you can use fields (p,m,f and p,m
and p) and non-repeated constants (C’xx...x’ and X’yy...yy’, but not nC’xx...x’ or
nX’yy...yy’). You cannot use symbols for edit patterns (’pattern’).

In the CHANGE and NOMATCH suboperands, you can use symbols where you can
use fields (q,n) and constants (C’xx...x’, X’yy...yy’ and B’bbbbbbbb’).

A symbol for p,m,f or p,m,Y2x results in substitution of p,m,f or p,m,Y2x respectively
if symbol,TO=fo is specified, but results in substitution of p,m if symbol,fo is
specified because fo cannot be distinguished from f. For example, if Sym1 is
defined as 5,4,ZD, SYM1,TO=PD is transformed to 5,4,ZD,TO=PD whereas
SYM1,PD is transformed to 5,4,PD. Thus, you should always use symbol,TO=fo
rather than symbol,fo.

A symbol for p,m,Y2x results in substitution of p,m,Y2x unless symbol,f or
symbol,HEX or symbol,TRAN=LTOU or symbol,TRAN=UTOL or
symbol,TRAN=ALTSEQ is specified. A symbol for p,m,Y2xP results in substitution of
p,m,Y2xP unless symbol,f or symbol,HEX or symbol,TRAN=LTOU or
symbol,TRAN=UTOL or symbol,TRAN=ALTSEQ is specified. A symbol for p,m,f
where f is not Y2x or Y2xP results in substitution of p,m unless symbol,edit or
symbol,to is specified.

A symbol for ’string’ always results in substitution of C’string’.

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 501

|
|
|

|
|
|
|
|
|
|

VLFILL operand: You can use symbols where you can use constants (C’x’ and
X’yy’). A symbol for ’string’ always results in substitution of C’string’.

VLTRIM operand: You can use symbols where you can use constants (C’x’ and
X’yy’). A symbol for ’string’ always results in substitution of C’string’.

HEADER1 and HEADER2 operands: You can use symbols where you can use
fields (p,m) and non-repeated constants (’xx...x’ and C’xx...x’, but not n’xx...x’ or
nC’xx...x’). A symbol for p,m,f always results in substitution of p,m. A symbol for
’string’ always results in substitution of C’string’.

TRAILER1 and TRAILER2 operands’ You can use symbols where you can use
fields (p,m) and non-repeated constants (’xx...x’ and C’xx...x’, but not n’xx...x’ or
nC’xx...x’). A symbol for p,m,f results in substitution of p,m if symbol,f is specified or
if the symbol is specified outside of the suboperands TOTAL, TOT, MIN, MAX, AVG,
SUBTOTAL, SUBTOT, SUB, SUBMIN, SUBMAX and SUBAVG. A symbol for ’string’
always results in substitution of C’string’.

SECTIONS operand: The ″HEADER1 and HEADER2 operands″ discussion above
also applies to the HEADER3 suboperand of SECTIONS. The ″TRAILER1 and
TRAILER2 operands″ discussion above also applies to the TRAILER3 suboperand
of SECTIONS.

Outside of the HEADER3 and TRAILER3 suboperands, you can use symbols where
you can use fields (p,m). A symbol for p,m,f always results in substitution of p,m.

Example 1
OUTFIL FNAMES=OUT1,

INCLUDE=(Z_Field1,GT,LIMIT,AND,Any_Format,CH,EQ,C_Field2),
OUTREC=(12:P_Field1,M0,2X,Any_Format,BI,LENGTH=3,2X,QCON,2X,

C_Field2,HEX,2X,Z_Field1,EDIT=(’I III IIT.T’),2X,
* Lookup Table

Lookup,CHANGE=(6,Entry1,Value1,Entry2,Value2),
NOMATCH=(Lookup))

will be transformed to:
OUTFIL FNAMES=OUT1,INCLUDE=(22,8,ZD,GT,+12500,AND,12,3,CH,EQ,4,2,CH),O*

UTREC=(12:30,4,PD,M0,2X,12,3,BI,LENGTH=3,2X,C’Carrie’’s *
Constant’,2X,4,2,HEX,2X,22,8,ZD,EDIT=(’I III IIT.T’),2X,*
52,1,CHANGE=(6,X’05’,C’Read’,X’20’,C’Update’),NOMATCH=(5*
2,1))

Example 2
OUTFIL FNAMES=REPORT,

OUTREC=(6:Branch_Office,24:Profit_or_Loss,M5,LENGTH=20,75:X),
SECTIONS=(Division,SKIP=P,

HEADER3=(2:Div_Title,Division,5X,’Page:’,&PAGE;,2/,
6:BO_Title,24:PL_Title,/,
6:BO_Hyphens,24:PL_Hyphens),

TRAILER3=(6:BO_Equals,24:PL_Equals,/,
6:Total,24:TOTAL=(Profit_or_Loss,M5,LENGTH=20),/,
6:Lowest,24:MIN=(Profit_or_Loss,M5,LENGTH=20)))

will be transformed to:
OUTFIL FNAMES=REPORT,OUTREC=(6:16,13,24:31,10,ZD,M5,LENGTH=20,75:X),SE*

CTIONS=(3,10,SKIP=P,HEADER3=(2:C’Division: ’,3,10,5X,’P*
age:’,&PAGE;,2/,6:C’Branch Office’,24:C’ Profit/(Lo*
ss)’,/,6:C’-------------’,24:C’--------------------’),TR*

Using Symbols for Fields and Constants

502 DFSORT R14 Application Programming Guide

|
|

AILER3=(6:C’=============’,24:C’====================’,/,*
6:C’Total’,24:TOTAL=(31,10,ZD,M5,LENGTH=20),/,6:C’Lowest*
’,24:MIN=(31,10,ZD,M5,LENGTH=20)))

Using Symbols in ICETOOL Operators
You can use symbols in the following ICETOOL operators: COUNT, DISPLAY,
OCCUR, RANGE, SELECT, STATS, UNIQUE, and VERIFY. In general, you can use
symbols in these ICETOOL operators where you can use constants (’string’, n, +n
or -n) and fields (p,m,f or p,m). See the discussion of each operator in Chapter 6,
“Using ICETOOL” on page 385 for a description of its syntax.

ICETOOL reads the SYMNAMES data set once and uses it for all operators and
DFSORT control statements for the run. You can use symbols in operators from the
TOOLIN data set or your parameter list. You can also use symbols in DFSORT
control statements in xxxxCNTL data sets or in the DFSPARM data set (see “Using
Symbols in DFSORT Statements” on page 498 for details).

ICETOOL will list the original operator statements as well as the transformed
operator statements.

Details of the use of symbols for each applicable ICETOOL operator is given below
followed by a complete ICETOOL example. The example is meant to illustrate
variations in how symbols can be used and how they will be transformed.
Therefore, the example does not necessarily correspond to how symbols would be
used in real applications.

COUNT
HIGHER, LOWER, EQUAL and NOTEQUAL operands: You can use symbols
where you can use constants (x, y, v, and w).

DISPLAY
ON operand:: You can use symbols where you can use fields (p,m,f and p,m). A
symbol for p,m,f results in substitution of p,m if symbol,f or symbol,HEX is specified.

BREAK operand: You can use symbols where you can use fields (p,m,f and p,m).
A symbol for p,m,f results in substitution of p,m if symbol,f is specified.

TITLE, HEADER, TOTAL, MAXIMUM, MINIMUM, AVERAGE, BTITLE, BTOTAL,
BMAXIMUM, BMINIMUM and BAVERAGE operands: You can use symbols where
you can use constants (’string’). A symbol for C’string’ always results in substitution
of ’string’.

OCCUR
ON operand: You can use symbols where you can use fields (p,m,f and p,m). A
symbol for p,m,f results in substitution of p,m if symbol,f or symbol,HEX is specified.

TITLE and HEADER operands: You can use symbols where you can use
constants (’string’). A symbol for C’string’ always results in substitution of ’string’.

HIGHER, LOWER and EQUAL operands: You can use symbols where you can
use constants (x, y and v).

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 503

|

|

|
|

RANGE
ON operand: You can use symbols where you can use fields (p,m,f and p,m). A
symbol for p,m,f results in substitution of p,m if symbol,f is specified.

HIGHER, LOWER, EQUAL and NOTEQUAL operands: You can use symbols
where you can use constants (x, y, v and w).

SELECT
ON operand: You can use symbols where you can use fields (p,m,f and p,m). A
symbol for p,m,f results in substitution of p,m if symbol,f is specified.

HIGHER, LOWER and EQUAL operands: You can use symbols where you can
use constants (x, y and v).

STATS, UNIQUE and VERIFY
ON operand: You can use symbols where you can use fields (p,m,f and p,m). A
symbol for p,m,f results in substitution of p,m if symbol,f is specified.

ICETOOL Example
//TOOLSYM JOB A402,PROGRAMMER
//DOIT EXEC PGM=ICETOOL
//TOOLMSG DD SYSOUT=*
//DFSMSG DD SYSOUT=*
//SYMNOUT DD SYSOUT=*
//SYMNAMES DD *
Rdw,1,4,BI
Account_Code,12,1,CH
Dept_Code,*,=,=
Customer_Name,*,20,CH
SKIP,2
Customer_Balance,*,10,ZD
Customer_Flags,*,1,BI
* Department Codes
Research,’R’
Marketing,’M’
* Balance Cutoffs
Cancel,+10000 100.00
Gift,+1000000 10,000.00
Stop_Check,-500 -5.00
* Headings and Titles
Title,’Customer Report for’
Head1,’Customer Name’
Head2,’Customer Balance’
Head3,’Customer Flags’
/*
//IN DD DSN=MY.CUSTOMER.INPUT,DISP=SHR
//OUT DD DSN=&O,UNIT=SYSDA,SPACE=(CYL,(5,5),RLSE),
// DISP=(,PASS)
//LIST1 DD SYSOUT=*
//TOOLIN DD *

RANGE FROM(IN) ON(Customer_Balance) LOWER(Stop_Check)
SORT FROM(IN) TO(OUT) USING(CTL1)
DISPLAY FROM(OUT) LIST(LIST1) BLANK WIDTH(133) -

TITLE(Title) DATE(4MD/) PAGE -
HEADER(Head1) ON(Customer_Name) -
HEADER(Head2) ON(Customer_Balance,C1) -
HEADER(Head3) ON(Customer_Flags,HEX)

/*
//CTL1CNTL DD *

Using Symbols for Fields and Constants

504 DFSORT R14 Application Programming Guide

SORT FIELDS=(Customer_Balance,D,Customer_Name,A)
INCLUDE COND=((Dept_Code,EQ,Research,OR,Dept_Code,EQ,Marketing),

AND,Customer_Balance,GT,Gift)
/*

SYMNOUT will show the following:
------- ORIGINAL STATEMENTS FROM SYMNAMES -------
Rdw,1,4,BI
Account_Code,12,1,CH
Dept_Code,*,=,=
Customer_Name,*,20,CH
SKIP,2
Customer_Balance,*,10,ZD
Customer_Flags,*,1,BI
* Department Codes
Research,’R’
Marketing,’M’
* Balance Cutoffs
Cancel,+10000 100.00
Gift,+1000000 10,000.00
Stop_Check,-500 -5.00
* Headings and Titles
Title,’Customer Report for’
Head1,’Customer Name’
Head2,’Customer Balance’
Head3,’Customer Flags’

------------------ SYMBOL TABLE -----------------
Rdw,1,4,BI
Account_Code,12,1,CH
Dept_Code,13,1,CH
Customer_Name,14,20,CH
Customer_Balance,36,10,ZD
Customer_Flags,46,1,BI
Research,C’R’
Marketing,C’M’
Cancel,+10000
Gift,+1000000
Stop_Check,-500
Title,C’Customer Report for’
Head1,C’Customer Name’
Head2,C’Customer Balance’
Head3,C’Customer Flags’

The ICETOOL operators will be transformed to:
RANGE FROM(IN) ON(36,10,ZD) LOWER(-500)

SORT FROM(IN) TO(OUT) USING(CTL1)

DISPLAY FROM(OUT) LIST(LIST1) BLANK WIDTH(133)-
TITLE(’Customer Report for’) DATE(4MD/) PAGE-
HEADER(’Customer Name’) ON(14,20,CH)-
HEADER(’Customer Balance’) ON(36,10,ZD,C1)-
HEADER(’Customer Flags’) ON(46,1,HEX)

The DFSORT control statements in CTL1CNTL will be transformed to:
SORT FIELDS=(36,10,ZD,D,14,20,CH,A)
INCLUDE COND=((13,1,CH,EQ,C’R’,OR,13,1,CH,EQ,C’M’),AND,36,10,ZD,GT,+10*

00000)

Notes for Symbols
v EFS programs cannot be used with symbol processing.

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 505

v DFSORT or ICETOOL scans each SYMNAMES statement for errors, and prints
an error message for the first error detected. A marker ($) is printed directly
below the SYMNAMES statement near the error, if appropriate.

Scanning stops at the first error, and then continues with the next SYMNAMES
statement. However, once an error is detected, positions generated by using an
asterisk (*) for p or POSITION,symbol in subsequent statements will not be
checked for errors. DFSORT and ICETOOL terminate after all SYMNAMES
statements are scanned if an error is detected in any statement.

v If DFSORT or ICETOOL detects an error in a control statement or operator
statement during the substitution phase (that is, while attempting to substitute
values for symbols), it may either:

– print the original statement in error followed by a $ marker (if appropriate) and
an error message, continue the substitution phase with the next statement
and terminate when the substitution phase is complete, or

– stop performing substitution for the statement in error, continue with the next
statement and let processing after the substitution phase handle the error. It is
possible in this case for a symbol, rather than a substituted value, to appear
in a transformed statement.

v If the substitution phase is successful, DFSORT and ICETOOL will substitute
values for symbols wherever symbols are allowed. Substituted values which are
invalid for a particular statement or operand will be detected after the substitution
phase. This makes it easier to determine the cause of the error. For example, if
SYMNAMES contains:
Sym1,5,4,ZD
Con1,’1234’
Con2,1234

the statement:
INCLUDE COND=(Sym1,EQ,Con1)

will be transformed to the following during the substitution phase:
INCLUDE COND=(5,4,ZD,EQ,C’1234’)

An ICE114A message with a $ marker under C’1234’ will then be issued for the
statement because a ZD field cannot be compared to a character constant. In
this example, the error could be fixed by using Con2 (a decimal constant) in the
statement instead of Con1 or by redefining Con1 as a decimal constant.

v If you use a temporary or permanent message data set, it is best to specify a
disposition of MOD to ensure you see all messages and control statements in the
message data set. In particular, if you use symbols processing and do not use
MOD, you will not see the original control statements unless Blockset is selected.

v If you rearrange your records in any way (for example, using E15, E35, INREC,
OUTREC or OUTFIL) and want to use symbols for the rearranged records, be
sure to use symbols that map to the new positions of your fields. For example, if
you use a SYMNAMES data set with the following statements:
Field1,1,5,ZD
Field2,*,6,ZD
Field3,*,3,ZD
Field4,*,4,ZD

for this INREC statement:
INREC FIELDS=(Field2,Field4)

Using Symbols for Fields and Constants

506 DFSORT R14 Application Programming Guide

the resulting records will only contain Field2 and Field4. If you want to use
symbols for the rearranged records (for example, in a SORT statement), you will
need to use a SYMNAMES data set with symbols that map to the rearranged
records, such as:
New_Field2,1,6,ZD
New_Field4,*,4,ZD

If you use unique symbols for the rearranged fields, as in the example above,
you can concatenate the old and new symbol data sets together and use the old
and new symbols where appropriate, as in this example:
INREC FIELDS=(Field2,Field4)
SORT FIELDS=(New_Field2,A,New_Field4,A)

Using Symbols for Fields and Constants

Chapter 7. Using Symbols for Fields and Constants 507

Using Symbols for Fields and Constants

508 DFSORT R14 Application Programming Guide

Chapter 8. Using Extended Function Support

Using EFS . 510
Addressing and Residence Mode of the EFS Program 510
How EFS Works . 511

DFSORT Program Phases 511
DFSORT Calls to Your EFS Program 512

Initialization Phase . 513
Input Phase . 515
Termination Phase . 515

What You Can Do with EFS. 516
Opening and Initializing Data Sets 517
Examining, Altering, or Ignoring Control Statements 517
Processing User-Defined Data Types with EFS Program User Exit Routines 519
Supplying Messages for Printing to the Message Data Set 519
Terminating DFSORT . 519
Closing Data Sets and Housekeeping 519

Structure of the EFS Interface Parameter List 519
Action Codes . 521
Control Statement Request List 522
Control Statement String Sent to the EFS program 522

Special Handling of OPTION and DEBUG Control Statements 523
Control Statement String Returned by the EFS Program 524

Rules for Parsing . 524
EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements 525
D1 Format on FIELDS Operand 525
D2 Format on COND Operand 526
Length of Original Control Statement 527
Length of the Altered Control Statement 527
EFS Program Context Area 528
Extract Buffer Offsets List 528
Record Lengths List . 528
Information Flags . 528
Message List . 530

EFS Program Exit Routines. 530
EFS01 and EFS02 Function Description 531
EFS01 User Exit Routine. 531

EFS01 Parameter List . 532
EFS02 User Exit Routine. 532

EFS02 Parameter List . 534
Addressing and Residence Mode of EFS Program User Exit Routines 534

EFS Program Return Codes You Must Supply 535
Record Processing Order . 535
How to Request a SNAP Dump 537
EFS Program Example . 538

DFSORT Initialization Phase: 538
Major Call 1 . 538
Major Call 2 . 538
Major Call 3 . 539

DFSORT Termination Phase 540
Major Call 4 . 540

© Copyright IBM Corp. 1973, 2002 509

Major Call 5 . 540

Using EFS
Like the user exits described in Chapter 4, “Using Your Own User Exit Routines”,
the DFSORT Extended Function Support (EFS) interface is a means by which you
can pass run-time control to an EFS program you write yourself. An EFS program is
essential if you want to process double-byte character sets (such as Japanese
characters) with DFSORT.

To process Japanese data types with DFSORT, you can use the IBM Double Byte
Character Set Ordering Support Program (DBCS Ordering), Licensed Program
5665-360, Release 2.0, or you can use locale processing with the appropriate
locale.

Using an EFS program and EFS program exit routines, you can:
v Sort or merge user-defined data types (such as double-byte character sets) with

user-defined collating sequences
v Include or omit records based on the user-defined data types
v Provide user-written messages to DFSORT for printing to the message data set
v Examine, alter, or ignore control statements or EXEC PARM options prior to

processing by DFSORT.

The EFS program can also perform routine tasks, such as opening and initializing
data sets, terminating DFSORT, and closing data sets.

You can write your EFS program in any language that uses standard register and
linkage conventions, and can:
v Pass a parameter list and a record (if you provide the EFS01 and EFS02 exit

routines in the EFS program) in register 1
v Pass a return code in general register 15.

Notes:

1. DFSORT does not support EFS programs for Conventional merge or tape work
data set sort applications.

2. VLSHRT is not allowed if EFS processing is in effect and an EFS01 or EFS02
exit routine is provided by the EFS program.

3. If you use locale processing for SORT, MERGE, INCLUDE, or OMIT fields, you
must not use an EFS program. DFSORT’s locale processing may eliminate the
need for an EFS program. See “OPTION Control Statement” on page 155 for
information related to locale processing.

4. If you use symbol processing, you must not use an EFS program.

The DFSORT target library, SICEUSER, contains a mapping macro called
ICEDEFS, which provides a separate Assembler DSECT for the EFS parameter list.

Addressing and Residence Mode of the EFS Program
You can design the EFS program to reside and run above or below 16MB virtual.
Residency and addressing mode can be any valid combination of 24-bit, 31-bit, or
ANY. If your EFS program is designed to reside and run below 16MB virtual, the
EFS program must determine the proper return mode.

Using Extended Function Support

510 DFSORT R14 Application Programming Guide

How EFS Works
The EFS interface consists of a variable-length parameter list used to communicate
between DFSORT and your EFS program. DFSORT activates the EFS program you
write at specific points during run-time, and communicates information back and
forth across the interface as your EFS program runs.

You can activate your EFS program during run-time with the EFS=name option
(name is the name of your EFS program):
v As set during DFSORT installation with the ICEMAC macro (see “Installation

Defaults” on page 16)
v On the PARM parameter of your EXEC statement when you use job control

language to invoke DFSORT (see “Specifying EXEC/DFSPARM PARM Options”
on page 29)

v On the OPTION program control statement (see “OPTION Control Statement” on
page 155).

See Appendix B, “Specification/Override of DFSORT Options” on page 603 for
override information. Figure 42 illustrates the role of the EFS interface in linking
DFSORT’s processing capabilities to the EFS program you write.

DFSORT Program Phases
A DFSORT program phase is a large DFSORT component designed to perform a
specific task such as writing the output file. An EFS program is called at various
points during run-time of DFSORT program phases in performing the variety of
tasks capable with an EFS program. When the termination phase is completed,
DFSORT returns control to the operating system or invoking program.

EFS processing can be invoked during the initialization, input, and termination
phases of DFSORT. DFSORT always calls the EFS program during the initialization
phase.

DFSORT and Non-DFSORT
Control Statements

and EXEC PARM Options

DFSORT EFS Program

EFS
Interface
Processing

EFS
Interface
Processing

EFS
Interface

Output
Data
Set

Input
Data
Set

Figure 42. Relationship Between DFSORT and an EFS Program

How EFS Works

Chapter 8. Using Extended Function Support 511

During the input phase, DFSORT reads input records, and performs any INCLUDE
or OMIT statement logic on the records. If the EFS program generates exit routines
(EFS01 and EFS02), DFSORT calls them during the input phase.

During the termination phase, DFSORT closes data sets, releases storage, and
returns control to the calling program or system. DFSORT always calls the EFS
program from the termination phase.

DFSORT Calls to Your EFS Program
DFSORT makes five functional calls (Major Calls 1 through 5) at various phases to
transfer information across the EFS interface, between DFSORT and your EFS
program. DFSORT can make multiple calls at Major Calls 2 and 3. Refer to
Figure 43 and Figure 44 on page 513 as you read this section for illustrations of the
relationships between program phases and calls during run-time.

DFSORT

DFSORT

DFSORT

EFS01 and
EFS02
Parameter
List
Processing

EFS
Processing

EFS
Processing

Major Call 1

Major Call 3

Major Call 5

Call for each

One or more calls for each

Input Record

Input Record

Major Call 2

Major Call 4

Initialization Phase

Input Phase

Termination Phase

EFS
Program

EFS
Program

EFS01

EFS02

Figure 43. EFS Program Calls for a Sort. The figure also shows the calls to the EFS program
EFS01 and EFS02 exit routines.

How EFS Works

512 DFSORT R14 Application Programming Guide

Initialization Phase
DFSORT runs Major Calls 1 through 3 during the initialization phase.

Major Call 1: The EFS program can perform initialization processing such as
opening data sets and obtaining storage.

Information is passed in both directions between DFSORT and the EFS program
across the EFS interface.

At Major Call 1, DFSORT supplies your EFS program with fields in the EFS
interface containing:
v An action code indicating that Major Call 1 is in effect
v Informational flags that describe current processing.

When the EFS program returns control to DFSORT, it can supply fields in the EFS
interface containing:

DFSORT

DFSORT

DFSORT

EFS01 and
EFS02
Parameter
List
Processing

EFS
Processing

EFS
Processing

Major Call 1

Major Call 3

Major Call 5

Call for each

One or more calls for each

Input Record

Input Record

Major Call 2

Major Call 4

Initialization Phase

Input and
Output Phase

Termination Phase

EFS
Program

EFS
Program

EFS01
(Merge
Only)

EFS02

Figure 44. EFS Program Calls for a Merge or Copy. The figure also shows the calls to the
EFS program EFS01 and EFS02 exit routines.

How EFS Works

Chapter 8. Using Extended Function Support 513

v A control statement request list, with a list of DFSORT and non-DFSORT control
statement operation definers, or EXEC PARM options

Note: OUTFIL statements cannot be requested by an EFS program.

v An EFS Program Context area (a private communication area for the EFS
program)

v A list containing messages for printing to the message data set

v A return code (in general register 15).

Major Call 2: At this call, your EFS program can examine, alter, or ignore control
statements before DFSORT processes them, and provide user-written messages to
the message data set. DFSORT calls your EFS program once for each control
statement or EXEC PARM you request.

At Major Call 2, DFSORT supplies your EFS program with fields in the EFS
interface containing:

v An action code indicating that Major Call 2 is in effect

v The original control statement or EXEC PARM option requested by the EFS
program

v The length of the original control statement or EXEC PARM option

v Informational flags that describe current processing

v An EFS Program Context area (a private communication area for the EFS
program).

When the EFS program returns control to DFSORT, it can supply fields in the EFS
interface containing:

v A modified version of the control statement or EXEC PARM option sent by
DFSORT to the EFS program. If you plan to sort or merge user-defined data
types, or include or omit user-defined data types, your EFS program must return
new formats for the SORT/MERGE or INCLUDE/OMIT control statements. These
new formats (D1 and D2) signal DFSORT to call the EFS01 and EFS02 exit
routines you included with your EFS program.

Note: OUTFIL statements cannot be passed to an EFS program or returned
from an EFS program to be parsed.

v The length of the altered control statement or EXEC PARM option.

v Informational flags signaling DFSORT whether to parse or ignore the control
statement or EXEC PARM option.

v A list of messages for DFSORT to print to the message data set.

v A return code (in general register 15).

Major Call 3: At Major Call 3, your EFS program can provide DFSORT with
user-written messages to print to the message data set. DFSORT can call the EFS
program once for the Blockset technique and once for the Peerage/Vale techniques.
DFSORT obtains more information at this call from the EFS program to process the
EFS01 and EFS02 exit routines.

At Major Call 3, DFSORT supplies your EFS program with fields in the EFS
interface containing:

v An action code indicating that Major Call 3 is in effect

v An extract buffer offsets list needed by the EFS01 exit routine

v A record lengths list of input and output records

How EFS Works

514 DFSORT R14 Application Programming Guide

v Informational flags that describe current processing

v An EFS Program Context area (a private communication area for the EFS
program).

When the EFS program returns control to DFSORT, it can supply fields in the EFS
interface containing:
v An EFS01 exit routine address
v An EFS02 exit routine address
v A list of messages for printing to the message data set
v A return code in general register 15.

Input Phase
DFSORT runs the two exit routines, EFS01 and EFS02, during the input phase. The
EFS01 routine supports sorting or merging user-defined data types with
user-defined collating sequences and is called once for each record. The EFS02
routine provides logic to include or omit records on user-defined data types and is
called one or more times for each record, according to the logic.

Information is passed in both directions between DFSORT and the exit routines
across the EFS01 and EFS02 parameter lists.

DFSORT supplies the EFS01 routine with fields in the parameter list containing:

v An Extract Buffer Area to which the EFS01 routine must move all EFS control
fields. See “EFS01 User Exit Routine” on page 531 for more information.

v The input data record.

v An EFS Program Context Area (a private communication area for the EFS
program).

When the EFS01 routine returns control to DFSORT, it must return a return code in
general register 15.

DFSORT supplies the EFS02 routine with fields in the parameter list containing:

v A Correlator Identifier, which identifies a relational condition containing EFS
fields. See “EFS02 User Exit Routine” on page 532 for more information.

v The input data record.

When the EFS02 routine returns control to DFSORT, it must return a return code in
general register 15.

Termination Phase
DFSORT runs Major Calls 4 and 5 during the termination phase. Only one call is
made at each of these Major Calls.

Note: If a system abend occurs while DFSORT’s ESTAE recovery routine is in
effect, and Major Calls 4 and 5 have not already been run, the ESTAE
routine runs them. If an EFS abend occurs during Major Call 1, the ESTAE
routine does not run Major Calls 4 and 5. See Appendix E, “DFSORT Abend
Processing” on page 647 for more information about ESTAE.

Major Call 4: The EFS program provides any final user-written messages for
printing to the message data set.

At Major Call 4, DFSORT supplies your EFS program with fields in the EFS
interface containing:

v An action code indicating that Major Call 4 is in effect.

How EFS Works

Chapter 8. Using Extended Function Support 515

v An EFS Program Context Area (a private communication area for the EFS
program).

When the EFS program returns control to DFSORT, it can supply fields in the EFS
interface containing:
v A message list containing messages for printing to the message data set.
v A return code (in general register 15).

Major Call 5: The EFS program performs any termination processing, such as
closing data sets and releasing storage.

At Major Call 5, DFSORT supplies your EFS program with fields in the EFS
interface containing:

v An action code indicating that Major Call 5 is in effect.

v An EFS Program Context Area (a private communication area for the EFS
program).

When the EFS program returns control to DFSORT, it must supply a return code in
general register 15.

What You Can Do with EFS
You can design your EFS program to perform seven basic tasks at the initialization,
input, and termination phases of DFSORT. Some of the tasks require using the EFS
program-generated user exit routines EFS01 and EFS02.

Table 69. Functions of an Extended Function Support (EFS) Program

EFS Program
Functions

Initialization Phase Input Phase Termination Phase

Opening and
initializing

EFS Program

Examining, altering,
or ignoring DFSORT
and non-DFSORT
control statements
prior to processing by
DFSORT

EFS Program

Sorting or merging
user-defined data
types with
user-defined collating
sequences

EFS01

Providing the logic to
include or omit
records based on
user-defined data
types

EFS02

Supplying messages
to DFSORT for
printing to the
message data set

EFS Program EFS Program

Terminating DFSORT EFS Program EFS01, EFS02 EFS Program

Closing data sets and
housekeeping

EFS Program

How EFS Works

516 DFSORT R14 Application Programming Guide

Opening and Initializing Data Sets
Your EFS program can open data sets, obtain necessary storage, and perform
other forms of initialization needed during a run.

Examining, Altering, or Ignoring Control Statements
At Major Call 1, your EFS program can send a control statement request list to
indicate the control statements and EXEC PARM options you want DFSORT to
send to your EFS program at Major Call 2. OUTFIL statements cannot be requested
by an EFS program.

At Major Call 2, your EFS program can examine, alter, or ignore control statements
and EXEC PARM options that DFSORT reads from the EXEC statement, SYSIN,
SORTCNTL, DFSPARM, or a parameter list passed from an invoking program.
OUTFIL statements cannot be passed to an EFS program or returned from an EFS
program to be parsed.

Refer to Figure 45 on page 518 for an illustration of the control statement
processing sequence used when an EFS program is activated.

The same override rules apply to control statements and parameters returned from
an EFS program as apply to the original control statements and parameters.

For example, a STOPAFT parameter added to the SORT statement by an EFS
program is overridden by a STOPAFT parameter in an OPTION statement in the
same way as if the SORT statement originally contained the STOPAFT parameter.

See Appendix B, “Specification/Override of DFSORT Options” on page 603 for full
override details.

What You Can Do with EFS

Chapter 8. Using Extended Function Support 517

Direct Invocation of DFSORT Product Invocation of DFSORT

DFSORT processing of DFSPARM
parameters not requested by
the EFS program

DFSPARM

EFS program processing of
requested DFSPARM parameters
at Major Call 2

DFSORT processing of DFSPARM
parameters returned by the
EFS program

DFSORT processing of
SYSIN control statements
and JCL EXEC statement
PARM options returned by
the EFS program

DFSORT processing of
SYSIN control statements
and JCL EXEC statement
PARM options not requested
by the EFS program

JCL EXEC statement
PARM options

EFS program processing of
requested SYSIN control
statements and EXEC
PARM options at Major
Call 2

SYSIN

Same processing as for
DFSPARM

Invoker’s parameter list

Same processing as for
DFSPARM

SORTCNTL

SYSOUT

Figure 45. Control Statement Processing Sequence

What You Can Do with EFS

518 DFSORT R14 Application Programming Guide

Processing User-Defined Data Types with EFS Program User Exit
Routines

You can write your EFS program to provide two user exit routines to perform
various tasks during run-time.

Your EFS program user exit routines can:

v Process user-defined data types. Your EFS program can provide an EFS01
routine to alter any control field of an input record.

v Include or omit records based on user-defined data types. Your EFS program can
provide an exit routine to examine any input field of an input record to determine
whether or not to include that record for processing.

Supplying Messages for Printing to the Message Data Set
You can use an EFS program to tailor messages for several purposes:
v To describe new types of operations
v To describe extended field parameters
v To customize the message data set to your site
v To display statistical information about control statements or EXEC PARM

options.

You can control whether to print the control statements returned by an EFS program
to the message data set with:

v The LISTX operator of the ICEMAC macro (see “Installation Defaults” on
page 16)

v The LISTX or NOLISTX operators in the PARM field of the JCL EXEC statement
(see “Specifying EXEC/DFSPARM PARM Options” on page 29)

v The LIST or NOLIST operators of the OPTION program control statement.

Terminating DFSORT
Your EFS program can terminate DFSORT at any of the five Major Calls and also
from either of the two EFS program exit routines during the input phase.

Closing Data Sets and Housekeeping
At Major Call 5, your EFS program can close data sets, free storage and perform
any other necessary housekeeping.

Structure of the EFS Interface Parameter List
The EFS interface consists of a variable-length parameter list and is used to
communicate between DFSORT and your EFS program. DFSORT initializes the
parameter list to zeros during the initialization phase, except that the list end
indicator is set to X'FFFFFFFF'.

The parameter list resides below 16MB virtual, and remains accessible while the
EFS program is active, although DFSORT might change its storage location during
run-time to optimize use of storage. The actual address in register 1 (used to pass
the interface parameter list address) can therefore change while DFSORT is
running.

Figure 46 on page 520 illustrates the structure of the EFS interface parameter list.
The illustrated portions of the list are explained in order in the following pages.
EXEC PARMs are not described in the figure, but are included in processing.

What You Can Do with EFS

Chapter 8. Using Extended Function Support 519

R1
Action code

Address of
Control Statement list

Address of
original Control Statement
including all keywords and
corresponding subparameters

Address of
modified Control Statement
including all keywords and
corresponding subparameters

Length of
original Control Statement
including all keywords and
corresponding subparameters

Length of
modified Control Statement
including all keywords and
corresponding subparameters

Control statement
request list

Original control
statement string

Modified control
statement string

4 bytes

** bytes

* bytes

* bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

Address of
EFS context area

Figure 46. EFS Interface Parameter List (Part 1 of 2)

Structure of the EFS Interface Parameter List

520 DFSORT R14 Application Programming Guide

Action Codes
DFSORT sets one of five action codes before a call to the EFS program:

0 Indicates Major Call 1 to the EFS program. DFSORT sends this action code
once.

4 Indicates Major Call 2 to the EFS program. DFSORT might send this action
code several times at Major Call 2 depending on how many control
statements are requested and found. For example, if the SORT, MERGE,
and INCLUDE control statements are all supplied in SYSIN and are
requested, the EFS program is called twice: once for the SORT control
statement (because SORT and MERGE are mutually exclusive, and
assuming the SORT statement is specified first, only the SORT statement is
taken) and once for the INCLUDE control statement.

8 Indicates Major Call 3 to the EFS program. DFSORT can send this action
code once for the Blockset technique and once for the Peerage/Vale
technique.

Address of
Extract buffer offsets
(zeros if no EFS fields exist)

Address of
Record lengths list

RESERVED

Information flags

RESERVED

RESERVED

RESERVED

List end indicator (X'FFFFFFFF')

RESERVED

RESERVED

Address of
message list
(zeros if none)

Address of
EFS01 extract routine
(zeros if none)

Address of
EFS02 INCLUDE/OMIT
routine (zeros if none)

Record lengths
list

8 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

4 bytes

f

f

** - Length determined by length fields in the list

* - Length determined by corresponding length field

Figure 46. EFS Interface Parameter List (Part 2 of 2)

Structure of the EFS Interface Parameter List

Chapter 8. Using Extended Function Support 521

12 Indicates Major Call 4 to the EFS program. DFSORT sends this action code
once.

16 Indicates Major Call 5 to the EFS program. DFSORT sends this action code
once.

Control Statement Request List
The control statement request list describes the control statements and the PARM
options to be sent to the EFS program by DFSORT. The control statement request
list consists of control statement operation definers and PARM option names. The
maximum length allowed for an operation definer or PARM option name is eight
bytes. If the operation definer or PARM option name is longer, DFSORT will use
only the first eight bytes. Length field values must not include their own length.

OUTFIL statements cannot be requested by an EFS program.

Non-DFSORT operation definers and PARM options must be in EBCDIC format,
and the first character must be non-numeric. The format of the control statement
request list is:

Chain pointer to
next operation
definer or EXEC
PARM option name,
or zero for end
of list

Length of
operation definer
or EXEC PARM
option name

Operation definer
or EXEC PARM
option name
(variable-length)

4 bytes * bytes2 bytes

The asterisk (*) indicates that the length is determined by the corresponding length
field (maximum of 8 bytes).

Control Statement String Sent to the EFS program
DFSORT scans for the requested control statement from SYSIN, SORTCNTL,
DFSPARM, or the invoker’s parameter list to create a contiguous control statement
string; DFSORT will handle any necessary continuation requirements for control
statements from SYSIN, SORTCNTL, or DFSPARM. DFSORT scans for the
requested PARM option to create a contiguous PARM option string.

DFSORT places a copy of the requested control statement or PARM option string in
a contiguous storage area for the EFS program. No labels are supplied with the
control statement; the address of the string always points to the first byte of the
appropriate operation definer or PARM option.

DFSORT will send the requested control statement(s) or PARM option(s) to the EFS
program as found by DFSORT; DFSORT will provide limited syntax checking of
control statements or PARM option(s) before sending them to the EFS program.

In addition to following the rules in “General Coding Rules” on page 100, you must
observe the following rules for non-DFSORT control statements:

v DFSORT will recognize a control statement with no operand(s) provided the
operation definer (1) is supplied in SYSIN, SORTCNTL, or DFSPARM and (2) is
the only operation definer contained on a line.

v Operation definers supplied through SYSIN, SORTCNTL, DFSPARM, or the
extended parameter list and requested by the EFS program will not be
recognized if they are longer than eight bytes.

Structure of the EFS Interface Parameter List

522 DFSORT R14 Application Programming Guide

In addition to observing the rules in z/OS MVS JCL User’s Guide and z/OS MVS
JCL Reference you must observe the following rule for non-DFSORT PARM
options:

v PARM options requested by the EFS program will not be recognized if they are
longer than eight bytes.

DFSORT will send the requested DFSORT or non-DFSORT control statements or
PARM options that remain after DFSORT override rules have been applied.

If duplicate DFSORT or non-DFSORT control statements or PARM options are
supplied through the same source (such as SYSIN), then DFSORT will send the
first occurrence of the control statement. The second occurrence of the
DFSORT or non-DFSORT control statement or PARM option will be ignored by
DFSORT.

If duplicate DFSORT or non-DFSORT control statements are supplied through
different sources (such as extended parameter list, SORTCNTL, and
DFSPARM), then DFSORT will send the control statement remaining after
different source override rules have been applied, except for the DFSORT
OPTION and DEBUG control statements (see “Special Handling of OPTION and
DEBUG Control Statements”).

If mutually exclusive DFSORT control statements (such as SORT/MERGE) are
supplied through the same source (such as SYSIN), then DFSORT will send the
first occurrence of the control statement. The second occurrence of the
DFSORT control statement will be ignored by DFSORT.

If mutually exclusive DFSORT control statements (such as SORT/MERGE) are
supplied through different sources (such as extended parameter list,
SORTCNTL, and DFSPARM), then DFSORT will send the control statement
remaining after different source override rules have been applied. The DFSORT
control statement not sent will be ignored by DFSORT.

Thus the EFS program will not be sent duplicate DFSORT or non-DFSORT control
statements (except for the DFSORT OPTION and DEBUG control statements as
explained in “Special Handling of OPTION and DEBUG Control Statements”), or
duplicate PARM options.

If the EFS program supplies non-DFSORT operands on the DFSORT OPTION
control statement and the OPTION control statement is supplied in the extended
parameter list, the EFS program must specify the non-DFSORT operands after all
DFSORT operands.

DFSORT will free any storage it acquired for the control statement or PARM string.

Note: Blanks and quotes are very important to DFSORT in determining the control
statement to send to an EFS program. Do not supply unpaired quotes in the
INCLUDE/OMIT control statements, because DFSORT treats data within
quotes as a constant, and treats blanks outside of quotes as the major
delimiter.

Special Handling of OPTION and DEBUG Control Statements
The override features of both the DFSORT OPTION and DEBUG control
statements, when supplied through different sources, require special handling when
EFS processing is in effect and either or both control statements are requested by
the EFS program.

Structure of the EFS Interface Parameter List

Chapter 8. Using Extended Function Support 523

For example, DFSORT handles override for the OPTION and DEBUG control
statements as follows:

v The OPTION control statement supplied in SORTCNTL will selectively override
corresponding options on the OPTION control statement supplied in the extended
parameter list.

v The DEBUG control statement supplied in SORTCNTL will selectively override
corresponding options on the DEBUG control statement supplied in the 24-bit
parameter list or the extended parameter list.

Because of these override features, DFSORT cannot simply send the OPTION
control statement supplied in SORTCNTL and not send the OPTION control
statement supplied in the extended parameter list. For the EFS program to process
all possible operands on the OPTION control statements, DFSORT must send the
OPTION control statements supplied in both SORTCNTL and the extended
parameter list. DFSORT will send both the OPTION and DEBUG control statements
supplied through different sources. If duplicate OPTION or DEBUG control
statements are supplied in the same source and the OPTION or DEBUG control
statements are also supplied in different sources, DFSORT will send the first
occurrence of both the OPTION and DEBUG control statements supplied through
different sources.

Control Statement String Returned by the EFS Program
Your EFS program can alter the control statement or PARM option string and
replace it in the original contiguous storage area. If the area is too small, your
program must allocate a new contiguous area. If the string is returned in a new
storage area, your EFS program will be responsible for freeing the acquired
storage.

Your EFS program must set an Informational flag to indicate whether the control
statement or PARM option in the string should be parsed or ignored by DFSORT
(see “Information Flags” on page 528 for further details).

OUTFIL statements cannot be returned from an EFS program to be parsed.

Rules for Parsing
The content and format of the altered control statement to be parsed must
correspond to valid DFSORT values as described in Chapter 3, “Using DFSORT
Program Control Statements” on page 95, except when using the FIELDS operand
with SORT or MERGE, or the COND operand with INCLUDE or OMIT (see “EFS
Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements” on
page 525).

You must observe the following rules for control statements to be returned to
DFSORT for parsing:

v The operation definer and corresponding operands must be in uppercase
EBCDIC format.

v At least one blank must follow the operation definer (SORT, MERGE, RECORD,
and so on). A control statement can start with one or more blanks and can end
with one or more blanks. No other blanks are allowed unless the blanks are part
of a constant.

v Labels are not allowed; a leading blank, or blanks, before the control statement
name is optional.

v No continuation character is allowed.

v Comment statements, blank statements, and remarks are not allowed.

Structure of the EFS Interface Parameter List

524 DFSORT R14 Application Programming Guide

The content and format of the altered EXEC PARM option to be parsed must
correspond to valid DFSORT values as described in “Specifying EXEC/DFSPARM
PARM Options” on page 29.

The following operands will be ignored by DFSORT if returned by an EFS program
on the OPTION control statement:

EFS
LIST
NOLIST
LISTX
NOLISTX
LOCALE
MSGDDN
MSGDD
MSGPRT
SMF
SORTDD
SORTIN
SORTOUT
USEWKDD

The following EXEC PARM options will be ignored by DFSORT if returned by an
EFS program:

EFS
LIST
NOLIST
LISTX
NOLISTX
LOCALE
MSGDDN
MSGDD
MSGPRT

EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control
Statements

In addition to using the SORT, MERGE, INCLUDE, and OMIT control statements as
explained in “Program Control Statements”, you can also use two additional formats
on the FIELDS and COND parameters. The formats are termed D1 and D2 and
apply as follows:
v D1 with the FIELDS parameter of the SORT or MERGE statement
v D2 with the COND parameter of the INCLUDE or OMIT statement.

Use D1 and D2 to reflect data types that require special processing by EFS
program exit routines EFS01 and EFS02, respectively. You cannot specify D2
format with the INCLUDE or OMIT parameters of the OUTFIL statement.

D1 Format on FIELDS Operand
The syntax for the SORT and MERGE statements usingthe D1 format on the
FIELDS operand is as follows.

�� SORT
MERGE

FIELDS= (E

,

mp,mm,mf,ms) ��

Structure of the EFS Interface Parameter List

Chapter 8. Using Extended Function Support 525

Where Represents

mp field position within the input record

mm field length

mf the D1 format that designates this field as an EFS control field

ms must be either ascending (A) or descending (D); modification by an E61 exit
(E) is not allowed.

Table 70 gives an example of using the D1 format for a SORT control statement
returned to DFSORT by the EFS program.

You must adhere to the following requirements for the D1 format:

v The mp, mm, and ms values returned must be valid SORT or MERGE control
statement values, except:

– The combined value of mp and mm may exceed the record length.

– CHALT will have no effect on EFS fields and will not limit the length to 256.

– Value E for ms will not be allowed; EFS fields may not be altered by an E61.

– FORMAT=D1 will not be allowed.

Table 70. D1 Format Returned by an EFS Program

Original SORT control statement sent to EFSPGM

SORT FIELDS=(15,4,FF,A,20,4,CH,A,40,7,FF,D)

Altered SORT control statement returned by EFSPGM

SORT FIELDS=(15,4,D1,A,20,4,CH,A,40,7,D1,D)

where:

FF is a user-defined format that is modified to D1 by the EFS program before returning to
DFSORT

D2 Format on COND Operand
Following is the syntax for the INCLUDE or OMIT statements usingthe D2 format on
the COND operand.

Where Represents

mc the correlator identifier, a numeric value used to identify each relational
condition

mm field length

mf the D2 format designating an EFS field within the relational condition

INCLUDE COND= (
OMIT

(

(

mc,mm,mf, operator , mc, mm, mf,

, AND ,
OR

constant
mask

, AND ,
OR

(

Structure of the EFS Interface Parameter List

526 DFSORT R14 Application Programming Guide

operator
a valid DFSORT comparison or bit logic operator

constant
a valid DFSORT decimal, character, hexadecimal or bit constant.

mask a valid DFSORT hexadecimal or bit string

Table 71 gives an example of using a correlator identifier and the D2 format for an
INCLUDE control statement returned to DFSORT by the EFS program.

Note: The values for the correlator identifiers assigned to each relational condition
by the EFS program can be in any chosen order. The example in Table 71
shows a sequential ordering for the correlator identifiers.

You must adhere to the following requirements for the D2 format:

v The mc, mm, or constant values returned must be valid INCLUDE or OMIT
control statement values, except:

– The combined value of mc and mm might exceed the record length.

– Any valid DFSORT constant or mask is allowed.

– If COND=(mc1,mm1,mf1,operator,mc2,mm2,mf2) is used, both mf1 and mf2
must be D2.

– CHALT has no effect on EFS fields.

– FORMAT=D2 is not allowed.

Table 71. Correlator Identifier and D2 Format Returned by an EFS Program

Original INCLUDE control statement sent to EFSPGM

INCLUDE COND=(15,4,FF,EQ,20,4,FF,AND,40,7,FF,NE,50,7,FF,OR,
30,2,FF,NE,35,2,FF)

Altered INCLUDE control statement returned by EFSPGM

INCLUDE COND=(1,4,D2,EQ,1,4,D2,AND,2,7,D2,NE,2,7,D2,OR,3,2,D2,NE,3,2,D2)

Where:

v FF is a user-defined format and modified to D2 by the EFS program before returning to
DFSORT.

v The first relational condition specified, (1,4,D2,EQ,1,4,D2), uses correlator identifier value
1 to identify this relational condition.

v The second relational condition specified, (2,7,D2,NE,2,7,D2), uses correlator identifier
value 2 to identify this relational condition.

v The third relational condition specified, (3,2,D2,NE,3,2,D2), uses correlator identifier value
3 to identify this relational condition.

Length of Original Control Statement
The control statement includes the first byte of thecontrol statement through the last
operand of the control statement or, if only an operation definer is supplied, the
length of the operation definer. DFSORT does not send labels supplied with the
control statement.

Length of the Altered Control Statement
The length includes the first byte of the control statement through the last operand
of the control statement. If leading blanks are provided, the length includes the first
leading blank.

Structure of the EFS Interface Parameter List

Chapter 8. Using Extended Function Support 527

EFS Program Context Area
The EFS program context area is a private communication areathat can be set up
and used by the EFS program as appropriate. DFSORT sends the context area
address to the EFS program at each Major Call and at each call to EFS01 and
EFS02.

The EFS program is responsible for obtaining (at Major Call 1) and releasing (at
Major Call 5) the necessary storage for the EFS program context area.

Extract Buffer Offsets List
A linked list of offsets into the extract buffer will be passed toyour EFS program.
The offsets show the starting positions into the buffer area of any EFS control fields
specified on the SORT or MERGE FIELDS operand. The offsets are sent only for
EFS control fields and are sent in the same order as specified on the FIELDS
operand. If no EFS control fields exist, the address to the offsets is zero.

DFSORT frees any storage it acquired for the extract buffer offsets list. The format
of the extract buffer offsets list is:

Chain pointer to
the next offset or
zero for end of
list

4 bytes 4 bytes

Offset n

Record Lengths List
The record lengths list is a linked list containing the inputand output record lengths.
You must be aware of the possible change in record size during run-time (for
example, with an E15 user exit).

The input and output record lengths are sent to the EFS program for informational
use only. DFSORT ignores any changes to the values made to the record lengths
list returned by the EFS program.

DFSORT frees any storage it acquired for the record lengths list. The format of the
record lengths list is:

Input record
length

Output record
length

4 bytes 4 bytes

Information Flags
The information flags are defined in the figure that follows:

Structure of the EFS Interface Parameter List

528 DFSORT R14 Application Programming Guide

Bit Description

Bits 0 and 1
Indicate the source of the control statement being processed. Information
flags 0 and 1 are set by DFSORT before a call to the EFS program at
Major Call 2 (multiple calls are possible at Major Call 2).

Bit 2 Indicates how DFSORT was invoked. Information flag 2 is set by DFSORT
before Major Call 1 to the EFS program.

Bit 3 Indicates whether diagnostic messages are to be printed. Information flag 3
is set by DFSORT before Major Call 1 to the EFS program.

Bits 4 and 5
Indicate the DFSORT function being run. Information flags 4 and 5 are set
by DFSORT before each call at Major Call 2 and Major Call 3 to the EFS
program (multiple calls are possible at Major Call 2 and Major Call 3).

Bit 6 Indicates the source of PARM options and control statements from
DFSPARM. Information flag 6 is set by DFSORT before each call at Major
Call 2 to the EFS program (multiple calls are possible at Major Call 2).

Bit 7 Indicates whether fixed-length records or variable-length records are to be
processed. Information flag 7 is set by DFSORT before each call at Major
Call 3 to the EFS program (multiple calls are possible at Major Call 3).

Bit 8 Set by the EFS program to inform DFSORT whether to parse or ignore the
control statement returned by the EFS program. Printing of the control
statement is managed by the LISTX/NOLISTX parameters (see “OPTION

0 = Fixed-length records
1 = Variable-length records

0 = PARM option/Control statement not from DFSPARM
1 = PARM option/Control statement from DFSPARM

0 0 = No application in effect
0 1 = SORT application in effect
1 0 = MERGE application in effect
1 1 = COPY application in effect

0 = SORTDIAG not being used
1 = SORTDIAG being used

0 = Directly invoked
1 = Program invoked

0 0 = Option from EXEC PARM
0 1 = Control statement from SYSIN
1 0 = Control statement from SORTCNTL
1 1 = Control statement from invoking parameter list

0 = Inform DFSORT to ignore parsing
the verb the EFS program returns
to DFSORT

1 = Inform DFSORT to parse the verb
the EFS program returns to DFSORT

Reserved

bit 0 1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0 0 0000000 00000000 00000000

Figure 47. Information Flags

Structure of the EFS Interface Parameter List

Chapter 8. Using Extended Function Support 529

Control Statement” on page 155 for further details). Information flag 8 is set
by the EFS program before returning to DFSORT from each call at Major
Call 2 (multiple calls are possible at Major Call 2).

Message List
Your EFS program can return informational or critical messages. A return code of 0
in general register 15 indicates an informational message while a return code of 16
indicates a critical message. If the EFS program has no messages to send after a
Major Call, it must zero the message list address in the EFS interface parameter
list.

At Major Call 2, if the EFS program finds a syntax error in a control statement, it
can return an offset relative to the start of the string to indicate the location of the
error. DFSORT first prints the control statement in error and then prints another line
containing a dollar symbol ($) at the location indicated by the offset.

Because DFSORT associates the relative offset with a critical message, the EFS
program must return with a return code of 16 in general register 15. If a relative
offset is returned for an EXEC PARM, the relative offset will be ignored. The EFS
program must free any storage it acquired for its messages.

The length field values must not include their own length.

The message list format follows:

Pointer to
next
message or
zero for
list end

Relative offset
(to syntax
error) or
zero

Message
text
(variable
length)

Length of
the message
text

4 bytes 2 bytes2 bytes * bytes

An asterisk (*) indicates that the length is determined by the corresponding length
field.

DFSORT imposes no restrictions on the format of the messages returned by an
EFS program. If you wish, you can use the DFSORT message format so that
messages in the message data set are consistent in appearance. For a description
of the message format used by DFSORT, see DFSORT Messages, Codes and
Diagnosis Guide R14

EFS Program Exit Routines
If you specify EFS control fields (D1 format) or EFS fields(D2 format), DFSORT
calls the EFS01 or EFS02 exit routines, respectively, to process those fields. The
routines are generated by your EFS program, which can return the following
information about them at Major Call 3:

v The address of an extract routine, EFS01, which is used to extract the control
fields of an input record to a buffer area before a sort or merge takes place;
EFS01 is not applicable to a copy application.

v The address of an INCLUDE or OMIT routine, EFS02, which is used to process
comparison logic for including or omitting records.

During the termination phase, the EFS program must free any storage used by
these routines.

Structure of the EFS Interface Parameter List

530 DFSORT R14 Application Programming Guide

EFS01 and EFS02 Function Description
Each DFSORT control statement describes to DFSORT the type of operation to be
performed on input data. Through the EFS interface, DFSORT enables an EFS
program to provide user exit routines to perform functions beyond the capabilities of
DFSORT control statements.

The EFS program can provide user exit routine EFS01 to supplement the function
of the DFSORT SORT/MERGE control statements and can provide user exit routine
EFS02 to perform the function of the DFSORT INCLUDE/OMIT control statements.

When preparing your EFS program exit routines, remember:

v The routines must follow standard linkage conventions.

v The general registers used by DFSORT for linkage and communication of
parameters follow operating system conventions (see Figure 48).

v The routines must use the described interfaces (see “EFS01 Parameter List” on
page 532 and “EFS02 Parameter List” on page 534).

EFS01 User Exit Routine
Processing of user-defined data types with the EFS01 exit routinerequires using the
function that alters control statements. EFS program requirements at Major Calls 1
and 2 are:

v At Major Call 1, the EFS program must provide the control statement request list
with the SORT or MERGE operation definer. See “Control Statement Request
List” on page 522 for further details.

v At Major Call 2, the EFS program must return a new format, D1, on the SORT or
MERGE control statement which informs DFSORT to call the EFS01 routine, (the
control fields defined with the D1 format are also known as EFS control fields).
See “EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements”
on page 525 for further details. The EFS program must also return the final
position, length, and sequence order. DFSORT uses the final position and length
to create a list of offsets.

At Major Call 3, DFSORT sends the EFS program a list of offsets into a buffer.
These offsets indicate where in the buffer the EFS program must have the EFS01
routine move the data indicated by the EFS control fields. See “Extract Buffer
Offsets List” on page 528 for further details. At Major Call 3, the EFS program must
return the address of the EFS01 routine to DFSORT.

Register
Use

1 DFSORT places the address of a parameter list in this register.

13 DFSORT places the address of a standard save area in this register. The
area can be used to save contents of registers used by the EFS program
exit routine. The first word of the area contains the characters SM1 in its
three low-order bytes.

14 Contains the address of DFSORT return point.

15 Contains the address of the EFS program exit routine. This register can be
used as the base register for EFS program exit routine. This register is also
used by the EFS program exit routine to pass return codes to DFSORT.

Figure 48. DFSORT Register Convention

EFS Program Exit Routines

Chapter 8. Using Extended Function Support 531

During the input phase, DFSORT calls the EFS01 routine for each input record. The
EFS01 exit routine must move all data indicated by the EFS control fields, specified
in the SORT or MERGE FIELDS operand, from the input record to the extract buffer
area as specified by the offsets in the extract buffer offsets list. For each EFS
control field, the total number of bytes moved by EFS01 into the buffer area is
equal to the total number of bytes specified in the mm parameter of the altered
SORT or MERGE operand. Records are ordered according to the altered ms
parameter.

The EFS01 routine is called to extract all EFS control fields to the extract buffer
area each time a new record is brought into the input phase.

DFSORT will do sort or merge processing using the data in the extract buffer, and
will treat the data as binary data.

EFS01 Parameter List
DFSORT sends three words to the EFS01 user exit routine each time it is entered:
v The address of the extract buffer area
v The address of the input record
v The address of the EFS program context area.

DFSORT places the address of a parameter list in register 1. The list begins on a
fullword boundary and is three fullwords long. The format of the parameter list is:

Bytes 1 through 4

Address of the extract buffer area

Address of the input record

Address of the EFS program context area

The EFS01 routine must return one of the following return codes in general register
15:

0 The extraction of the EFS control field was successful.

16 The extraction of the EFS control field was unsuccessful; terminate
DFSORT.

EFS02 User Exit Routine
Including or omitting records based on user-defined data typeswith the EFS02 user
exit routine requires using the function of altering control statements. EFS program
requirements at Major Calls 1 and 2 are:

v At Major Call 1, the EFS program must provide the control statement request list
with the INCLUDE or OMIT operation definer. See “Control Statement Request
List” on page 522 for further details.

v At Major Call 2, the EFS program must return a new format, D2, on the
INCLUDE or OMIT control statement that informs DFSORT to call the EFS02
routine (the fields defined with the D2 format are also known as EFS compare
fields). See “EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control
Statements” on page 525 for further details. The EFS program must also return
the final length and, in place of the position value, must send an identifier (known
as a correlator identifier) that identifies a specific relational condition. For each
relational condition containing EFS fields, there must be a unique correlator
identifier to identify the particular relational condition. See “EFS Formats for
SORT, MERGE, INCLUDE, and OMIT Control Statements” on page 525 for
further details.

EFS Program Exit Routines

532 DFSORT R14 Application Programming Guide

At Major Call 3, the EFS program must return the address of the EFS02 routine to
DFSORT.

The EFS02 routine is called to perform the INCLUDE or OMIT comparison logic for
each relational condition containing an EFS field. During the input phase, DFSORT
will call the EFS02 exit routine one or more times for each input record according to
the evaluation defined by the AND, OR, or parentheses. The EFS02 exit routine
must use the correlator identifier to determine the current relational condition being
performed. EFS02 must perform the comparison logic for the current relational
condition as identified by the correlator identifier. Figure 49 repeats Table 71 on
page 527 to illustrate an example of the calling sequences to an EFS02 by
DFSORT.

Original INCLUDE control statement sent to EFSPGM

INCLUDE COND=(15,4,FF,EQ,20,4,FF,AND,40,7,FF,NE,50,7,FF,OR,
30,2,FF,NE,35,2,FF)

Altered INCLUDE control statement returned by EFSPGM

INCLUDE COND=(1,4,D2,EQ,1,4,D2,AND,2,7,D2,NE,2,7,D2,OR,
3,2,D2,NE,3,2,D2)

Where: the calling sequence to EFS02 may be summarized with the following
tables:

Relational
condition
with

Relational
condition
with

Relational
condition
with

EFS02 returns
a return code
of 0=True or

4=False

EFS02 returns
a return code
of 0=True or

4=False

EFS02 returns
a return code
of 0=True or

4=False

DFSORT action when the next
logical operator is:

DFSORT action when the next
logical operator is:

DFSORT action when the next
logical operator is:

AND

OR

None

Call EFS02 with Correlator Id 2

Include the record

Include the record

Omit the record

Call EFS02 with Correlator Id 3

Call EFS02 with Correlator Id 3

True

True

True

False

False

False

Correlator
Identifier

1

Correlator
Identifier

2

Correlator
Identifier

3

Figure 49. Calling Sequence to EFS02 by DFSORT

EFS Program Exit Routines

Chapter 8. Using Extended Function Support 533

EFS02 Parameter List
DFSORT sends three words to the EFS02 exit routine each time it is entered:
v The address of the correlator identifier
v The address of the input record
v The address of the EFS program context area.

DFSORT places the address of a parameter list in register 1. The list begins on a
fullword boundary and is three fullwords long. The format of the parameter list is:

Byte 1 Byte 2 Byte 3 Byte 4

00 00 00 Correlator identifier

Address of the input record

Address of the EFS program context area

The EFS02 exit routine must return one of the following return codes in general
register 15:

0 True

The record passed the INCLUDE or OMIT test for the relational condition of
an EFS field. If applicable, processing continues with the next relational
condition. Otherwise, DFSORT accepts the record if INCLUDE is specified
or omits the record if OMIT is specified.

4 False

The record did not pass the INCLUDE or OMIT test for the relational
condition of an EFS field. If applicable, processing continues with the next
relational condition. Otherwise, DFSORT omits the record if INCLUDE is
specified or includes the record if OMIT is specified.

16 Terminate

An error occurred in processing the INCLUDE or OMIT logic; terminate
DFSORT.

Addressing and Residence Mode of EFS Program User Exit Routines
DFSORT supplies the following features to allow residence above or below 16MB
virtual and use of either 24-bit or 31-bit addressing:

f (bit 0 of EFS program exit routine address)

0 Enter the EFS program exit routine with 24-bit addressing in effect.

1 Enter the EFS program exit routine with 31-bit addressing in effect.

The EFS program user exit routine can return to DFSORT with either 24-bit or
31-bit addressing in effect. The return address that DFSORT placed in register 14
must be used.

Except for the EFS program context area address (which DFSORT sends to the
EFS program user exit routine unchanged), DFSORT handles the EFS program exit
routine parameter list addresses (that is, the pointer to the EFS program exit routine
parameter list and the addresses in the parameter list) as follows:

v If the EFS program exit routine is entered with 24-bit addressing in effect,
DFSORT can pass clean (zeros in the first 8 bits) 24-bit addresses or 31-bit

EFS Program Exit Routines

534 DFSORT R14 Application Programming Guide

addresses to the EFS program exit routine. The EFS program exit routine must
return clean 24-bit addresses if the EFS program exit routine returns to DFSORT
with 31-bit addressing in effect.

v If the EFS program exit routine is entered with 31-bit addressing in effect,
DFSORT can pass clean 24-bit addresses or 31-bit addresses to the EFS
program exit routine. The EFS program exit routine must return 31-bit addresses
or clean 24-bit addresses.

EFS Program Return Codes You Must Supply
Your EFS program must pass one of two return codes to DFSORT:

0 Continue Processing

If you want DFSORT to continue processing for this Major Call, return with
a return code of zero in general register 15.

16 Terminate DFSORT

If you want DFSORT to terminate processing for this Major Call, return with
a return code of 16 in general register 15.

If the EFS program returns a return code of 16 from a Major Call prior to
Major Call 4 or one of its generated user exit routines returns a return code
of 16, DFSORT will skip interim Major Calls, where applicable, to the EFS
program or user exit routine, and will call the EFS program at Major Call 4
and at Major Call 5.

Multiple calls are possible at Major Call 2 and Major Call 3. If the EFS
program returns with a return code of 16 from one of the multiple calls at
Major Call 2, subsequent calls at Major Call 2, if applicable, will be
completed. If the EFS program returns with a return code of 16 from one of
the multiple calls at Major Call 3, subsequent calls at Major Call 3, if
applicable, will not be completed.

If the EFS program returns a return code of 16 at Major Call 4, DFSORT
will still call the EFS program at Major Call 5.

Record Processing Order
The order of record processing when using EFS is similar to processing without it.
Figure 50 on page 536 illustrates the record processing sequence for a sort or
merge and Figure 51 on page 537 illustrates the record processing sequence for a
copy when EFS processing is in effect.

The figures illustrate the same points as described in Figure 2 on page 8 with the
following exceptions:

v When record processing is done for an INCLUDE or OMIT control statement, an
EFS02 user exit routine is called to perform the comparison logic for the
relational conditions with EFS fields.

v When record processing is done for a SORT or MERGE control statement, an
EFS01 user exit routine is called to perform the extraction process for EFS
control fields.

Addressing and Residence Mode

Chapter 8. Using Extended Function Support 535

INCLUDE
OMIT

SORT
SUM

MERGE
SUM

EFS01 EFS01

E35 or
COBOL E35

E35 or
COBOL E35

E35 or
COBOL E35

E35 or
COBOL E35

E15 or
COBOL E15

E15 or
COBOL E15

E32

SORTIN

SKIPREC

STOPAFT

OUTREC OUTREC

SORTOUT SORTOUTOUTFIL OUTFIL

INREC INREC

SORTINnn

INCLUDE
OMIT

EFS02 EFS02

Sort Application Merge Application

Figure 50. EFS Record Processing Sequence for a Sort or Merge

Record Processing Order

536 DFSORT R14 Application Programming Guide

How to Request a SNAP Dump
You can request a SNAP dump for diagnostic purposes before or afterany Major
Call except Major Call 1. Use either the EFSDPBFR parameter or the EFSDPAFT
parameter on the DEBUG statement.

See “DEBUG Control Statement” on page 105 for the correct syntax.

INCLUDE
OMIT

COPY

E35 or
COBOL E35

E35 or
COBOL E35

E15 or
COBOL E15

E15 or
COBOL E15

SORTIN

SKIPREC

STOPAFT

OUTREC

SORTOUT OUTFIL

INREC

EFS02

Copy Application

Figure 51. EFS Record Processing Sequence for a Copy

How to Request a SNAP Dump

Chapter 8. Using Extended Function Support 537

EFS Program Example
The following example shows how an EFS program can be used to change control
statements at run-time.

The following information is assumed for this example DFSORT run:

v The EFS program “EFSPGM” resides in the same library as the DFSORT
modules.

v The JCL statements for the application are:

//EXAMPLE1 JOB A12345,’J. SMITH’
//S1 EXEC PGM=SORT,PARM=’EFS=EFSPGM’
//SYSOUT DD SYSOUT=A
//SORTIN DD DSNAME=SMITH.INPUT,DISP=SHR,
// UNIT=3380,SPACE=(TRK,(15,2)),VOL=SER=XYZ003,
// DCB=(LRECL=80,BLKSIZE=80,RECFM=F)
//SORTOUT DD DSNAME=SMITH.OUTPUT,DISP=(NEW,KEEP),
// UNIT=3380,SPACE=(TRK,(15,2)),VOL=SER=XYZ003
//SYSIN DD *

SORT FIELDS=(5,20,CH,A,13,5,BI,D)
OPTION STOPAFT=30,DYNALLOC=3390

/*

DFSORT Initialization Phase:

Major Call 1
Prior to Major Call 1, DFSORT sets the following fields in the EFS interface
parameter list:

v Action code=0

Major Call 1 is in effect.

v Informational bit flag 2=0

The DFSORT run is JCL-invoked.

v Informational bit flag 3=0

SORTDIAG is not in effect.

DFSORT calls EFS program EFSPGM at Major Call 1, and EFSPGM sets the
following fields in the EFS interface parameter list:

v Control statement request list

Contains the OPTION operation definer which indicates to DFSORT that the
OPTION control statement is requested by EFSPGM.

v EFSPGM program context area

EFSPGM will be using the context area.

v Message list=0

EFSPGM has no messages for DFSORT to print to the message data set.
General register 15 is set to zero.

Major Call 2
Prior to Major Call 2, DFSORT sets the following fields in the EFS interface
parameter list:

v Action code=4

Major Call 2 is in effect.

v Informational bit flag 4=0 and informational bit flag 5=0

EFS Program Example

538 DFSORT R14 Application Programming Guide

No application is in effect.

EFSPGM requested the OPTION control statement. DFSORT makes a call to EFS
program EFSPGM for each control statement requested; in this case, one.
DFSORT also sets the following fields in the EFS interface parameter list:

v Informational bit flag 0=0 and informational bit flag 1=1

The requested control statement came from SYSIN.

v The original OPTION control statement, including all operands and
corresponding subparameters

OPTION STOPAFT=30,DYNALLOC=3390

v The length of the original OPTION control statement, including all operands and
corresponding subparameters

The original control statement string is 31 bytes long.

DFSORT calls EFS program EFSPGM at Major Call 2, and EFSPGM sets the
following fields in the EFS interface parameter list:

v Informational bit flag 8=1

DFSORT must parse the control statement returned by EFSPGM.

v The altered OPTION control statement, including all operands and
subparameters

OPTION STOPAFT=30,DYNALLOC=3380,EQUALS

v The length of the altered OPTION control statement, including all operands and
subparameters

The altered control statement string is 38 bytes long.

v Message list=0

EFSPGM has no messages for DFSORT to print to the message data set.
General register 15 is set to zero.

Table 72 shows the original control statement sent to EFS program EFSPGM and
the altered control statement returned by EFS program EFSPGM.

Table 72. Original and Altered Control Statements

Original OPTION control statement sent to EFSPGM

OPTION STOPAFT=30,DYNALLOC=3390

Altered OPTION control statement returned by EFSPGM

OPTION STOPAFT=30,DYNALLOC=3380,EQUALS

Where:

STOPAFT=30 is the original operand and value
DYNALLOC=3380 is the original operand with a new value
EQUALS option has been added

Major Call 3
Prior to Major Call 3, DFSORT sets the following fields in the EFS interface
parameter list:

v Action code=8

Major Call 3 is in effect.

EFS Program Example

Chapter 8. Using Extended Function Support 539

v Informational bit flag 4=0 and informational bit flag 5=1

A sort application is in effect.

v Informational bit flag 7=0

Fixed-length records are being processed.

v Record lengths list values=80

The LRECL of the input and output data sets is 80. Because the SORTOUT
LRECL was not specified, DFSORT defaulted to the SORTIN LRECL for the
SORTOUT LRECL.

v Extract buffer offsets list=0

No EFS control fields were specified on the SORT control statement.

DFSORT calls EFS program EFSPGM at Major Call 3, and EFSPGM sets the
following fields in the EFS interface parameter list:

v EFS01 address=0

Because the SORT control statement has no EFS control fields, the EFS01 user
exit routine is not used.

Because no INCLUDE control statement was supplied (with EFS fields), the
EFS02 user exit routine is not used.

v Message list=0

EFSPGM has no messages for DFSORT to print to the message data set.
General register 15 is set to zero.

DFSORT Termination Phase

Major Call 4
Prior to Major Call 4, DFSORT sets the following fields in the EFS interface
parameter list:

v Action code=12

Major Call 4 is in effect.

DFSORT calls EFS program EFSPGM at Major Call 4, and EFSPGM sets the
following fields in the EFS interface parameter list:

v Message list=0

EFSPGM has no messages for DFSORT to print to the message data set.

And general register 15 is set to zero.

Major Call 5
Prior to Major Call 5, DFSORT sets the following fields in the EFS interface
parameter list:

v Action Code=16

Major Call 5 is in effect.

DFSORT calls EFS program EFSPGM at Major Call 5, and EFSPGM does not set
any fields in the EFS interface parameter list but sets general register 15 to zero.

EFS Program Example

540 DFSORT R14 Application Programming Guide

Chapter 9. Improving Efficiency

Improving Performance . 542
Design Your Applications to Maximize Performance 542

Directly Invoke DFSORT Processing 542
Plan Ahead When Designing New Applications. 543

Efficient Blocking. 543
Specify Efficient Sort/Merge Techniques 543

Sorting Techniques . 543
Merging Techniques . 544

Specify Input/Output Data Set Characteristics Accurately 544
Input File Size. 544
Variable-Length Records 544
Direct Access Storage Devices 544

Use Sequential Striping . 545
Use Compression . 545
Use DFSMSrmm-Managed Tapes, or ICETPEX 545
Use SmartBatch Pipes . 545
Use VIO in Expanded Storage. 545
Specify Devices that Improve Elapsed Time 546
Use Options that Enhance Performance 546

CFW . 546
COBEXIT . 546
DSA . 546
DSPSIZE . 546
FASTSRT . 546
SDB . 547
HIPRMAX . 547

Use DFSORT’s Fast, Efficient Productivity Features 548
INCLUDE or OMIT, STOPAFT, and SKIPREC 548
OUTFIL . 548
LOCALE . 548
SUM . 548
ICETOOL . 548

Avoid Options that Degrade Performance. 549
CKPT . 549
EQUALS. 549
EQUCOUNT . 549
LOCALE . 549
NOCINV . 549
NOBLKSET . 549
VERIFY . 549
Tape Work Data Sets . 549
User Exit Routines . 549
Dynamic Link-Editing . 549
EFS Programs . 549

Use Main Storage Efficiently 549
Tuning Main Storage . 550
Releasing Main Storage 552

Allocate Temporary Work Space Efficiently 553
Direct Access Work Storage Devices 553
Virtual I/O for Work Data Sets 554
Tape Work Storage Devices 554

Use Hipersorting . 555
Sort with Data Space . 555

© Copyright IBM Corp. 1973, 2002 541

Use ICEGENER Instead of IEBGENER 556
ICEGENER Return Codes 558

Use DFSORT’s Performance Booster for The SAS System 559
Use DFSORT’s BLDINDEX Support. 559

Improving Performance
DFSORT is designed to optimize performance automatically. It sets optimization
variables (such as buffer sizes) and selects the most efficient of several sorting and
merging techniques.

You can improve DFSORT performance in several ways:

v Design your applications to maximize performance:
– Directly invoke DFSORT processing
– Plan ahead when designing new applications
– Specify efficient sort/merge techniques
– Specify input/output data set characteristics accurately
– Use sequential striping
– Use compression
– Use DFSMSrmm-managed tapes, or ICETPEX
– Use SmartBatch pipes
– Use VIO in expanded storage
– Specify devices that improve elapsed time
– Use options that enhance performance
– Use DFSORT’s fast, efficient productivity features
– Avoid options that degrade performance.

v Use main storage efficiently

v Allocate temporary work space efficiently

v Use Hipersorting

v Sort with data space

v Use ICEGENER instead of IEBGENER

v Use DFSORT’s Performance Booster for The SAS System

v Use DFSORT’s BLDINDEX support.

The DFSORT DFSORT Tuning Guide R14 provides additional information related to
many of the topics covered in this chapter.

Design Your Applications to Maximize Performance
Even though DFSORT automatically optimizes performance when your application
is run, you can still improve efficiency by using specifications and options that
permit DFSORT to make the best possible use of available resources.

Directly Invoke DFSORT Processing
You can enhance performance by invoking DFSORT withJCL instead of invoking it
from a COBOL or a PL/I program. Generally, COBOL or PL/I is used for
convenience. However, the trade-off can be degraded performance. You can
improve efficiency by taking advantage of the way DFSORT installation defaults and
run-time options can be fine-tuned for optimum performance, especially to make
use of control statements that “work together,” such as INCLUDE/OMIT,
INREC/OUTREC, SUM, and OUTFIL. You can eliminate records from input files,
reformat records to eliminate unwanted fields, combine records arithmetically, and
create reports, without requiring routines from other programs.

Improving Efficiency

542 DFSORT R14 Application Programming Guide

|

Plan Ahead When Designing New Applications
You should consider several factors when designing newapplications. Some of
these factors are discussed below.

Whenever possible:

v Use either EBCDIC character or binary control fields

v Place binary control fields so they start and end on byte boundaries

v Avoid using the alternative collating sequence character translation

v If you know that a fixed-point control field always contains positive values, specify
it as a binary field.

v If you know that a packed decimal or zoned decimal control field always contains
positive values with the same sign (for example, X'C'), specify it as a binary field.

v Use packed decimal format rather than zoned decimal

v If several contiguous character or binary control fields in the correct order of
significance are to be sorted or merged in the same order (ascending or
descending), specify them as one control field

v Avoid overlapping control fields.

v Avoid using locale processing if your SORT, MERGE, INCLUDE, or OMIT
character fields can be processed using the binary encoding of the data.

Efficient Blocking
You can improve the performance of DFSORT significantly by blocking your input
and output records efficiently. Whenever possible, use system-determined optimum
block sizes for your data sets.

For more information about letting DFSORT select system-determined optimum
block sizes for your output data sets, see the discussion of the SDB option in
“OPTION Control Statement” on page 155.

Specify Efficient Sort/Merge Techniques
Depending on various conditions, DFSORT selects different techniques for sorting
and merging. Message ICE143I informs you which technique has been selected.

For copy applications, Blockset is the only technique used. If your program cannot
use Blockset, DFSORT issues error message ICE160A and stops processing.

Sorting Techniques
One condition that affects which sorting technique DFSORT selects isthe type of
device used for intermediate storage. If you use a tape device, the Conventional
technique is used, which is less efficient. For more information on using tape
devices for intermediate storage, see “Tape Work Storage Devices” on page 554.

The Blockset and Peerage/Vale techniques can be used only with DASD work data
sets. These techniques are discussed below.

Blockset Sorting Techniques: DFSORT’s most efficient techniques,
FLR-Blockset (for fixed-length records) and VLR-Blockset (for variable-length
records), will be used for most sorting applications.

Notes::

v The Blockset technique might require more intermediate work space than
Peerage/Vale. For more information, see “Allocate Temporary Work Space
Efficiently” on page 553.

Design Your Applications to Maximize Performance

Chapter 9. Improving Efficiency 543

v If Blockset is not selected, you can use a SORTDIAG DD statement to force
message ICE800I, which gives a code indicating why Blockset cannot be used.

Peerage/Vale Sorting Techniques: When the conditions for use of the Blockset
sorting technique are not met, DFSORT uses Peerage/Vale.

Merging Techniques
For merging applications, DFSORT uses the Blocksetand Conventional techniques.

Blockset Merging Techniques: DFSORT’s most efficient techniques,
FLR-Blockset (for fixed-length records) and VLR-Blockset (for variable-length
records), will be used for most merging applications.

Note: If Blockset is not selected, you can use a SORTDIAG DD statement to force
message ICE800I, which gives a code indicating why Blockset cannot be
used.

Conventional Merging Technique: When the conditions for use of the Blockset
merging technique are not met, DFSORT uses the Conventional merge technique,
which is less efficient.

Specify Input/Output Data Set Characteristics Accurately
DFSORT uses the information given it (aboutthe operation it is to perform) to
optimize for highest efficiency. When you supply incorrect information or do not
supply information such as data set size and record format, the program makes
assumptions which, if incorrect, can lead to inefficiency or program termination.

Input File Size
When DFSORT has accurate information about the input file size, it can make the
most efficient use of both main storage and intermediate work storage. See “File
Size and Dynamic Allocation” on page 597 for information about when and how to
specify the input file size.

Variable-Length Records
When the input data set consists of variable-length recordsand dynamic allocation
of intermediate data sets is used, specify the average record length as accurately
as possible using AVGRLEN=n in the OPTION statement.

Direct Access Storage Devices
System performance is improved if storage is specified in cylindersrather than
tracks or blocks. Storage on sort work data sets will be readjusted to cylinders if
possible. The number of tracks per cylinder for direct access devices is shown in
Table 73.

Table 73. Number of Tracks per Cylinder for Direct Access Devices

Device Tracks per Cylinder

3380 15

3390 15

9345 15

If WRKSEC is in effect and the work data set is not allocated to virtual I/O,
DFSORT allocates secondary extents as required, even if not requested in the JCL.

Design Your Applications to Maximize Performance

544 DFSORT R14 Application Programming Guide

Allocating twice the space used by the input data sets is usually adequate for the
work data sets. Certain conditions can cause additional space requirements. These
include:
v Long control words (more than 150 bytes)
v Using different device types or work data sets
v Using an alternative collating sequence
v Low ratio of available storage to input file size.

Care should be taken to ensure that the LRECL parameter of the DCB corresponds
to the actual maximum record length contained in your data set.

Use Sequential Striping
The use of sequential striping can significantly reduce the elapsed time DFSORT
spends reading and writing data. We recommend using sequential striping for your
DFSORT input and output data sets as a way to improve elapsed time
performance.

Use Compression
The use of compression can significantly reduce the DASD storage required for
many types of data and the resulting time DFSORT spends reading and writing that
data. We recommend using compression for your DFSORT input and output data
sets as a way to improve elapsed time performance.

Use DFSMSrmm-Managed Tapes, or ICETPEX
The use of tapes managed by DFSMSrmm, or a tape management system that
uses ICETPEX, allows DFSORT to obtain accurate information about input file size
and data set characteristics. This can result in improved performance and more
efficient use of both main storage and intermediate work storage.

Use SmartBatch Pipes
The use of SmartBatch input and output pipes can significantly reduce elapsed time
as a result of the parallelism inherent in piping the data from “writer” to concurrent
“reader” jobs. For example, if a SORTOUT data set is piped, DFSORT output
processing can be overlapped with the receiving job’s input processing. In addition,
because a pipe is a virtual storage queue rather than a DASD or tape data set,
data transfer time and elapsed time can be reduced significantly.

We recommend using SmartBatch pipes for your DFSORT input and output data
sets, when appropriate, as a way to improve elapsed time and data transfer time.

Use VIO in Expanded Storage
Temporary non-VSAM input and output data sets can be held in expanded storage
using Virtual I/O (VIO). Because expanded storage is used rather than a DASD or
tape data set, data transfer time and elapsed time can be reduced significantly
(provided that the entire data set can fit in the available expanded storage). For
example, if a SORTOUT data set is allocated as a temporary VIO data set in
expanded storage, DFSORT’s output processing as well as the receiving job’s input
processing can show improved performance.

We recommend using VIO in expanded storage for your DFSORT input and output
data sets, when appropriate, as a way to improve elapsed time and data transfer
time.

Design Your Applications to Maximize Performance

Chapter 9. Improving Efficiency 545

|
|
|
|

Note that VIO is generally not recommended for work data sets, as discussed in
“Virtual I/O for Work Data Sets” on page 554.

Specify Devices that Improve Elapsed Time
To get the best elapsed time improvement when using DASD with DFSORT, you
should use 3390s for SORTIN, SORTWKdd, SORTOUT, and OUTFIL data sets. A
mixture of 3380s and 3390s for these data sets might not result in the same
elapsed time improvement you would get with all 3390s; this is indirectly affected by
DFSORT processing techniques, but is primarily due to the lower performance
characteristics of the 3380 in relation to the 3390.

The exact elapsed time improvement you see when using 3390s depends on the
processing techniques used by DFSORT for the particular run, and which data sets
(SORTIN, SORTWKdd, SORTOUT, OUTFIL) reside on 3390s. We recommend that
if you cannot use all 3390s, you use 3390s for SORTIN, SORTOUT, and OUTFIL
data sets in preference to SORTWKdd data sets.

Use Options that Enhance Performance
To obtain optimum performance, you can fine-tune theoptions specified during
installation and at run time. Several options that can enhance performance are
described below.

CFW
To improve Blockset sorting performance by taking advantage of the cached 3990
Storage Controls, specify CFW on the DEBUG control statement or CFW=YES as
the installation default (CFW=YES is the IBM-supplied default).

COBEXIT
To take advantage of the COBOL II interface with DFSORT and enhance
performance, specify COBEXIT=COB2 on the OPTION control statement or define
it as the installation default when you run user exits compiled with VS COBOL II,
COBOL for MVS & VM, COBOL for OS/390 & VM, or COBOL for z/OS and OS/390.

DSA
Performance can be improved for Blockset sort applications by using Dynamic
Storage Adjustment (DSA).

The DSA installation parameter sets the maximum amount of storage available to
DFSORT for dynamic storage adjustment of a Blockset sort application when
SIZE/MAINSIZE=MAX is in effect. If you specify a DSA value greater than the
TMAXLIM value, you allow DFSORT to use more storage than the TMAXLIM value
if doing so should improve performance. DFSORT only tries to obtain as much
storage as needed to improve performance up to the DSA value.

DSPSIZE
Performance can be improved for sort applications that use the Blockset technique
by using dataspace sorting.

The DSPSIZE parameter sets the maximum amount of data space that will be used
for dataspace sorting. The default, DSPSIZE=MAX, permits DFSORT to select the
maximum amount of data space that it uses based on the size of the file being
sorted and the paging activity of your system.

FASTSRT
By specifying the VS COBOL II or later FASTSRT compiler option,you can
significantly reduce DFSORT processor time, EXCPs, and elapsed time. With

Design Your Applications to Maximize Performance

546 DFSORT R14 Application Programming Guide

|
|
|
|

FASTSRT, DFSORT input/output operations are more efficient because DFSORT
rather than COBOL does the input/output (see Figure 52 on page 547). For more
details, see the VS COBOL II or later publications.

The FASTSRT option does not take effect for input and output if input and output
procedures are used in the SORT statement. Many of the functions usually
performed in an input or output procedure are the same as those done by DFSORT
INREC, OUTFIL, OUTREC, INCLUDE or OMIT, STOPAFT, SKIPREC, and SUM
functions. You might be able to eliminate your input and output procedures by
coding the appropriate DFSORT program control statements and placing them in
either the DFSPARM (DFSORT), SORTCNTL (DFSORT), or IGZSRTCD (COBOL)
data set, thereby allowing your SORT statement to qualify for FASTSRT.

SDB
To improve Blockset elapsed time, and DASD and tape utilization, specify
SDB=LARGE as your site’s installation default (SDB=INPUT is the IBM-supplied
default). SDB=LARGE allows DFSORT to select the system-determined optimum
block size for your DASD and tape output data sets, when appropriate.

HIPRMAX
Blockset sorting performance can be improved by using Hiperspace along with
DASD for temporary storage.

The HIPRMAX parameter sets the maximum amount of Hiperspace to be
committed during a run. Specifying HIPRMAX=OPTIMAL allows DFSORT to
optimize the maximum amount of Hiperspace to be committed during a run, subject
to other system and concurrent Hipersorting activity throughout the run. Total
Hipersorting activity on a system can be further limited by the DFSORT installation
options EXPMAX, EXPOLD, and EXPRES. See the description of HIPRMAX in
“OPTION Control Statement” on page 155 for more information.

OS/VS
COBOL
or VS
COBOL II
without
FASTSRT

VS COBOL
II with
FASTSRT

DFSORT

DFSORT

unsorted

unsorted

sorted

sorted
or copied

input file

input file

output file

output file

Figure 52. Faster Sorting with VS COBOL II

Design Your Applications to Maximize Performance

Chapter 9. Improving Efficiency 547

Use DFSORT’s Fast, Efficient Productivity Features
DFSORT offers a rich set of fast, efficient productivity features. These features can
eliminate the up-front costs of writing and debugging your own code to perform
various tasks, and will perform those tasks more efficiently. The functional
capabilities of each of the features listed below is described in detail elsewhere in
this book. This section highlights the performance aspects of these features.

INCLUDE or OMIT, STOPAFT, and SKIPREC
You can use the INCLUDE or OMIT statement and the STOPAFTand SKIPREC
options to reduce the number of records to be processed, which can reduce
processor and data transfer time.

v The INCLUDE and OMIT statements allow you to select records by comparing
fields with constants or other fields.

v The STOPAFT option allows you to specify the maximum number of records to
be accepted for sorting or copying.

v The SKIPREC option allows you to skip records at the beginning of the input file
and sort or copy only the remaining records.

OUTFIL
If you need to create multiple output data setsfrom the same input data set, you can
use OUTFIL to read the input data set only once, thus improving performance.
OUTFIL can be used for sort, merge, and copy applications to provide sophisticated
filtering, editing, conversion, lookup and replace, and report features.

If you are creating only a single output data set and do not need the features of
OUTFIL, use SORTOUT rather than OUTFIL for best performance.

LOCALE
You can use the LOCALE option to sort and merge character data basedon
collating rules in an active locale; this enables you to obtain results with DFSORT
that were previously possible only through pre- and/or post-processing of your data.
By eliminating such costly processing, you can save time and processing resources.

SUM
You can improve performance by using SUM to add the contentsof fields. The SUM
statement adds the contents of specified SUM fields in records with identical control
fields. The result is placed in one record while the other record is deleted, thus
reducing the number of records to be output by DFSORT.

You can use the ZDPRINT=YES installation option or the ZDPRINT run-time option
to specify that positive zoned decimal fields that result from summing are to be
printable. That is, you can tell DFSORT to change the last digit of the zone from
hex C to hex F.

Eliminating Duplicate Records: You can eliminate records with duplicate keys by
specifying

SUM FIELDS=NONE

when using the SUM control statement.

For a diagram of the processing sequence for record handling statements, user
exits, and options, see Figure 2 on page 8.

ICETOOL
ICETOOL is a multi-purpose utility that allows you to use DFSORT’s highly efficient
I/O and processing to perform multiple operations on one or more data sets in a

Design Your Applications to Maximize Performance

548 DFSORT R14 Application Programming Guide

single job step. ICETOOL’s twelve operators allow you to perform sort, copy,
statistical, and report operations quickly and efficiently.

Avoid Options that Degrade Performance
Certain options can adversely affect performance, and shouldbe used only when
necessary. For example, the CKPT option, which activates checkpoint/restart,
prevents use of the efficient Blockset techniques.

CKPT
The CKPT option might preclude the use of the moreefficient Blockset technique.

Note: If the installation default IGNCKPT=YES has been selected, DFSORT
ignores the checkpoint/restart request and selects the Blockset technique.

EQUALS
The EQUALS optionincreases the time needed for comparison of records and for
data transfer.

EQUCOUNT
The EQUCOUNT option takes additional time to count the number ofrecords with
equal keys.

LOCALE
The LOCALE option may increase the time required to run anapplication.

NOCINV
The NOCINV option precludes the use of control interval accessfor more efficient
VSAM processing.

NOBLKSET
The NOBLKSET option precludes the use of the more efficient Blocksettechnique.

VERIFY
The VERIFY option degrades performance, becauseit involves extra processing.

Tape Work Data Sets
Use of tape work data for intermediate storage precludes the useof the much more
efficient disk techniques.

User Exit Routines
When user exit routines are included in an application, thetime required to run the
application is usually increased.

The run time required by most user exit routines is generally small, but the routines
at user exits E15, E32, and E35 are entered for each record of the data sets. For
large input data sets, the total run time of these routines can be relatively large.

Dynamic Link-Editing
Dynamic link-editing of user exit routines degrades performance.

EFS Programs
When EFS programs are included in an application, the timerequired to run the
application might increase.

Use Main Storage Efficiently
In general, the more main storage you make available to DFSORT, the better the
performance for large applications. To prevent excessive paging, ensure that
sufficient real storage is available to back up the amount of main storage used. This

Design Your Applications to Maximize Performance

Chapter 9. Improving Efficiency 549

is especially important with main storage sizes greater than 32MB. The default
amount of main storage that will be made available to DFSORT is defined when it is
installed.

DFSORT requires a minimum of 88KB, but to get better performance, use a much
larger amount of storage. The recommended amount is about 4MB. Improved
performance will be most noticeable with large input files.

Note: When Blockset is selected, DFSORT can place selected buffers above 16MB
virtual. This frees more storage for DFSORT without having to increase the
REGION size. A REGION size of atleast 440KB must be available to allow
DFSORT to use storage effectively.

Tuning Main Storage
Either the REGION value or the MAINSIZE/SIZE value candetermine how much
storage is available to DFSORT. See DFSORT Installation and Customization R14
for details.

Generally, the most efficient way to allocate (virtual) main storage is to use
MAINSIZE/SIZE=MAX explicitly or by default. However, problems can arise if the
values for the TMAXLIM or MAXLIM installation options have been set excessively
high (or low). Guidelines for setting these values are given in DFSORT Installation
and Customization R14.

Note: Do not use SIZE/MAINSIZE=MAX with password-protected data sets if
passwords are to be entered through a routine at a user exit, because
DFSORT cannot then open the data sets during the initialization phase to
make the necessary calculations.

If you specify MAINSIZE/SIZE=n and give n a value less than that specified for the
MINLIM installation option, MINLIM is used.

When SIZE/MAINSIZE=MAX is in effect, DFSORT will use its Dynamic Storage
Adjustment (DSA) feature, when appropriate, to improve performance. See
DFSORT Installation and Customization R14 for details of the DSA installation
parameter.

If the MINLIM value is greater than thatspecified for REGION on the EXEC
statement, DFSORT attempts to use the value specified for MINLIM; if it fails to get
the amount specified by MINLIM, DFSORT still tries to run, provided at least 88KB
(below 16MB virtual) are available to DFSORT.

Although DFSORT requires a minimum of 88KB (below 16MB virtual), the minimum
amount of main storage required depends on the application.

For best performance, it is strongly recommended that you use significantly more
than the minimum amount of main storage.

You will generally need more main storage if you use:

v Spanned records

v COBOL user exit routines

v CHALT or SMF options

v ALTSEQ, INCLUDE, OMIT, SUM, OUTREC, or INREC control statements

v Very large blocks or logical records

v VSAM data sets

Use Main Storage Efficiently

550 DFSORT R14 Application Programming Guide

v An Extended Function Support (EFS) program

v An ICETEXIT routine

v A large ICEIEXIT routine

v OUTFIL control statements (especially if many OUTFIL data sets are specified or
if the data sets have large block sizes)

v Locale processing.

v A large number of JCL or dynamically allocated work data sets.

Storage used for OUTFIL processing will be adjusted automatically, depending upon
several factors, including:

v Total available storage

v Non-OUTFIL processing storage requirements

v Number of OUTFIL data sets and their attributes (for example, block size).

OUTFIL processing is subject to the ODMAXBF limit and your system storage limits
(for example, IEFUSI) but not to DFSORT storage limits, that is, SIZE/MAINSIZE,
MAXLIM, and TMAXLIM. DFSORT attempts to use storage above 16MB virtual for
OUTFIL processing whenever possible.

Notes:

1. In some cases, this release of DFSORT may use more storage than prior
releases for comparable applications. This might affect the operation of some
applications. For example, some applications that run as in-storage sorts (with
no SORTWKdd data sets) in previous releases might not run in-storage when
using this release. The amount of storage allocated is normally controlled by
TMAXLIM. A REGION size of at least 440KB must be available if DFSORT is to
achieve acceptable performance. The allocation of storage can be adversely
affected if you have a smaller region value or if DFSORT needs to allocate
buffers below 16MB virtual.

2. For extremely large sorts (for example, 500MB or more of data), make sure that
Hipersorting and dataspace sorting are enabled, or make sure that 16MB or
more of main storage is available to DFSORT.

The relationship between TMAXLIM, MAXLIM, MINLIM, and REGION might be
described as a series of checks and balances.

Your system programmer has set the default storage values according to your site’s
major sorting requirements. If you have an overnight or batch time window that
must be met, increasing storage (using REGION or SIZE/MAINSIZE=n) can give
you some relief from the time constraint. If you are concerned with processor time,
decreasing storage (using REGION or SIZE/MAINSIZE=n) can reduce the
processor time associated with sorting small files.

In general, when you vary the amount of storage available to DFSORT, several
things occur:

1. If you increase the amount of storage:

v EXCPs are reduced.

v For larger files, processor time generally decreases; that is, overhead in
managing the extra storage is offset by DFSORT having to make fewer
passes over the data.

v For a very heavily loaded system, elapsed time might increase because
DFSORT can be swapped out more often.

Use Main Storage Efficiently

Chapter 9. Improving Efficiency 551

v For very small sorts, processor time might remain stable or increase because
of the overhead in managing the extra storage. For larger files, processor
time will usually decrease because the overhead in managing the extra
storage would be less than the benefit gained by DFSORT making fewer
passes over the data.

2. If you decrease the amount of storage:

v EXCPs increase.

v Elapsed time increases for most sorts.

v Processor time decreases for very small files, but increases for larger files.

Changing the main storage allocation can affect system efficiency. By reducing the
amount of main storage allocated, you impair performance of DFSORT to allow
other programs to have the storage they need to operate simultaneously; by
increasing the allocation, you can run large DFSORT applications efficiently at the
risk of decreasing the efficiency of other applications sharing the multiprogramming
environment.

Releasing Main Storage
Under some circumstances, DFSORT uses all the availablestorage in your
REGION. This normally will not occur for storage above 16MB virtual (if it does, use
the ARESINV or ARESALL options or lower your SIZE/MAINSIZE value). This
section explains how to release storage within your REGION.

When SIZE/MAINSIZE=n is in effectand n is greater than the REGION parameter or
the default REGION value, or when SIZE/MAINSIZE=MAX and TMAXLIM is greater
than your REGION, specify the storage you need released in the following way:

v For applications with user exits:

– For directly invoked DFSORT, you can choose one of the following:

- Use the m parameter of the MODS control statement.

- If SIZE=MAX is in effect, you can use the RESALL option.

- Change your REGION so that REGION is greater than SIZE/MAINSIZE
(the difference is available).

- If the installation parameter OVERRGN is smaller than your system IEFUSI
value,this difference is available. (OVERRGN is an installation option that
can be modified only by your system programmer.)

– For program invoked DFSORT, you can choose one of the following:

- If the user exit address is not passed in the parameter list (that is, it is
specified with a MODS statement), use the m parameter on the MODS
statement.

- If the user exit address is passed in the parameter list,and
SIZE/MAINSIZE=MAX is in effect, use the RESINV option.

- If the user exit address is passed in the parameter list, and
SIZE/MAINSIZE=n is in effect, change your REGION so that the REGION
is greater than SIZE/MAINSIZE (the difference is available).

- If many of your DFSORT applications pass the user exit address inthe
parameter list and SIZE/MAINSIZE=n is in effect, then consider having the
OVERRGN value changed by your system programmer to less than your
IEFUSI value.

v For applications without user exits:

– For directly invoked DFSORT, you can choose one of the following:

- If SIZE/MAINSIZE=MAX is in effect, use the RESALL option.

Use Main Storage Efficiently

552 DFSORT R14 Application Programming Guide

- If SIZE/MAINSIZE=n is in effect, change your REGION so that REGION is
greater than SIZE/MAINSIZE (the difference is available).

- Have the OVERRGN value changed by your system programmer to less
than your IEFUSI value.

– For program invoked DFSORT, you can choose one of the following:

- If SIZE/MAINSIZE=MAX is in effect, use the RESINV option.

- If SIZE/MAINSIZE=n is in effect, change your REGION so that REGION is
greater than SIZE/MAINSIZE (the difference is available).

- Have the OVERRGN value changed by your system programmer to less
than your IEFUSI value.

When SIZE/MAINSIZE is less than REGION, make sure the difference between
SIZE/MAINSIZE and your REGION specification value or default provides sufficient
storage for system or user exit routine use.

Allocate Temporary Work Space Efficiently
Performance is enhanced when multiple channels are available. Performance is
also improved if the device is connected so that two channel paths exist between
each device and the processor that is running the program.

Direct Access Work Storage Devices
Program performance is improved if you use devices, storage areas,and channels
efficiently. If you specify a particular device type with the UNIT parameter on the DD
statements that define intermediate storage data sets (for example, UNIT=3390),
DFSORT assigns areas, and some optimization occurs automatically. You can get
the best performance using direct access intermediate storage devices when you:

v Use two or more work data sets.

v Select the storage device with the fastest data transfer rate.

v Assign one work data set per actuator.

v Use devices that are of the same type.

v Use two channel paths to devices.

v Make all work data sets the same size, or as nearly the same size as possible.

v Make sure the SORTWKdd data sets do not share devices or channels with the
SORTIN, SORTOUT, or OUTFIL data sets. When appropriate, use SmartBatch
pipes for input and output data sets, to avoid contention.

v Specify contiguous space for work data sets, and make sure there is enough
primary space so that the automatic secondary allocation is not needed.

v Provide adequate virtual storage when work data sets are allocated on
non-synchronous devices, as explained in “Non-Synchronous Storage
Subsystems” on page 595.

Elapsed time is decreased when DFSORT can both read input while writing to
SORTWKdd and write output while reading from SORTWKdd. If, for example, you
have two channels, the best allocation of them is to have SORTIN, SORTOUT, and
OUTFIL data sets on one and the SORTWKdd data sets on the other.

Storage requirements for different disk techniques can be estimated by using the
guidelines found in Appendix A, “Using Work Space” on page 593.

Use Main Storage Efficiently

Chapter 9. Improving Efficiency 553

Virtual I/O for Work Data Sets
Although VIO data sets can provide performance improvements in many
applications, these work data sets are generally not as effective as DASD work data
sets for DFSORT.

DFSORT temporary work data sets allocated to virtual devices (VIO) can provide
reduced elapsed time at the cost of increased CPU time for DFSORT applications.
In general, this is not a good trade-off and VIO should not be used for DFSORT
work data sets unless:
v The system supports VIO in expanded storage, and
v Elapsed time is of primary concern.

If work data sets are allocated to VIO, the ICEMAC option VIO tells DFSORT how
to handle to VIOs:

v VIO=YES causes DFSORT to accept the use of VIOs for work data sets.

v VIO=NO causes DFSORT to reallocate work data sets from virtual devices to
real devices. Note that in order for re-allocation to be successful, a real device
with the same device type as the virtual device must be available.

Re-allocation of VIO data sets (VIO=NO) is recommended over no re-allocation
(VIO=YES). However, it is better to avoid using VIO work data sets in the first
place, since re-allocation wastes time and resources.

Tape Work Storage Devices
The use of tape work storage devices prevents the use of themore efficient
Blockset technique. Best performance, using tape intermediate storage, is usually
obtained when you use six or more tape drives of the fastest type. As a general
rule, you should use as many tapes as you have available for intermediate storage.
A larger number of tapes increases the number of strings that can be merged in
one pass, and, therefore, decreases the number of passes required in the
intermediate merge phase. This then reduces elapsed time and, often, the number
of I/O operations.

Increasing the number of work units, however, also reduces the block size used for
intermediate storage; this can become a critical factor if you have relatively little
main storage available for buffers. For example, if DFSORT has only 88KB in which
to operate, you probably achieve no improvement (and might find deterioration) if
you use more than four tape work units. Therefore, apply the general rule of using
as many tapes as possible only when DFSORT has more than 100KB available.

For information on how to determine storage requirements when using different
tape techniques, see Appendix A, “Using Work Space” on page 593.

Notes:

1. The frequency with which the tape direction changes during DFSORT work file
operations has more of an impact on the effective data rate of the IBM
3480/3490/3590 Magnetic Tape Subsystems than on IBM 3420 Magnetic Tape
Units. Because of this characteristic, performance comparisons between these
tape units for intermediate storage cannot be reliably predicted and can vary
widely.

2. Devices using the Improved Data Recording Capability (IDRC) feature are not
recommended as intermediate storage devices, as they do not perform well with
the read backward command.

Allocate Temporary Work Space Efficiently

554 DFSORT R14 Application Programming Guide

Use Hipersorting
Hipersorting uses Hiperspace. A Hiperspace is a high-performance data space
which resides in expanded storage, or in central storage for 64-bit real mode, and is
backed by auxiliary storage when necessary. With Hipersorting, Hiperspace is used
in place of and along with DASD for temporary storage of records during a Blockset
sort. Hipersorting reduces I/O processing which in turn reduces elapsed time,
EXCPs, and channel usage. Hipersorting is recommended when the input or output
is a compressed sequential or VSAM data set.

You can control the maximum amount of Hiperspace for a Hipersorting application
with the HIPRMAX parameter. HIPRMAX can direct DFSORT to dynamically
determine the maximum amount of Hiperspace, subject to the available storage at
the start of the run. You can also use HIPRMAX to suppress Hipersorting when
optimizing CPU time is your major concern because Hipersorting can slightly
degrade CPU time.

The actual amount of Hiperspace a Hipersorting application uses depends upon
several factors. See the HIPRMAX description in “OPTION Control Statement” on
page 155 for more details. Most important, throughout the run, DFSORT determines
the amount of available storage as well as the amount of storage needed by other
concurrent Hipersorting applications. Based on this information, DFSORT switches
dynamically from using Hiperspace to using DASD work data sets when either a
storage shortage is predicted or the total Hipersorting activity on the system
reaches the limits set by the DFSORT installation options EXPMAX, EXPOLD, and
EXPRES. See DFSORT Installation and Customization R14 for a complete
description of these installation options.

Sort with Data Space
Dataspace sorting uses data space to improve the performance of sort applications
that use DFSORT’s Blockset Technique.

Dataspace sorting allows DFSORT to sort large pieces of data at a time. This helps
to reduce CPU time and elapsed time.

The maximum amount of data space used for dataspace sorting can be controlled
with the DSPSIZE option. DSPSIZE=MAX allows DFSORT to select the maximum
data space to use. In this case, the amount used would depend on the size of the
file being sorted and the paging activity of your system. DSPSIZE=0 means that
DFSORT will not use dataspace sorting.

The following functions and types of data sets are not supported for dataspace
sorting:

v Spool, dummy, or pipe data set, or HFS file, as input.

v User exits

v INREC, OUTFIL, OUTREC, and SUM

v EQUCOUNT

Dataspace sorting is seldom used for very small data sets of a few MB or so
because it is more efficient to sort small amounts of data entirely in main storage.

In order for dataspace sorting to be used, you need sufficient available central
storage, that is, unused or not recently used, as reported by SRM at the start of the
sort. Such storage is needed to back the corresponding data space required by

Use Hipersorting

Chapter 9. Improving Efficiency 555

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

DFSORT. The amount of data space required varies. Typically, it grows as the
amount of data to sort increases, and, it shrinks as the amount of main storage
specified increases.

The following are actions you can take which might increase the use of dataspace
sorting:

v Specify sufficient main storage. The default is 4MB, the recommended minimum
for dataspace sorting. If you increase the amount of main storage specified, more
dataspace sorting is possible, especially when sorting large amounts of data
(multiple hundred MBs). Specifying more than 12MB or so will have no significant
impact on DFSORT’s decision to use dataspace sorting; it will, however, improve
the performance of large non-dataspace sort applications.

v Specify generous extent sizes for work data sets, especially for secondary
extents. Dataspace sorting is frequently used in conjunction with DASD work
space but never with Hiperspace or with tape work data sets.

v Specify DSPSIZE=MAX.

v Verify that IEFUSI does not place any restrictions on the size of the data spaces
that a single address space can create.

v Ensure that DFSORT has accurate information about the input file size. DFSORT
can automatically estimate the file size for DASD input data sets and tape data
sets managed by DFSMSrmm or a tape management system that uses
ICETPEX. See “File Size and Dynamic Allocation” on page 597 for information on
situations where DFSORT cannot determine the file size accurately, and what to
do about it.

Use ICEGENER Instead of IEBGENER
You can achieve more efficient processing for applications set up to use the
IEBGENER system utility by using DFSORT’s ICEGENER facility. Qualifying
IEBGENER jobs are processed by the equivalent (though not identical), but more
efficient, DFSORT copy function. If, for any reason, the DFSORT copy function
cannot be used (for example, if IEBGENER control statements are specified),
control is automatically transferred to the IEBGENER system utility.

ICEGENER, like IEBGENER, will use an SDB=value parameter you supply, when
appropriate. If you do not supply an SDB=value parameter, ICEGENER will use
your site’s DFSORT installation default for SDB, when appropriate (the
IBM-supplied default is SDB=INPUT). If ICEGENER transfers control to IEBGENER,
IEBGENER will use the SDB=value parameter you supply, if any, or its normal
default for SDB.

ICEGENER can transfer control to IEBGENER due to DFSPARM or SORTCNTL
statement errors or other errors detected by DFSORT. Therefore, we recommend
that ICEGENER not be used for any application for which IEBGENER cannot be
used, to avoid unwanted IEBGENER processing. For example, if ICEGENER is
used with an INCLUDE statement in DFSPARM, IEBGENER could be used and
complete successfully, but the INCLUDE statement would be ignored. Instead,
DFSORT copy should be used directly so that IEBGENER cannot be called.

However, if you know that ICEGENER will use DFSORT copy, you can use a
DFSPARM data set with ICEGENER to pass control statements and parameters to
DFSORT. For example, if you specify:
//DFSPARM DD *

OPTION SPANINC=RC0
/*

Sort with Data Space

556 DFSORT R14 Application Programming Guide

|
|
|
|
|
|

|
|
|

|
|
|

and ICEGENER uses DFSORT copy, any incomplete spanned records DFSORT
detects in a variable spanned input data set are eliminated.

If your site has installed ICEGENER to be invoked by the name IEBGENER, you
need not make any changes to your applications to use ICEGENER. If your site has
not chosen automatic use of ICEGENER, you can use ICEGENER by substituting
the name ICEGENER for IEBGENER on the EXEC statement (when DFSORT is
directly invoked) or LINK macro (when DFSORT is program-invoked) in any
applications you choose. Program-invoked applications must be recompiled.

Following is an example of how an IEBGENER application can be changed to use
ICEGENER by substituting the name ICEGENER for the name IEBGENER in the
EXEC statement.
//GENER JOB...
// EXEC PGM=ICEGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=CONTROL.MASTER,DISP=OLD,UNIT=3380,VOL=SER=MASTER
//SYSUT2 DD DSN=CONTROL.BACKUP,DISP=OLD,UNIT=3380,VOL=SER=BACKUP
//SYSIN DD DUMMY

The IEBGENER DD statements SYSUT1 (input), SYSUT2 (output), and SYSPRINT
(messages) are used by DFSORT for SORTIN, SORTOUT, and SYSOUT,
respectively. These DD statement names will be translated by using an extended
parameter list to invoke the copy function. If DFSORT cannot be used (for example,
because IEBGENER control statements are specified), control will be transferred to
IEBGENER.

Notes:

1. The SYSUT2 data set should not be the same as the SYSUT1 data set
because this can cause lost or incorrect data or unpredictable results.

2. Whether ICEGENER is invoked from a program or not, DFSORT will be invoked
from ICEGENER using an extended parameter list. Therefore, the installation
options for the program-invoked environment (that is, ICEAM2 or ICEAM4 or an
ICETDx module activated for the ICEAM2 or ICEAM4 environment) apply and
SORTCNTL or DFSPARM can be used to provide additional control statements
for the copy application; for example, OPTION. However, ICEGENER can
transfer control to IEBGENER due to DFSPARM or SORTCNTL statement
errors or other errors detected by DFSORT. Therefore, DFSORT copy should be
used directly rather than ICEGENER if DFSORT processing statements such as
INCLUDE, OUTREC, SUM and so on are required.

3. For most error conditions that prevent the use of DFSORT copy, control will be
transferred to the IEBGENER system utility. DFSORT messages will not be
printed unless a SORTDIAG DD statement is supplied. Use of the SORTDIAG
DD statement will allow you to determine why DFSORT copy could not be used.

4. If DFSORT copy is used, its operation and messages will be equivalent to a
directly called DFSORT copy application. If an unrecoverable error is
encountered (for example, an I/O error), DFSORT’s return code of 16 will be
changed by ICEGENER to a return code of 12 to emulate the return code from
a failing IEBGENER application.

5. DFSORT copy can perform some functions not provided by IEBGENER, such
as certain padding and truncation operations. ICEGENER processing is not
identical to IEBGENER processing in all cases, since DFSORT copy uses
methods to enhance performance (EXCP, for example) that are not used by
IEBGENER.

Use ICEGENER Instead of IEBGENER

Chapter 9. Improving Efficiency 557

|
|

6. In some cases, IEBGENER terminates when the SYSUT2 LRECL is different
from the SYSUT1 LRECL. ICEGENER takes one of three actions depending on
ICEMAC option GNPAD (LRECL padding) or GNTRUNC (LRECL truncation), as
appropriate.

If you want ICEGENER to transfer control to IEBGENER when the SYSUT2
LRECL is larger than the SYSUT1 LRECL, use ICEMAC option GNPAD=IEB. If
you want ICEGENER to handle LRECL padding, use GNPAD=RC0 (the
supplied default) or GNPAD=RC4.

If you want ICEGENER to transfer control to IEBGENER when the SYSUT2
LRECL is smaller than the SYSUT1 LRECL, use ICEMAC option
GNTRUNC=IEB. If you want ICEGENER to handle LRECL truncation, use
GNTRUNC=RC0 (the supplied default) or GNTRUNC=RC4.

7. For a call to ICEGENER, or to IEBGENER as an alias for ICEGENER, register
1 must point to a valid parameter list consisting of three addresses as follows:

v Address1: The address of the Option List.

v Address2: The address of the Alternate DDname List.

v Address3: The address of the Page Number List.

Methods of calling ICEGENER which generate a valid parameter list will allow
ICEGENER to use DFSORT’s copy feature, whereas methods of calling
ICEGENER which generate an invalid parameter list will cause ICEGENER to
transfer control to IEBGENER. For example:
call *(icegener)

on the TSO command line generates a valid parameter list, whereas:
icegener

on the TSO command line generates an invalid parameter list.

ICEGENER Return Codes
ICEGENER can use either IEBGENER or the DFSORT copy function. However, for
unsuccessful completion due to an unsupported operating system, ICEGENER
passes back a return code of 24 to the operating system or the invoking program,
without using either IEBGENER or DFSORT copy.

If ICEGENER transfers control to IEBGENER, IEBGENER passes back its return
code to the operating system or the invoking program.

If ICEGENER uses the DFSORT copy function:

v For successful completion, ICEGENER passes back a return code of 0 or 4 to
the operating system or the invoking program.

v For unsuccessful completion with NOABEND in effect, ICEGENER passes back
a return code of 12 (changed from 16) to the operating system or the invoking
program.

v For unsuccessful completion with ABEND in effect, DFSORT issues a user abend
with the appropriate code as specified by the ICEMAC option ABCODE (either
the error message number or a number between 1 and 99).

The meanings of the return codes that ICEGENER passes back (in register 15) are:

0 Successful completion. ICEGENER completed successfully.

4 Successful completion. ICEGENER completed successfully, and:

Use ICEGENER Instead of IEBGENER

558 DFSORT R14 Application Programming Guide

|
|

|

|

|

|
|
|
|

|

|

|

|

v ICEMAC option GNPAD=RC4 was specified and the SYSUT2 LRECL
was larger than the SYSUT1 LRECL (LRECL padding) or

v ICEMAC option GNTRUNC=RC4 was specified and the SYSUT2 LRECL
was smaller than the SYSUT1 LRECL (LRECL truncation), or

v SPANINC=RC4 was in effect and one or more incomplete spanned
records was detected.

12 Unsuccessful completion. DFSORT detected an error that prevented
ICEGENER from completing successfully.

24 Unsupported operating system. This operating system is not supported
by this release of DFSORT.

Use DFSORT’s Performance Booster for The SAS System
DFSORT provides significant CPU time improvements for SAS applications. To take
advantage of this feature, contact SAS Institute Inc. for details of the support they
provide to enable this enhancement.

Use DFSORT’s BLDINDEX Support
DFSORT provides support that enables IDCAMS BLDINDEX to automatically use
DFSORT to improve the performance of most BLDINDEX jobs that require
BLDINDEX external sorting.

Use ICEGENER Instead of IEBGENER

Chapter 9. Improving Efficiency 559

||
|

560 DFSORT R14 Application Programming Guide

Chapter 10. Examples of DFSORT Job Streams

Summary of Examples . 561
Storage Administrator Examples 562
REXX Examples . 562
CLIST Examples . 563
Sort Examples . 564

Example 1. Sort with ALTSEQ 564
Example 2. Sort with OMIT, SUM, OUTREC, DYNALLOC and ZDPRINT 565
Example 3. Sort with ISCII/ASCII Tapes 566
Example 4. Sort with E15, E35, FILSZ, AVGRLEN and DYNALLOC 567
Example 5. Called sort with SORTCNTL, CHALT, DYNALLOC and FILSZ 568
Example 6. Sort with VSAM Input/Output, DFSPARM and Option Override 570
Example 7. Sort with COBOL E15, EXEC PARM, COBEXIT and MSGDDN 571
Example 8. Sort with Dynamic Link-Editing of Exits 573
Example 9. Sort with the Extended Parameter List Interface 575
Example 10. Sort with OUTFIL 578
Example 11. Sort with SmartBatch Pipes and OUTFIL SPLIT 580
Example 12. Sort with INCLUDE and LOCALE. 581
Example 13: Sort with HFS Files 582

Merge Examples . 583
Example 1. Merge with EQUALS 583
Example 2. Merge with LOCALE and OUTFIL 584

Copy Examples . 585
Example 1. Copy with EXEC PARMs, SKIPREC, MSGPRT and ABEND 586
Example 2. Copy with INCLUDE and VLSHRT. 587

ICEGENER Example . 588
ICETOOL Example . 589

Summary of Examples
The table below summarizes the examples provided in this chapter.

Application No. Input Output Functions/Options

Sort 1 DASD Tape ALTSEQ

Sort 2 DASD DASD OMIT, SUM, OUTREC, DYNALLOC, ZDPRINT

Sort 3 Tape Tape ISCII/ASCII Tapes

Sort 4 Tape DASD E15, E35, FILSZ, AVGRLEN, DYNALLOC

Sort 5 DASD DASD Program-invoked, SORTCNTL, CHALT,
DYNALLOC, FILSZ

Sort 6 DASD DASD VSAM Input/Output, DFSPARM, Option Override

Sort 7 DASD DASD COBOL E15, EXEC PARM, COBEXIT, MSGDDN

Sort 8 DASD DASD Dynamic Link-editing of Exits

Sort 9 E15 DASD Extended Parameter List Interface

Sort 10 DASD DASD and
SYSOUT

OUTFIL

Sort 11 Pipe Pipes SmartBatch Pipes, OUTFIL SPLIT, FILSZ,
DYNALLOC

Sort 12 DASD DASD INCLUDE, LOCALE

Sort 13 HFS files HFS file

© Copyright IBM Corp. 1973, 2002 561

||

Application No. Input Output Functions/Options

Merge 1 DASD DASD EQUALS

Merge 2 DASD DASD LOCALE, OUTFIL

Copy 1 Tape DASD EXEC PARMs, SKIPREC, MSGPRT, ABEND

Copy 2 DASD DASD INCLUDE, VLSHRT

ICEGENER 1 DASD DASD

ICETOOL 1 DASD DASD OCCUR, COPY, SORT, MODE, VERIFY, STATS,
DISPLAY

Storage Administrator Examples
DFSORT provides a set of sample jobs that demonstrate techniques of interest to
Storage Administrators and others who analyze data collected from DFSMShsm,
DFSMSrmm, DCOLLECT and SMF. These sample jobs can be found in the
ICESTGEX member of the SICESAMP library (contact your System Programmer for
details). You can also download these sample jobs from the DFSORT FTP site.
These sample jobs show some of the many ways DFSORT features such as
ICETOOL and OUTFIL can be used to analyze data and generate reports:

DCOLEX1
DCOLLECT Example 1: VSAM report

DCOLEX2
DCOLLECT Example 2: Conversion reports

DCOLEX3
DCOLLECT Example 3: Capacity planning analysis and reports

DFHSMEX1
DFHSM Example 1: Deciphering Activity Logs

DFHSMEX2
DFHSM Example 2: Recover a DFHSM CDS with a broken index

RMMEX1
DFSMSrmm Example 1: SMF audit report

RMMEX2
DFSMSrmm Example 2: Create ADDVOLUME commands

REXX Examples
Both DFSORT and ICETOOL can be called from REXX. The key is to specify
ALLOCATE statements for the data sets you need and then use an ADDRESS
statement like this:

ADDRESS LINKMVS name

which says to fetch the named program using the standard system search list.

Here is an example of a REXX CLIST to call DFSORT:
/* Simple REXX CLIST to call DFSORT */

"FREE FI(SYSOUT SORTIN SORTOUT SYSIN)"
"ALLOC FI(SYSOUT) DA(*)"
"ALLOC FI(SORTIN) DA(’Y897797.INS1’) REUSE"
"ALLOC FI(SORTOUT) DA(’Y897797.OUTS1’) REUSE"
"ALLOC FI(SYSIN) DA(’Y897797.SORT.STMTS’) SHR REUSE"
ADDRESS LINKMVS ICEMAN

Summary of Examples

562 DFSORT R14 Application Programming Guide

Here are the DFSORT control statements that might appear in the
Y897797.SORT.STMTS data set:

SORT FIELDS=(5,4,CH,A)
INCLUDE COND=(21,3,SS,EQ,C’L92,J82,M72’)

Here is an example of a REXX CLIST to call ICETOOL:
/* Simple REXX CLIST to call ICETOOL */

"FREE FI(TOOLMSG DFSMSG VLR LENDIST TOOLIN)"
"ALLOC FI(TOOLMSG) DA(*)"
"ALLOC FI(DFSMSG) DUMMY"
"ALLOC FI(VLR) DA(’Y897797.VARIN’) REUSE"
"ALLOC FI(LENDIST) DA(*)"
"ALLOC FI(TOOLIN) DA(’Y897797.TOOLIN.STMTS’) SHR REUSE"
ADDRESS LINKMVS ICETOOL

Here are the ICETOOL statements that might appear in the
Y897797.TOOLIN.STMTS data set:
OCCURS FROM(VLR) LIST(LENDIST) -

TITLE(’LENGTH DISTRIBUTION REPORT’) BLANK -
HEADER(’LENGTH’) HEADER(’NUMBER OF RECORDS’) -
ON(VLEN) ON(VALCNT)

CLIST Examples
Both DFSORT and ICETOOL can be called from a CLIST. They key is to specify
ALLOCATE statements for the data sets you need and then use a CALL statement
like this:

CALL *(name)

Here is an example of a CLIST to call DFSORT:
FREE FI(SYSOUT SORTIN SORTOUT SYSIN)
ALLOC FI(SYSOUT) DA(*)
ALLOC FI(SORTIN) DA(’Y897797.INS1’) REUSE
ALLOC FI(SORTOUT) DA(’Y897797.OUTS1’) REUSE
ALLOC FI(SYSIN) DA(’Y897797.SORT.STMTS’) SHR REUSE
CALL *(ICEMAN)

Here are the DFSORT control statements that might appear in the
Y897797.SORT.STMTS data set:

SORT FIELDS=(5,4,CH,A)
INCLUDE COND=(21,3,SS,EQ,C’L92,J82,M72’)

Here is an example of a CLIST to call ICETOOL:
FREE FI(TOOLMSG DFSMSG VLR LENDIST TOOLIN)
ALLOC FI(TOOLMSG) DA(*)
ALLOC FI(DFSMSG) DUMMY
ALLOC FI(VLR) DA(’Y897797.VARIN’) REUSE
ALLOC FI(LENDIST) DA(*)
ALLOC FI(TOOLIN) DA(’Y897797.TOOLIN.STMTS’) SHR REUSE
CALL *(ICETOOL)

Here are the ICETOOL statements that might appear in the
Y897797.TOOLIN.STMTS data set:

OCCURS FROM(VLR) LIST(LENDIST) -
TITLE(’LENGTH DISTRIBUTION REPORT’) BLANK -
HEADER(’LENGTH’) HEADER(’NUMBER OF RECORDS’) -
ON(VLEN) ON(VALCNT)

Summary of Examples

Chapter 10. Examples of DFSORT Job Streams 563

|

|
|
|

|

|

|
|
|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|
|

Sort Examples
This section includes 13 sort examples.

Example 1. Sort with ALTSEQ

INPUT Blocked variable-length records on DASD

OUTPUT
Blocked variable-length records on 3490

WORK DATA SETS
Two 3390 data sets

USER EXITS
None

FUNCTIONS/OPTIONS
ALTSEQ

//EXAMP JOB A400,PROGRAMMER 01
//S1 EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD DSN=A123456.IN5,DISP=SHR 04
//SORTOUT DD DSN=OUT1,UNIT=3490,DISP=(,KEEP),VOL=SER=VOL001 05
//SORTWK01 DD UNIT=3390,SPACE=(CYL,(10,10)) 06
//SORTWK02 DD UNIT=3390,SPACE=(CYL,(10,10)) 07
//SYSIN DD * 08
* COLLATE $, # and @ AFTER Z 09

SORT FIELDS=(7,5,AQ,A) 10
ALTSEQ CODE=(5BEA,7BEB,7CEC) 11

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class A.

04 SORTIN DD statement. The input data set is named A123456.IN5 and is
cataloged. DFSORT determines from the data set label that the RECFM is
VB, the maximum LRECL is 120, and the BLKSIZE is 2200.

05 SORTOUT DD statement. The output data set is named OUT1 and is to be
allocated on 3490 volume VOL001 and kept. DFSORT sets the RECFM
and LRECL from SORTIN and selects an appropriate BLKSIZE for this
standard labeled tape.

06 SORTWK01 DD statement. The first work data set is allocated on 3390.

07 SORTWK02 DD statement. The second work data set is allocated on 3390.

08 SYSIN DD statement. DFSORT control statements follow.

09 Comment statement. Printed but otherwise ignored.

10 SORT statement. FIELDS specifies an ascending 5-byte character control
field starting at position 7 (the third data byte, since the RDW occupies the
first 4 bytes). The control field is to be collated according to the modified
sequence described in the ALTSEQ statement.

Sort Examples

564 DFSORT R14 Application Programming Guide

|

|

11 ALTSEQ statement. CODE specifies that the three characters $, # and @
are to collate in that order after Z.

Example 2. Sort with OMIT, SUM, OUTREC, DYNALLOC and ZDPRINT

INPUT Blocked fixed-length records on 3380 and 3390

OUTPUT
Blocked fixed-length records on 3390

WORK DATA SETS
Dynamically allocated

USER EXITS
None

FUNCTIONS/OPTIONS
OMIT, OUTREC, SUM, DYNALLOC, ZDPRINT

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=H 03
//SORTIN DD DSN=INP1,DISP=SHR,UNIT=3380,VOL=SER=SCR001 04
// DD DSN=INP2,DISP=SHR,UNIT=3390,VOL=SER=SYS351 05
//SORTOUT DD DSN=&&OUTPUT,DISP=(,PASS),UNIT=3390, 06
// SPACE=(CYL,(5,1)),DCB=(LRECL=22) 07
//SYSIN DD * 08

OMIT COND=(5,1,CH,EQ,C’M’) 09
SORT FIELDS=(20,8,CH,A,10,3,FI,D) 10
SUM FIELDS=(16,4,ZD) 11
OPTION DYNALLOC,ZDPRINT 12
OUTREC FIELDS=(10,3,20,8,16,4,2Z,5,1,C’ SUM’) 13

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class H.

04-05 SORTIN DD statement. Consists of a concatenation of two data sets. The
first input data set is named INP1 and resides on 3380 volume SCR001.
The second input data set is named INP2 and resides on 3390 volume
SYS351. DFSORT determines from the data set labels that the record
format is FB, the LRECL is 80 and the largest BLKSIZE is 27920.

06-07 SORTOUT DD statement. The output data set is temporary and is to be
allocated on a 3390. Since the OUTREC statement results in a reformatted
output record length of 22 bytes, LRECL=22 must be specified. DFSORT
sets the RECFM from SORTIN and selects an appropriate BLKSIZE.

08 SYSIN DD statement. DFSORT control statements follow.

09 OMIT statement. COND specifies that input records with a character M in
position 5 are to be omitted from the output data set.

10 SORT statement. FIELDS specifies an ascending 8-byte character control
field starting at position 20 and a descending 3-byte fixed-point control field
starting at position 10.

11 SUM statement. FIELDS specifies a 4-byte zoned-decimal summary field

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 565

starting at position 16. Whenever two records with the same control fields
(specified in the SORT statement) are found, their summary fields (specified
in the SUM statement) are to be added and placed in one of the records,
and the other record is to be deleted.

12 OPTION statement. DYNALLOC specifies that work data sets are to be
dynamically allocated using the installation defaults for the type of device
and number of devices. ZDPRINT specifies that positive ZD SUM fields are
to be printable.

13 OUTREC statement. FIELDS specifies how the records are to be
reformatted for output. The reformatted records are 22 bytes long and look
as follows:

Position Content
1-3 Input positions 10 through 12
4-11 Input positions 20 through 27
12-15 Input positions 16 through 19
16-17 Zeros
18 Input position 5
19-22 The character string ’ SUM’

Example 3. Sort with ISCII/ASCII Tapes

INPUT Variable-length ISCII/ASCII records on 3590

OUTPUT
Variable-length ISCII/ASCII records on 3590

WORK DATA SETS
One SYSDA data set

USER EXITS
None

FUNCTIONS/OPTIONS
None

//EXAMP JOB A400,PROGRAMMER 01
//RUNIT EXEC SORTD 02
//SORTIN DD DSN=SRTFIL,DISP=(OLD,DELETE),UNIT=3590, 03
// DCB=(RECFM=D,LRECL=400,BLKSIZE=404,OPTCD=Q,BUFOFF=L), 04
// VOL=SER=311500,LABEL=(1,AL) 05
//SORTOUT DD DSN=OUTFIL,UNIT=3590,LABEL=(,AL),DISP=(,KEEP), 06
// DCB=(BLKSIZE=404,OPTCD=Q,BUFOFF=L),VOL=SER=311501 07
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(4)) 08
//SYSIN DD * 09

SORT FIELDS=(10,8,AC,D) 10
RECORD TYPE=D,LENGTH=(,,,20,80) 11

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Uses the SORTD cataloged procedure to call DFSORT
directly.

03-05 SORTIN DD statement. The input data set is named SRTFIL and resides on
3590 volume 311500. It is to be deleted after this job step. It has a RECFM
of D (variable-length ISCII/ASCII records), a maximum LRECL of 400, a

Sort Examples

566 DFSORT R14 Application Programming Guide

BLKSIZE of 404 and an ISCII/ASCII label. For this job, the buffer offset is
the block length indicator. The records are to be translated from ISCII/ASCII
to EBCDIC.

06-07 SORTOUT DD statement. The output data set is named OUTFIL and is to
be allocated on 3590 volume 311501 and kept. It is to be written with an
ISCII/ASCII label. DFSORT sets the RECFM and LRECL from SORTIN and
sets the BLKSIZE to 404 as indicated in the DD statement. For this job, the
buffer offset is the block length indicator. The records are to be translated
from EBCDIC to ISCII/ASCII.

08 SORTWK01 DD statement. The work data set is allocated on SYSDA.

09 SYSIN DD statement. DFSORT control statements follow.

10 SORT statement. FIELDS specifies a descending 8-byte ISCII/ASCII control
field starting at position 10.

11 RECORD statement. TYPE specifies ISCII/ASCII variable-length records.
LENGTH specifies that the minimum record length is 20 and the average
record length is 80.

Example 4. Sort with E15, E35, FILSZ, AVGRLEN and DYNALLOC

INPUT Variable-length records on 3490

OUTPUT
Blocked variable-length records on SYSDA

WORK DATA SETS
Dynamically allocated

USER EXITS
E15 and E35

FUNCTIONS/OPTIONS
FILSZ, AVGRLEN, DYNALLOC

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=ICEMAN 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD DSN=INPUT,VOL=SER=FLY123, 04
// UNIT=3490,DISP=OLD 05
//SORTOUT DD DSN=&&OUT,DISP=(,PASS),SPACE=(CYL,(10,12)), 06
// UNIT=SYSDA,DCB=(RECFM=VB) 07
//MODLIB DD DSN=EXIT1.RTNS,DISP=SHR 08
// DD DSN=EXIT2.RTNS,DISP=SHR 09
//SYSIN DD * 10

SORT FIELDS=(23,4,PD,A,10,6,FS,A) 11
OPTION DYNALLOC=(3390,3),AVGRLEN=75,FILSZ=E50000 12
MODS E15=(MODREC,1024,MODLIB),E35=(ADDREC,1200,MODLIB) 13

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class A.

04-05 SORTIN DD statement. The input data set is named INPUT and resides on

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 567

3490 volume FLY123. DFSORT determines from the data set label of this
standard labeled tape that the RECFM is V, the LRECL is 120 and the
BLKSIZE is 124.

06-07 SORTOUT DD statement. The output data set is temporary and is to be
allocated on SYSDA. Since the input is unblocked and the output is to be
blocked, RECFM=VB must be specified. DFSORT sets the LRECL from
SORTIN and selects an appropriate BLKSIZE.

08-09 MODLIB DD statement. Specifies the load libraries that contain the exit
routines. When exit routines reside in more than one library, the libraries
must be concatenated using a single DD statement.

10 SYSIN DD statement. DFSORT control statements follow.

11 SORT statement. FIELDS specifies an ascending 4-byte packed-decimal
control field starting at position 23 and an ascending 6-byte floating-sign
control field starting at position 10.

12 OPTION statement. DYNALLOC=(3390,3) specifies that three 3390 work
data sets are to be allocated. AVGRLEN=75 specifies an average record
length of 75. AVGRLEN helps DFSORT optimize work space for
variable-length record input. FILSZ=E50000 specifies an estimate of 50000
records. Since the 3490 input data set is compacted, DFSORT might not be
able to determine the file size accurately unless the data set is managed by
DFSMSrmm or a tape management system that uses ICETPEX.
Specification of FILSZ can make a significant difference in work space
optimization when tape input data sets are not managed.

13 MODS statement. E15 specifies a user exit routine named MODREC.
Approximately 1024 bytes are required for MODREC and the system
services (for example, GETMAIN and OPEN) it performs. E35 specifies a
user exit routine named ADDREC. Approximately 1200 bytes are required
for ADDREC and the system services it performs. MODREC and ADDREC
reside in the libraries defined by the MODLIB DD statement.

Example 5. Called sort with SORTCNTL, CHALT, DYNALLOC and FILSZ

INPUT Blocked fixed-length records on DASD

OUTPUT
Blocked fixed-length records on DASD

WORK DATA SETS
Dynamically allocated

USER EXITS
None

FUNCTIONS/OPTIONS
CHALT, DYNALLOC, FILSZ

//EXAMP JOB A400,PROGRAMMER 01
//RUNSORT EXEC PGM=MYPGM 02
//STEPLIB DD DSN=M999999.LOAD,DISP=SHR 03
//SYSOUT DD SYSOUT=A 04
//SYSPRINT DD SYSOUT=A 05
//SORTIN DD DSN=M999999.INPUT(MASTER),DISP=OLD 06
//SORTOUT DD DSN=M999999.OUTPUT.FILE,DISP=OLD 07
//SORTCNTL DD * 08

OPTION CHALT,DYNALLOC=(,3),FILSZ=U25000 09

Sort Examples

568 DFSORT R14 Application Programming Guide

|
|
|
|
|
|
|
|
|

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls a program named MYPGM that in turn calls
DFSORT.

03 STEPLIB DD statement. Specifies the load library that contains MYPGM.

04 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class A.

05 SYSPRINT DD statement. Directs MYPGM output to system output class A.

06 SORTIN DD statement. The input data set is member MASTER in the
cataloged partitioned data set M999999.INPUT. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

07 SORTOUT DD statement. The output data set is named
M999999.OUTPUT.FILE and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

08 SORTCNTL DD statement. DFSORT control statements follow. Statements
in SORTCNTL override or supplement statements passed by MYPGM in
the DFSORT parameter list it uses.

09 OPTION statement. CHALT specifies that character format control fields
(specified in the SORT statement passed by MYPGM) are to be sorted
using the installation default ALTSEQ table. DYNALLOC=(,3) specifies that
three work data sets are to be dynamically allocated using the installation
default for the type of device. FILSZ=U25000 specifies a file size of 25000
records is to be used by DFSORT to determine the amount of work space
needed. Since the input data set is a member of a PDS, specifying FILSZ
helps DFSORT optimize work data set space.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 569

Example 6. Sort with VSAM Input/Output, DFSPARM and Option
Override

INPUT VSAM TYPE=V records

OUTPUT
VSAM TYPE=V records

WORK DATA SETS
Dynamically allocated

USER EXITS
None

FUNCTIONS/OPTIONS
Override of Various Options

//EXAMP JOB A400,PROGRAMMER 01
//S1 EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD DSN=TEST.SORTIN.FILE,DISP=SHR 04
//SORTOUT DD DSN=TEST.SORTOUT.FILE,DISP=SHR 05
//DFSPARM DD * 06

RECORD TYPE=V 07
SORT FIELDS=(30,4,BI,A) 08
OPTION HIPRMAX=10,DYNALLOC=3390,MAINSIZE=3M, 09

MSGPRT=CRITICAL,NOLIST 10

For purposes of illustration, assume that none of the standard installation defaults
for batch direct invocation of DFSORT have been changed by the site.

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class A.

04 SORTIN DD statement. The input data set is TEST.SORTIN.FILE. DFSORT
determines that it is a VSAM data set and obtains its attributes from the
catalog.

05 SORTOUT DD statement. The output data set is TEST.SORTOUT.FILE.
DFSORT determines that it is a VSAM data set and obtains its attributes
from the catalog.

06 DFSPARM DD statement. DFSORT control statements follow. DFSPARM
can be used for both direct-invocation and program-invocation of DFSORT
and overrides options and statements from all other sources. Certain
operands, such as MSGPRT and LIST/NOLIST, are used if supplied in
DFSPARM, the EXEC PARM or the invocation parameter list, but not used
if supplied in SYSIN or SORTCNTL.

07 RECORD statement. TYPE=V specifies that DFSORT is to treat the VSAM
records as variable-length. In this case, the RECORD statement could be
omitted, since DFSORT would automatically set a record type of V due to
the use of VSAM data sets for SORTIN and SORTOUT.

08 SORT statement. FIELDS specifies an ascending 4-byte binary control field

Sort Examples

570 DFSORT R14 Application Programming Guide

starting at position 30. This position corresponds to a specification of
KEYS(4 25) for the VSAM CLUSTER (4 bytes at offset 25, which is
equivalent to position 26 with 4 bytes added for the RDW that DFSORT
supplies at input and removes at output for VSAM TYPE=V records).

09-10 OPTION statement. HIPRMAX=10 specifies that up to 10 MBs of
Hiperspace can be committed for Hipersorting, overriding the standard
installation default of HIPRMAX=OPTIMAL. DYNALLOC=3390 specifies that
work data sets are to be allocated on 3390s, overriding the standard
installation default of SYSDA. The standard installation default of four work
data sets is not overridden. MAINSIZE=3M specifies that up to 3 MBs of
storage can be used, overriding the standard installation default of
MAINSIZE=MAX. MSGPRT=CRITICAL specifies that only error messages
are to be printed, overriding the standard installation default of
MSGPRT=ALL. NOLIST specifies that control statements are not to be
printed, overriding the standard installation default of LIST=YES.

Example 7. Sort with COBOL E15, EXEC PARM, COBEXIT and
MSGDDN

INPUT Fixed-length records on DASD

OUTPUT
Fixed-length records on SYSDA

WORK DATA SETS
None

USER EXITS
COBOL E15

FUNCTIONS/OPTIONS
COBEXIT, MSGDDN

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=SORT,PARM=’MSGDDN=DFSOUT’ 02
//STEPLIB DD DSN=SYS1.COBLIB,DISP=SHR 03
//SYSOUT DD SYSOUT=A 04
//DFSOUT DD SYSOUT=A 05
//EXITC DD DSN=COBEXITS.LOADLIB,DISP=SHR 06
//SORTIN DD DSN=SORT1.IN,DISP=SHR 07
//SORTOUT DD DSN=&&OUT,DISP=(,PASS),SPACE=(CYL,(5,5)), 08
// UNIT=SYSDA,DCB=(LRECL=120) 09
//SYSIN DD * 10

SORT FIELDS=(5,4,A,22,2,A),FORMAT=BI 11
MODS E15=(COBOLE15,37000,EXITC,C) 12
RECORD LENGTH=(,120) 13
OPTION COBEXIT=COB2 14

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias name SORT.
MSGDDN=DFSOUT specifies an alternate message data set for DFSORT
messages and control statements to prevent the COBOL messages in
SYSOUT from being interleaved with the DFSORT messages and control
statements.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 571

03 STEPLIB statement. Specifies the VS COBOL II library or the Language
Environment library, as appropriate.

04 SYSOUT statement. Directs COBOL messages to system output class A.

05 DFSOUT statement. Directs DFSORT messages and control statements to
system output class A (this is the alternate message data set specified by
MSGDDN in the PARM field of the EXEC statement).

06 EXITC statement. Specifies the load library that contains the exit routine.

07 SORTIN DD statement. The input data set is named SORT1.IN and is
cataloged. DFSORT determines from the data set label that the RECFM is
F, the LRECL is 100 and the BLKSIZE is 100.

08-09 SORTOUT DD statement. The output data set is temporary and is to be
allocated on SYSDA. Since the E15 exit changes the length of the records
from 100 bytes to 120 bytes, LRECL=120 must be specified. DFSORT sets
the RECFM from SORTIN and sets the BLKSIZE to the LRECL (unblocked
records).

10 SYSIN DD statement. DFSORT control statements follow.

11 SORT statement. FIELDS specifies an ascending 4-byte control field
starting at position 5 and an ascending 2-byte control field starting at
position 22. FORMAT specifies that the control fields are binary.

12 MODS statement. E15 specifies a user exit routine named COBOLE15
written in COBOL. Approximately 37000 bytes are required for the exit, the
system services (for example, GETMAIN and OPEN) it performs, and the
COBOL library subroutines. COBOLE15 resides in the library defined by the
EXITC DD statement.

13 RECORD statement. LENGTH specifies that the COBOL E15 routine
changes the length of the records to 120 bytes.

14 OPTION statement. COBEXIT=COB2 specifies that the COBOL E15 routine
is to be run with the VS COBOL II library or with the Language Environment
library, as appropriate.

Sort Examples

572 DFSORT R14 Application Programming Guide

Example 8. Sort with Dynamic Link-Editing of Exits

INPUT Blocked fixed-length records on DASD

OUTPUT
Blocked fixed-length records on 3380

WORK DATA SETS
One SYSDA data set

USER EXITS
E11, E15, E17, E18, E19, E31, E35, E38, E39

FUNCTIONS/OPTIONS
None

//EXAMP JOB A400,PROGRAMMER 01
//STEPA EXEC SORT 02
//SORTIN DD DSN=SMITH.INPUT,DISP=SHR 03
//SORTOUT DD DSN=SMITH.OUTPUT,DISP=(NEW,CATLG), 04
// UNIT=3380,SPACE=(TRK,(10,2)),VOL=SER=XYZ003 05
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) 06
//EXIT DD DSN=SMITH.EXIT.OBJ,DISP=SHR 07
//EXIT2 DD DSN=SMITH.EXIT2.OBJ,DISP=SHR 08
//SORTMODS DD UNIT=SYSDA,SPACE=(TRK,(10,,3)) 09
//SYSIN DD * 10

SORT FIELDS=(1,8,CH,A,20,4,BI,D) 11
MODS E11=(EXIT11,1024,EXIT,S), 12

E15=(E15,1024,SYSIN,T), 13
E17=(EXIT17,1024,EXIT2,T), 14
E18=(EXIT18,1024,EXIT,T), 15
E19=(E19,1024,SYSIN,T), 16
E31=(PH3EXIT,1024,EXIT,T), 17
E35=(PH3EXIT,1024,EXIT,T), 18
E38=(PH3EXIT,1024,EXIT,T), 19
E39=(E39,1024,SYSIN,T) 20

END 21
<object deck for E15 exit here> 22
<object deck for E19 exit here> 23
<object deck for E39 exit here> 24

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Uses the SORT cataloged procedure to call DFSORT
directly and supply the DD statements (not shown) required by the linkage
editor.

03 SORTIN DD statement. The input data set is named SMITH.INPUT and is
cataloged. DFSORT determines the RECFM, LRECL and BLKSIZE from
the data set label.

04-05 SORTOUT DD statement. The output data set is named SMITH.OUTPUT
and is to be allocated on 3380 volume XYZ003 and cataloged. DFSORT
sets the RECFM and LRECL from SORTIN and selects an appropriate
BLKSIZE.

06 SORTWK01 DD statement. The work data set is allocated on SYSDA.

07 EXIT DD statement. Specifies the partitioned data set containing the object
decks for the E11, E18, E31, E35 and E38 exit routines.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 573

08 EXIT2 DD statement. Specifies the partitioned data set containing the
object deck for the E17 exit routine.

09 SORTMODS DD statement. The partitioned data set to hold exit routine
object decks from SYSIN for input to the linkage editor is to be allocated on
SYSDA.

10 SYSIN DD statement. DFSORT control statements, and object decks to be
used by the linkage editor, follow.

11 SORT statement. FIELDS specifies an ascending 8-byte character control
field starting at position 1 and a descending 4-byte binary control field
starting at position 20.

12-20 MODS statement. Specifies the exit routines to be used, the approximate
number of bytes required for each exit and that:

v The EXIT11 routine in the EXIT library is to be link-edited separately from
other input phase exit routines and associated with user exit E11.

v The E15 and E19 routines in SYSIN, the EXIT17 routine in EXIT2, and
the EXIT18 routine in EXIT are to be link-edited together and associated
with user exits E15, E19, E17, and E18, respectively.

v The E31, E35, and E38 routines in the PH3EXIT object deck and the
E39 routine in SYSIN are to be link-edited together and associated with
user exits E31, E35, E38, and E39, respectively.

21 END statement. Marks the end of the DFSORT control statements and the
beginning of the exit routine object decks.

22-24 Object decks. The three object decks for the E15, E19, and E39 exit
routines follow the END statement.

Sort Examples

574 DFSORT R14 Application Programming Guide

Example 9. Sort with the Extended Parameter List Interface

INPUT Fixed-length records from E15

OUTPUT
Blocked fixed-length records on SYSDA

WORK DATA SETS
Dynamically allocated

USER EXITS
E15

FUNCTIONS/OPTIONS
OMIT, FILSZ, RESINV, DYNALLOC

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=MYSORT 02
//SYSOUT DD SYSOUT=C 03
//MSGOUT DD SYSOUT=C 04
//STEPLIB DD DSN=A123456.LOAD,DISP=SHR 05
//SORTOUT DD DSN=&&OUTPUT,DISP=(,PASS),UNIT=SYSDA, 06
// SPACE=(CYL,(8,4)) 07
//SORTCNTL DD * 08
* Update file size estimate 09

OPTION FILSZ=E30000 10

MYSORT CSECT 11

.

.

.
LA R1,PL1 SET ADDRESS OF PARAMETER LIST 12

* TO BE PASSED TO DFSORT 13
ST R2,PL4 SET ADDRESS OF GETMAINED AREA 14

* TO BE PASSED TO E15 15
LINK EP=SORT INVOKE DFSORT 16
.
.
.

PL1 DC A(CTLST) ADDRESS OF CONTROL STATEMENTS 17
PL2 DC A(E15) ADDRESS OF E15 ROUTINE 18
PL3 DC A(0) NO E35 ROUTINE 19
PL4 DS A USER EXIT ADDRESS CONSTANT 20
PL5 DC F’-1’ INDICATE END OF LIST 21
CTLST DS 0H CONTROL STATEMENTS AREA 22

DC AL2(CTL2-CTL1) LENGTH OF CHARACTER STRING 23
CTL1 DC C’ SORT FIELDS=(5,8,CSF,A)’ 24

DC C’ RECORD TYPE=F,LENGTH=80 ’ 25
DC C’ OPTION FILSZ=E25000,DYNALLOC,’ 26
DC C’RESINV=8000 ’ 27
DC C’ OMIT FORMAT=CSF,COND=(5,8,EQ,13,8) ’ 28

CTL2 EQU * 29
OUT DCB DDNAME=MSGOUT,... 30
E15 DS 0H E15 ROUTINE 31

.

.

.
L R2,4(,R1) GET ADDRESS OF GETMAINED AREA 32
.
.
.
BR R14 RETURN TO DFSORT 33
.
.
.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 575

The JCL for running program MYSORT, and highlights of the code used by
MYSORT to invoke DFSORT with the extended parameter list, are shown below.
For purposes of illustration, assume that none of the standard installation defaults
for batch program invocation of DFSORT have been changed by the site.

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls a program named MYSORT that in turn calls
DFSORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to SYSOUT class C.

04 MSGOUT DD statement. Directs MYSORT messages to SYSOUT class C.

05 STEPLIB DD statement. Specifies the load library that contains MYSORT.

06-07 SORTOUT DD statement. The output data set is temporary and is to be
allocated on SYSDA. Since SORTIN is not used, DFSORT sets the RECFM
and LRECL from the RECORD statement and sets the BLKSIZE to the
LRECL (unblocked records).

08 SORTCNTL DD statement. DFSORT control statements follow. Statements
in SORTCNTL override or supplement statements passed by MYSORT in
the extended parameter list it uses.

09 Comment statement. Printed but otherwise ignored.

10 OPTION statement. FILSZ=E30000 specifies an estimate of 30000 records,
overriding FILSZ=E25000 in the OPTION statement of the extended
parameter list. Since the E15 routine supplies all of the input records,
DFSORT will not be able to determine the file size accurately; therefore,
specifying FILSZ can make a significant difference in work space
optimization when an E15 routine supplies all of the input records. It’s
important to change the FILSZ value whenever the number of input records
increases significantly.

11 This is the start of program MYSORT. Assume that it GETMAINs a work
area, saves its address in register 2, and initializes it with information to be
used by the E15 routine.

12-13 MYSORT places the address of the extended parameter list to be passed to
DFSORT in register 1.

14-15 MYSORT places the address of the GETMAINed work area in the user exit
address constant field in the extended parameter list. DFSORT will pass
this address to the E15 routine (in the second word of the E15 parameter
list) when it is entered.

16 MYSORT calls DFSORT by it’s alias SORT.

17-21 The extended parameter list specifies: the address of the control statements
area, the address of the E15 routine, that no E35 routine is present, and
the address of the GETMAINed work area. F’-1’ indicates the end of the
extended parameter list. Subsequent parameter list fields, such as the
address of an ALTSEQ table, are not used in this application.

Since the address of the E15 routine is passed in the parameter list,
SORTIN cannot be used; if a SORTIN DD statement were present, it would
be ignored.

Sort Examples

576 DFSORT R14 Application Programming Guide

22-23 This is the start of the control statements area. The total length of the
control statements is specified.

24 SORT statement. FIELDS specifies an ascending 8-byte floating-sign
control field starting at position 5.

25 RECORD statement. TYPE=F and LENGTH=80 specify that the E15 inserts
fixed-length records of 80 bytes. In this case, TYPE=F could be omitted,
since DFSORT would automatically set a record type of F. However,
LENGTH must be specified when an E15 supplies all of the input records.

26-27 OPTION statement. FILSZ=E25000 specifies an estimate of 25000 records,
which is overridden by FILSZ=E30000 in SORTCNTL’s OPTION statement.
DYNALLOC specifies that work data sets are to be dynamically allocated
using the installation defaults for the type of device and number of devices.
RESINV=8000 specifies that approximately 8000 bytes are required for the
system services (for example, GETMAIN and OPEN) that MYSORT’s E15
exit routine performs.

28 OMIT statement. FORMAT specifies that the compare fields are
floating-sign. COND specifies that input records with equal 8-byte
floating-sign compare fields starting in position 5 (also the control field) and
position 13 are to be omitted from the output data set.

29 This is the end of the control statements area.

30 This is the DCB for MYSORT’s MSGOUT output.

31-33 This is MYSORT’s E15 routine. The E15 routine loads the address of the
GETMAINed work area from the second word of the E15 parameter list.
The E15 routine must supply each input record by placing its address in
register 1 and placing a 12 (insert) in register 15. When all the records have
been passed, the E15 routine must place an 8 (“do not return”) in register
15.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 577

Example 10. Sort with OUTFIL

INPUT Fixed-length record data set

OUTPUT
Multiple fixed-length record data sets

WORK DATA SETS
Dynamically allocated (by default)

USER EXITS
None

FUNCTIONS/OPTIONS
OUTFIL

//EXAMP JOB A400,PROGRAMMER 01
//OUTFIL EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD DSN=GRP.RECORDS,DISP=SHR 04
//ALLGPS DD DSN=GRP.ALLGRPS,DISP=OLD 05
//ALLBU DD DSN=GRP.BU,DISP=(NEW,CATLG,DELETE), 06
// UNIT=3390,SPACE=(TRK,(10,10)) 07
//G1STATS DD SYSOUT=A 08
//G2STATS DD SYSOUT=A 09
//SYSIN DD * 10
SORT FIELDS=(6,5,CH,A) 11

OUTFIL FNAMES=(ALLGPS,ALLBU) 12

OUTFIL FNAMES=G1STATS, 13
INCLUDE=(1,3,CH,EQ,C’G01’), 14
HEADER2=(1:’GROUP 1 STATUS REPORT FOR ’,&DATE, 15

’ - PAGE ’,&PAGE,2/, 16
6:’ITEM ’,16:’STATUS ’,31:’PARTS’,/, 17
6:’-----’,16:’------------’,31:’-----’), 18

OUTREC=(6:6,5, 19
16:14,1,CHANGE=(12, 20

C’1’,C’SHIP’, 21
C’2’,C’HOLD’, 22
C’3’,C’TRANSFER’), 23

NOMATCH=(C’*CHECK CODE*’), 24
31:39,1,BI,M10,LENGTH=5, 25
120:X) 26

OUTFIL FNAMES=G2STATS, 27
INCLUDE=(1,3,CH,EQ,C’G02’), 28
HEADER2=(1:’GROUP 2 STATUS REPORT FOR ’,&DATE, 29

’ - PAGE ’,&PAGE,2/, 30
6:’ITEM ’,16:’STATUS ’,31:’PARTS’,/, 31
6:’-----’,16:’------------’,31:’-----’), 32

OUTREC=(6:6,5, 33
16:14,1,CHANGE=(12, 34

C’1’,C’SHIP’, 35
C’2’,C’HOLD’, 36
C’3’,C’TRANSFER’), 37

NOMATCH=(C’*CHECK CODE*’), 38
31:39,1,BI,M10,LENGTH=5, 39
120:X) 40

Line Explanation

01 JOB statement. Introduces this job to the operating system.

Sort Examples

578 DFSORT R14 Application Programming Guide

02 EXEC statement. Calls DFSORT directly by its alias name SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to sysout class A.

04 SORTIN DD statement. The input data set is named GRP.RECORDS and is
cataloged. DFSORT determines from the data set label that the RECFM is
FB, the LRECL is 80 and the BLKSIZE is 23440.

05 ALLGPS DD statement. The first OUTFIL output data set is named
GRP.ALLGRPS and is catalogued. DFSORT determines the RECFM,
LRECL and BLKSIZE from the data set label.

06-07 ALLBU DD statement. The second OUTFIL output data set is named
GRP.BU and is to be allocated on a 3390 and catalogued. DFSORT sets
the RECFM and LRECL from SORTIN and selects an appropriate
BLKSIZE.

08 G1STATS DD statement. The third OUTFIL output data set is directed to
sysout class A. Since this is an OUTFIL report data set, DFSORT sets the
RECFM to FBA (FB from SORTIN and A for ANSI control characters) and
the LRECL to 121 (1 byte for the ANSI control character and 120 bytes for
the data). DFSORT sets an appropriate BLKSIZE.

09 G2STATS DD statement. The fourth OUTFIL output data set is directed to
sysout class A. Since this is an OUTFIL report data set, DFSORT sets the
RECFM to FBA (FB from SORTIN and A for ANSI control characters) and
the LRECL to 121 (1 byte for the ANSI control character and 120 bytes for
the data). DFSORT sets an appropriate BLKSIZE.

10 SYSIN DD statement. DFSORT control statements follow.

11 SORT statement. FIELDS specifies an ascending 5-byte character control
field starting at position 6.

12 OUTFIL statement. The sorted input records are written to the ALLGPS and
ALLBU data sets.

13-26 OUTFIL statement. The subset of sorted input records containing ’G01’ in
positions 1 through 3 are used to produce a report which is written to the
G1STATS data set.

27-40 OUTFIL statement. The subset of sorted input records containing ’G02’ in
positions 1 through 3 are used to produce a report which is written to the
G2STATS data set.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 579

Example 11. Sort with SmartBatch Pipes and OUTFIL SPLIT

INPUT SmartBatch Pipes

OUTPUT
SmartBatch pipes

WORK DATA SETS
Dynamically allocated

USER EXITS
None

FUNCTIONS/OPTIONS
FILSZ, OUTFIL, DYNALLOC

//EXAMP JOB A400,PROGRAMMER 01
//RUNSORT EXEC PGM=ICEMAN 02
//SYSOUT DD SYSOUT=H 03
//SORTIN DD DSN=INPUT.PIPE,SUBSYS=PIPE, 04
// DCB=(LRECL=60,RECFM=FB,BLKSIZE=32760) 05
//OUT1 DD DSN=OUTPUT.PIPE1,SUBSYS=PIPE, 06
// DCB=(LRECL=60,RECFM=FB,BLKSIZE=32760) 07
//OUT2 DD DSN=OUTPUT.PIPE2,SUBSYS=PIPE, 08
// DCB=(LRECL=60,RECFM=FB,BLKSIZE=32760) 09
//SYSIN DD * 10

OPTION DYNALLOC,FILSZ=U1000000 11
SORT FIELDS=(1,20,CH,A,25,4,BI,A) 12
OUTFIL FNAMES=(OUT1,OUT2),SPLIT 13

Line Explanation

01 Job statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class H.

04-05 SORTIN DD statement. The SUBSYS=PIPE parameter directs the
allocation to the ’PIPE’ SmartBatch subsystem for the pipe named
INPUT.PIPE. The DCB statement describes the data set characteristics to
subsystem PIPE.

06-07 OUT1 DD statement. The SUBSYS=PIPE parameter directs the allocation
to the ’PIPE’ SmartBatch subsystem for the pipe named OUTPUT.PIPE1.
The DCB statement describes the data set characteristics to subsystem
PIPE.

08-09 OUT2 DD statement. The SUBSYS=PIPE parameter directs the allocation
to the ’PIPE’ SmartBatch subsystem for the pipe named OUTPUT.PIPE2.
The DCB statement describes the data set characteristics to subsystem
PIPE.

10 SYSIN DD statement. DFSORT control statements follow.

11 OPTION statement. DYNALLOC specifies that work data sets are to be
dynamically allocated using the installation defaults for type of device and
number of devices. FILSZ=U1000000 specifies an estimate of one million
input records.

Sort Examples

580 DFSORT R14 Application Programming Guide

12 SORT statement. FIELDS specifies an ascending 20-byte character control
field starting at position 1 and an ascending 4 byte binary control field
starting at position 25.

13 OUTFIL statement. The records from the SORTIN pipe are sorted and
written alternatively to the OUT1 and OUT2 pipes (that is, the sorted
records are split evenly between the two output pipes).

Example 12. Sort with INCLUDE and LOCALE

INPUT Fixed-length record data set

OUTPUT
Fixed-length record data set

WORK DATA SETS
Dynamically allocated (by default)

USER EXITS
None

FUNCTIONS/OPTIONS
INCLUDE, LOCALE

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=SORT,PARM=’LOCALE=FR_CA’ 02
//STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR 03
//SYSOUT DD SYSOUT=A 04
//SORTIN DD DSN=INPUT.FRENCH.CANADA,DISP=SHR 05
//SORTOUT DD DSN=OUTPUT.FRENCH.CANADA,DISP=OLD 06
//SYSIN DD * 07
SORT FIELDS=(1,20,CH,A,25,1,BI,D,30,10,CH,A) 08
INCLUDE COND=(40,6,CH,EQ,50,6,CH) 09

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias name SORT. LOCALE
specified in EXEC PARM overrides installation default for LOCALE. The
locale for the French language and the cultural conventions of Canada will
be active.

03 STEPLIB DD statement. Specifies the Language Environment run-time
library containing the dynamically loadable locales.

04 SYSOUT statement. Directs DFSORT messages and control statements to
sysout class A.

05 SORTIN DD statement. The input data set is named
INPUT.FRENCH.CANADA and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

06 SORTOUT DD statement. The output data set is named
OUTPUT.FRENCH.CANADA and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

07 SYSIN DD statement. DFSORT control statements follow.

08 SORT statement. FIELDS specifies an ascending 20-byte character control
field starting at position 1, a one-byte descending binary control field

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 581

starting at position 25, and a 10-byte ascending character control field
starting at position 30. The character (CH) control fields will be sorted
according to the collating rules defined in locale FR_CA.

09 INCLUDE statement. COND specifies that only input records with equal
6-byte character compare fields starting in position 40 and position 50 are
to be included in the output data set. The character (CH) compare fields will
be compared according to the collating rules defined in locale FR_CA.

Example 13: Sort with HFS Files

INPUT Concatenated HFS Files

OUTPUT
HFS File

WORK DATA SETS
Dynamically allocated (by default)

USER EXITS
None

FUNCTIONS/OPTIONS
None

//EXAMP JOB A400,PROGRAMMER 01
//S1 EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD PATH=’/user/hfs.inp1.txt’,PATHOPTS=ORDONLY, 04
// LRECL=80,BLKSIZE=240,RECFM=FB,FILEDATA=TEXT 05
// DD PATH=’/user/hfs.inp2.txt’,PATHOPTS=ORDONLY, 06
// LRECL=80,BLKSIZE=80,RECFM=F,FILEDATA=TEXT 07
//SORTOUT DD PATH=’/user/hfs.ut.txt’,PATHOPTS=OWRONLY, 08
// LRECL=80,BLKSIZE=80,RECFM=F,FILEDATA=TEXT 09
//SYSIN DD * 10

SORT FIELDS=(10,8,CH,A) 11

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias name SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to system output class A.

04-05 SORTIN DD statement. The first input file is an HFS file named
/user/hfs.inp1.txt. Only read access is allowed. The file is defined as a text
file. It has fixed-length records with a record size of 80 and a block size of
240.

06-07 The second input file is an HFS file named /user/hfs.inp2.txt. Only read
access is allowed. The file is defined as a text file. It has fixed-length
records with a record size of 80 and a block size of 80.

08-09 SORTOUT DD statement. The output file is an HFS file named
/user/hfs.ut.txt. Only write access is allowed. The file is defined as a text
file. It has fixed-length records with a record size of 80 and a block size of
80.

Sort Examples

582 DFSORT R14 Application Programming Guide

10 SYSIN DD statement. DFSORT control statements follow.

11 SORT statement. FIELDS specifies an ascending 8-byte character control
field starting at position 10.

Merge Examples
This section contains 2 merge examples.

Example 1. Merge with EQUALS

INPUT Blocked fixed-length records on DASD

OUTPUT
Blocked fixed-length records on 3390

WORK DATA SETS
Not applicable

USER EXITS
None

FUNCTIONS/OPTIONS
EQUALS

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=A 03
//SORTIN01 DD DSN=M1234.INPUT1,DISP=SHR 04
//SORTIN02 DD DSN=M1234.INPUT2,DISP=SHR 05
//SORTIN03 DD DSN=M1234.INPUT3,DISP=SHR 06
//SORTOUT DD DSN=M1234.MERGOUT,DISP=(,KEEP), 07
// SPACE=(CYL,(2,4)),UNIT=3390 08
//SYSIN DD * 09

MERGE FIELDS=(1,8,CH,A,20,4,PD,A) 10
OPTION EQUALS 11

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to sysout class A.

04 SORTIN01 DD statement. The first input data set is named M1234.INPUT1
and is cataloged. DFSORT determines the RECFM, LRECL and BLKSIZE
from the data set label.

05 SORTIN02 DD statement. The second input data set is named
M1234.INPUT2 and is cataloged. DFSORT determines the RECFM, LRECL
and BLKSIZE from the data set label.

06 SORTIN03 DD statement. The third input data set is named M1234.INPUT3
and is cataloged. DFSORT determines the RECFM, LRECL and BLKSIZE
from the data set label.

07-08 SORTOUT DD statement. The output data set is named M1234.MERGOUT
and is to be allocated on 3390 and kept. DFSORT sets the RECFM and
LRECL from the SORTINnn data sets and selects an appropriate BLKSIZE.

Sort Examples

Chapter 10. Examples of DFSORT Job Streams 583

09 SYSIN DD statement. DFSORT control statements follow.

10 MERGE statement. FIELDS specifies an ascending 8-byte character control
field starting at position 1 and an ascending 4-byte packed-decimal field
starting at position 20. The records in each input data set must already be
in the order specified.

25 OPTION statement. EQUALS specifies that the order of output records with
equal control fields is to be based on the file number of the input data sets
and the original order of the records within each input data set.

Example 2. Merge with LOCALE and OUTFIL

INPUT Fixed-length record data set

OUTPUT
Multiple fixed-length record data sets

WORK DATA SETS
Not applicable

USER EXITS
None

FUNCTIONS/OPTIONS
LOCALE, OUTFIL

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=SORT 02
//STEPLIB DD DSN=SYS1.SCEERUN,DISP=SHR 03
//SYSOUT DD SYSOUT=A 04
//SORTIN01 DD DSN=INPUT01.GERMAN.GERMANY,DISP=SHR 05
//SORTIN02 DD DSN=INPUT02.GERMAN.GERMANY,DISP=SHR 06
//SORTIN03 DD DSN=INPUT03.GERMAN.GERMANY,DISP=SHR 07
//GP1 DD DSN=OUTPUT.GERMAN.GP1,DISP=OLD 08
//GP2 DD DSN=OUTPUT.GERMAN.GP2,DISP=OLD 09
//GP3 DD DSN=OUTPUT.GERMAN.SAVE,DISP=OLD 10
//DFSPARM DD * 11
LOCALE=De_DE.IBM-1047 12
MERGE FIELDS=(25,5,CH,A,40,4,PD,D) 13
OUTFIL FNAMES=GP1, 14

INCLUDE=(23,1,CH,LE,C’Ö’) 15
OUTFIL FNAMES=GP2, 16

INCLUDE=(23,1,CH,GT,C’Ö’,AND, 17
23,1,CH,LT,C’Ü’) 18

OUTFIL FNAMES=GP3,SAVE 19

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias name SORT.

03 STEPLIB DD statement. Specifies the Language Environment run-time
library containing the dynamically loadable locales.

04 SYSOUT statement. Directs DFSORT messages and control statements to
sysout class A.

05 SORTIN01 DD statement. The first input data set is named
INPUT01.GERMAN.GERMANY and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

Merge Examples

584 DFSORT R14 Application Programming Guide

06 SORTIN02 DD statement. The second input data set is named
INPUT02.GERMAN.GERMANY and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

07 SORTIN03 DD statement. The third input data set is named
INPUT03.GERMAN.GERMANY and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

08 GP1 DD statement. The first OUTFIL output data set is named
OUTPUT.GERMAN.GP1 and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

09 GP2 DD statement. The second OUTFIL output data set is named
OUTPUT.GERMAN.GP2 and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

10 GP3 DD statement. The third OUTFIL output data set is named
OUTPUT.GERMAN.GP3 and is cataloged. DFSORT determines the
RECFM, LRECL and BLKSIZE from the data set label.

11 DFSPARM DD statement. DFSORT control statements follow.

12 LOCALE parameter. Overrides installation default for LOCALE. The locale
for the German language and the cultural conventions of Germany based
on the IBM-1047 encoded character set will be active.

13 MERGE statement. FIELDS specifies an ascending 5-byte character control
field starting at position 25, and a descending 4-byte packed decimal
control field starting at position 40. The character (CH) control field will be
merged according to the collating rules defined in locale De_DE.IBM-1047.
The records in each input data set must already be in the order specified.

14-15 OUTFIL statement. The subset of records with character values less than or
equal to ’Ö’ in position 23 are written to the GP1 output data set. The
character (CH) compare field and character constant will be compared
according to the collating rules defined in locale De_DE.IBM-1047.

16-18 OUTFIL statement. The subset of records with character values greater
than ’Ö’ but less than ’Ü’ in position 23 are written to the GP2 output data
set. The character (CH) compare fields and character constants will be
compared according to the collating rules defined in locale
De_DE.IBM-1047.

19 OUTFIL statement. Any records not written to the GP1 or GP2 output data
sets are written to the GP3 output data set.

Copy Examples
This section contains 2 copy examples.

Merge Examples

Chapter 10. Examples of DFSORT Job Streams 585

Example 1. Copy with EXEC PARMs, SKIPREC, MSGPRT and ABEND

INPUT Blocked fixed-length records on multivolume 3490

OUTPUT
Blocked fixed-length records on DASD

WORK DATA SETS
Not applicable

USER EXITS
None

FUNCTIONS/OPTIONS
SKIPREC, MSGPRT, ABEND

//EXAMP JOB A400,PROGRAMMER 01
//STEP1 EXEC PGM=SORT, 02
// PARM=’SKIPREC=500,MSGPRT=CRITICAL,ABEND’ 03
//SYSOUT DD SYSOUT=A 04
//SORTIN DD DSN=FLY.RECORDS,VOL=SER=(000333,000343), 05
// UNIT=(3490,2),DISP=OLD,LABEL=(,NL), 06
// DCB=(RECFM=FB,LRECL=12000,BLKSIZE=24000) 07
//SORTOUT DD DSN=FLY.RECORDS.COPY,DISP=OLD 08
//SYSIN DD * 09

SORT FIELDS=COPY 10

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02-03 EXEC statement. Calls DFSORT directly by its alias SORT. SKIPREC=500
specifies that the first 500 input records are not to be included in the output
data set. MSGPRT=CRITICAL specifies that error messages, but not
informational messages, are to be printed. ABEND specifies that DFSORT
is to terminate with a user ABEND if it issues an error message.

04 SYSOUT DD statement. Directs DFSORT messages and control statements
to sysout class A.

05-07 SORTIN DD statement. The input data set is named FLY.RECORDS and
resides on 3490 volumes 000333 and 000343. The UNIT parameter
requests two tape drives, one for each volume of the data set. Because the
tape is unlabeled, DCB parameters must be supplied to indicate that the
RECFM is FB, the LRECL is 12000 and the BLKSIZE is 24000.

08 SORTOUT DD statement. The output data set is named
FLY.RECORDS.COPY and is cataloged. DFSORT determines the RECFM,
LRECL and BLKSIZE from the data set label.

09 SYSIN DD statement. DFSORT control statements follow.

10 SORT statement. FIELDS=COPY specifies a copy application.

Copy Examples

586 DFSORT R14 Application Programming Guide

Example 2. Copy with INCLUDE and VLSHRT

INPUT Blocked spanned records on DASD

OUTPUT
Blocked spanned records on SYSDA

WORK DATA SETS
Not applicable

USER EXITS
None

FUNCTIONS/OPTIONS
INCLUDE, VLSHRT

//EXAMP JOB A400,PROGRAMMER 01
//COPY EXEC PGM=SORT 02
//SYSOUT DD SYSOUT=A 03
//SORTIN DD DSN=SMF.DATA,DISP=SHR 04
//SORTOUT DD DSN=SMF.VIOL,DISP=(,KEEP),SPACE=(CYL,(2,5)), 05
// UNIT=SYSDA 06
//SYSIN DD * 07

INCLUDE COND=(6,1,FI,EQ,80,AND,19,1,BI,EQ,B’1.......’) 08
OPTION COPY,VLSHRT 09

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls DFSORT directly by its alias SORT.

03 SYSOUT DD statement. Directs DFSORT messages and control statements
to sysout class A.

04 SORTIN DD statement. The input data set is named SMF.DATA and is
cataloged. DFSORT determines from the data set label that the RECFM is
VBS, the LRECL is 32760 and the BLKSIZE is 23476.

05-06 SORTOUT DD statement. The output data set is named SMF.VIOL and is
to be allocated on SYSDA and kept. DFSORT sets the RECFM and LRECL
from SORTIN and selects an appropriate BLKSIZE.

07 SYSIN DD statement. DFSORT control statements follow.

08 INCLUDE statement. COND specifies that only input records with decimal
80 in the 1-byte fixed-point field at position 6 and bit 0 on in the 1-byte
binary field at position 19 are to be included in the output data set.

09 OPTION statement. COPY specifies a copy application. VLSHRT specifies
that records which are too short to contain all of the INCLUDE compare
fields are not to be included in the output data set.

Copy Examples

Chapter 10. Examples of DFSORT Job Streams 587

ICEGENER Example
This section contains an ICEGENER example.

INPUT Same as for IEBGENER job

OUTPUT
Same as for IEBGENER job

WORK DATA SETS
Not applicable

USER EXITS
None

FUNCTIONS/OPTIONS
None

//EXAMP JOB A400,PROGRAMMER 01
//GENR EXEC PGM=ICEGENER 02
//SYSPRINT DD SYSOUT=A 03
//SYSUT1 DD DSN=CTL.MASTER,DISP=SHR 04
//SYSUT2 DD DSN=CTL.BACKUP,DISP=OLD 05
//SYSIN DD DUMMY 06

This example shows how to use the ICEGENER facility for an IEBGENER job if
your site has not installed ICEGENER as an automatic replacement for IEBGENER.
The ICEGENER facility selects the more efficient DFSORT copy function for this
IEBGENER job.

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls the ICEGENER facility. PGM=IEBGENER has been
replaced by PGM=ICEGENER.

03-06 No other changes to the IEBGENER job are required.

ICEGENER Example

588 DFSORT R14 Application Programming Guide

ICETOOL Example
This section contains an example of ICETOOL with various operators.

INPUT Multiple data sets

OUTPUT
Multiple data sets

WORK DATA SETS
Dynamically allocated (automatic)

USER EXITS
ICETOOL’s E35 (automatic)

FUNCTIONS/OPTIONS
OCCUR, COPY, SORT, MODE, VERIFY, STATS, DISPLAY

//EXAMP JOB A400,PROGRAMMER 01
//TOOLRUN EXEC PGM=ICETOOL,REGION=1024K 02
//TOOLMSG DD SYSOUT=A 03
//DFSMSG DD SYSOUT=A 04
//TOOLIN DD * 05
* Print report showing departments with less than 5 employees 06

OCCUR FROM(IN1) LIST(LT5) LOWER(5) BLANK - 07
TITLE(’Small Departments’) PAGE - 08
HEADER(’Department’) HEADER(’Employees’) - 09
ON(45,3,CH) ON(VALCNT) 10

* Copy and reformat selected records 11
COPY USING(CJ69) FROM(IN1) TO(OUTJ69D) 12
COPY USING(CJ82) FROM(IN1) TO(OUTJ82D) 13

* Sort/save/print the resulting combined data sets 14
SORT FROM(CONCAT) TO(DEPTSD,DEPTSP) USING(ABCD) 15

* Do following operators even if a previous operator failed, 16
* but stop processing if a subsequent operator fails. 17
MODE STOP 18
* Verify decimal fields 19

VERIFY FROM(IN2) ON(22,6,PD) ON(30,3,ZD) 20
* Print statistics for record length and numeric fields 21

STATS FROM(IN2) ON(VLEN) ON(22,6,PD) ON(30,3,ZD) 22
* Sort and produce total for each unique key 23

SORT FROM(IN2) TO(OUT4) USING(CTL1) 24
* Print report containing: 25
* - key and total for each unique key 26
* - lowest and highest of the totals 27

DISPLAY FROM(OUT4) LIST(LIST1) - 28
TITLE(’Unique key totals report’) DATE TIME - 29
ON(5,10,CH) ON(22,6,PD) ON(30,3,ZD) - 30
MINIMUM(’Lowest’) MAXIMUM(’Highest’) PLUS 31

//LT5 DD SYSOUT=A 32
//CJ69CNTL DD * 33
* Select J69 employees, reformat fields, and insert text 34

INCLUDE COND=(45,3,CH,EQ,C’J69’) 35
OUTREC FIELDS=(21,10,X,1,15,C’is in department J69’,34X) 36

ICETOOL Example

Chapter 10. Examples of DFSORT Job Streams 589

//CJ82CNTL DD * 37
* Select J82 employees, reformat fields, and insert text 38

INCLUDE COND=(45,3,CH,EQ,C’J82’) 39
OUTREC FIELDS=(21,10,X,1,15,C’is in department J82’,34X) 40

//IN1 DD DSN=FLY.INPUT1,DISP=SHR 41
//OUTJ69D DD DSN=&&OUTJ69D,DISP=(,PASS),SPACE=(TRK,(10,10)), 42
// UNIT=SYSDA 43
//OUTJ82D DD DSN=&&OUTJ82D,DISP=(,PASS),SPACE=(TRK,(10,10)), 44
// UNIT=SYSDA 45
//CONCAT DD DSN=*.OUTJ69D,VOL=REF=*.OUTJ69D,DISP=(OLD,PASS) 46
// DD DSN=*.OUTJ82D,VOL=REF=*.OUTJ82D,DISP=(OLD,PASS) 47
//ABCDCNTL DD * 48
* Sort by last name, first name 49

SORT FIELDS=(12,15,CH,A,1,10,CH,A) 50
//DEPTSD DD DSN=FLY.OUTPUT1,DISP=SHR 51
//DEPTSP DD SYSOUT=A 52
//IN2 DD DSN=FLY.INPUT2,DISP=SHR 53
//OUT4 DD DSN=FLY.OUTPUT2,DISP=OLD 54
//CTL1CNTL DD * 55
* Sort and produce totals in one record for each unique key 56

SORT FIELDS=(5,10,CH,A) 57
SUM FIELDS=(22,6,PD,30,3,ZD) 58

//LIST1 DD SYSOUT=A 59

This example shows how ICETOOL can be used to perform multiple operations in a
single step.

Line Explanation

01 JOB statement. Introduces this job to the operating system.

02 EXEC statement. Calls ICETOOL specifying the recommended REGION of
1024K.

03 TOOLMSG DD statement. Directs ICETOOL messages and statements to
system output class A.

04 DFSMSG DD statement. Directs DFSORT messages and control
statements to SYSOUT class A.

05 TOOLIN DD statement. ICETOOL statements follow. The MODE for the
ICETOOL run is initially set to STOP. If an error is detected for an operator,
SCAN mode will be entered.

06 Comment statement. Printed but otherwise ignored.

07-10 OCCUR operator. Prints, in the LT5 data set, a report detailing each value
for the specified field in the IN1 data set and the number of times that value
occurs.

11 Comment statement.

12 COPY operator. Records from the IN1 data set are copied to the OUTJ69D
data set using the DFSORT control statements in the CJ69CNTL data set.
As a result, &&OUTJ69D contains a reformatted subset of the records from
FLY.INPUT1 (those records containing ’J69’ in the positions 45-47).

13 COPY operator. Records from the IN1 data set are copied to the OUTJ82D
data set using the DFSORT control statements in the CJ82CNTL data set.
As a result, &&OUTJ82D contains a reformatted subset of the records from
FLY.INPUT1 (those records containing ’J82’ in the positions 45-47).

14 Comment statement.

15 SORT operator. Records from the CONCAT data sets are sorted to the

ICETOOL Example

590 DFSORT R14 Application Programming Guide

DEPTSD and DEPTSP data sets using the DFSORT control statements in
the ABCDCNTL data set. As a result, FLY.OUTPUT1 and DEPTSP
(SYSOUT) contain the sorted combined records from &&OUTJ69D and
&&OUTJ82D

16-17 Comment statements.

18 MODE operator. The MODE is reset to STOP (needed in case SCAN mode
was entered due to an error for a previous operator). If an error is detected
for a subsequent operator, SCAN mode will be entered. This divides the
previous operators and subsequent operators into two unrelated groups.

19 Comment statement.

20 VERIFY operator. Identifies invalid values, if any, in the specified decimal
fields of the IN2 data set. Used to stop subsequent operations if any invalid
value is found in FLY.INPUT2.

21 Comment statement.

22 STATS operator. Prints the minimum, maximum, average, and total for the
specified fields of the IN2 data set.

ON(VLEN) operates on the record length of the records in FLY.INPUT2.
Thus, the values printed for ON(VLEN) represent the shortest record, the
longest record, the average record length, and the total number of bytes for
FLY.INPUT2.

23 Comment statement.

24 SORT operator. Records from the IN2 data set are sorted and summarized
to the OUT4 data set using the DFSORT control statements in the
CTL1CNTL data set. As a result, FLY.OUTPUT2 contains one record from
FLY.INPUT2 for each unique sort field with totals for the sum fields.

25-27 Comment statements.

28-31 DISPLAY operator. Prints, in the LIST1 data set, a report detailing each sort
and sum value for the OUT4 data set resulting from the previous operation,
and the lowest and highest value for each sum field.

32-59 DD statements. Defines the data sets and DFSORT control statements
used for the ICETOOL operations described above.

ICETOOL Example

Chapter 10. Examples of DFSORT Job Streams 591

592 DFSORT R14 Application Programming Guide

Appendix A. Using Work Space

Introduction. 593
Hiperspace . 593
Work Data Set Devices . 594

DASD and Tape Devices . 594
Number of Devices . 594
Non-Synchronous Storage Subsystems 595

Allocation of Work Data Sets 595
Dynamic Allocation of Work Data Sets 596

Automatic Dynamic Allocation 596
Device Defaults . 597
File Size and Dynamic Allocation 597

Dynamic Over-Allocation of Work Space 598
JCL Allocation of Work Data Sets 598

DASD Capacity Considerations 599
Exceeding DASD Work Space Capacity 600

Tape Capacity Considerations 600
Exceeding Tape Work Space Capacity 601

Introduction
When a sort application cannot be performed entirely invirtual storage, DFSORT
must use work space. The amount of work space required depends on:
v The amount of data being sorted
v The amount of virtual storage available to DFSORT
v The amount of Hiperspace available to DFSORT
v The type of devices you use
v The DFSORT functions and features you use (for example, VLSHRT, locale

processing, EFS, and ALTSEQ can increase the amount of work space required).

There are three ways to supply work space for a DFSORT application:
v Hiperspace
v Dynamic allocation of work data sets
v JCL allocation of work data sets.

For best performance, an optimal amount of Hiperspace, in combination with
dynamically allocated DASD work data sets, is strongly recommended. See “Use
Hipersorting” on page 555 for more information on using the HIPRMAX option. The
DYNAUTO installation option, or the DYNALLOC run-time option, can be used to
dynamically allocate work data sets.

Hiperspace
Hiperspace is the most efficient form of intermediate storage for DFSORT. Using the
default ICEMAC option HIPRMAX=OPTIMAL ensures that DFSORT will use
Hiperspace for Hipersorting whenever possible. Sites can tune their definition of
HIPRMAX=OPTIMAL through use of the ICEMAC parameters EXPMAX, EXPOLD,
and EXPRES. See DFSORT Installation and Customization R14 for more
information.

DFSORT’s use of Hiperspace depends upon the availability of expanded storage, or
central storage for 64-bit real mode, the needs of other concurrent Hipersorting
applications throughout the time the application runs, and the settings of the

© Copyright IBM Corp. 1973, 2002 593

|
|
|

DFSORT installation options EXPMAX, EXPOLD, and EXPRES. Consequently, it is
possible for the same application to use varying amounts of Hiperspace from run to
run. If enough Hiperspace is available, DFSORT uses Hiperspace exclusively for
intermediate storage. If the amount of Hiperspace is insufficient, DFSORT uses a
combination of Hiperspace and work data sets, or even work data sets alone.

DFSORT only uses Hipersorting when there is sufficient storage to back all the
DFSORT Hiperspace data. Hipersorting is very dynamic: multiple concurrent
Hipersorting applications always know each other’s storage needs and never try to
back their Hiperspaces with the same portion of storage. In addition, DFSORT
checks the available storage throughout the run, and switches from using
Hiperspace to using DASD work data sets when either a storage shortage is
predicted or the total Hipersorting activity on the system reaches the limits set by
the DFSORT installation options EXPMAX, EXPOLD, and EXPRES.

Hipersorting requires that work data sets be available, as well as Hiperspace.
DFSORT forces the use of dynamic allocation for Hipersorting if work data sets are
not requested explicitly. For further details, see the HIPRMAX option of the
“OPTION Control Statement” on page 155.

Work Data Set Devices
The type of device selected for work data sets can have a significant effect on
performance. Consider the following when selecting devices for work data sets.

DASD and Tape Devices
For optimal performance, use direct access devices to which little other activity is
directed, for work data sets. Specify emulated 3390-9 devices (such as a RAMAC)
or other high-speed IBM DASD devices, and avoid specifying tape, virtual (VIO) or
real 3390-9 devices, if at all possible.

Using tape devices for work data sets rather than DASD causes significant
performance degradation for the following reasons:

v Tape work data sets prevent DFSORT from using its more efficient sorting
techniques, Blockset and Peerage/Vale. DASD work data sets allow DFSORT to
use these techniques.

v Tape work data sets must be accessed sequentially. DASD data sets can be
accessed randomly.

v DASD control units can provide additional features, such as cache fast write, that
are not available with tape devices.

Number of Devices
Although one work data set is sufficient, using two or more work data sets on
separate devices usually reduces the elapsed time of the application significantly. In
general, using more than three work data sets does not reduce elapsed time any
further, and is only necessary if the work data sets are small or the file size is large.

For optimum allocation of resources such as virtual storage, avoid specifying a
large number of work data sets unnecessarily.

No more than 255 work data sets can be specified. If you specify more than 32
work data sets, and the Blockset technique is not selected, a maximum of 32 work
data sets is used.

Using Work Space

594 DFSORT R14 Application Programming Guide

|
|
|
|
|

|
|
|
|

Non-Synchronous Storage Subsystems
Allocation of work data sets on devices attached to non-synchronous storage
subsystems can affect the performance of certain DFSORT applications. Whether or
not a particular application is affected depends on many factors, the most critical of
which is the ratio of input file size to available storage.

In general, to maximize performance, DFSORT needs the following:

v Accurate knowledge of the size of the file being sorted

In most cases, DFSORT is able to calculate the file size accurately. However, for
applications that sort many input tapes that are not managed by DFSMSrmm or
a tape management system that uses ICETPEX (especially compacted input
tapes) or that use E15 exits that add or delete records, we recommend that you
specify the file size using the FILSZ or SIZE parameter.

v Adequate storage relative to the size of the file being sorted

Table 74 shows the minimum recommended storage to provide DFSORT based
on various input file sizes.

Table 74. Minimum Storage Required for Various File Sizes

Input file size Minimum storage

Less than 200MB 4MB

200MB to 500MB 8MB

500MB to 1GB 16MB

More than 1GB 16-32MB

Under some circumstances, DFSORT does not perform as well when using ESCON
channels as it does when using parallel channels. The two types of applications
most likely to cause a noticeable decrease in performance are:

1. Applications where DFSORT cannot accurately determine the size of the file to
be sorted. These applications often involve DFSORT E15 user exits that insert
records into the sorting process.

2. Sort applications with a low ratio of available storage to input file size.

Allocation of Work Data Sets
Dynamic allocation has the following advantages over JCL allocation:

v ICEMAC can be set to automatically activate dynamic allocation for all sort
applications.

To use JCL allocation, appropriate DD statements must be specified for each
individual application.

v As the characteristics (file size, virtual storage, and so on) of an application
change over time, DFSORT can automatically optimize the amount of
dynamically allocated work space for the application. This eliminates unneeded
allocation of DASD space.

JCL allocation is fixed; DFSORT cannot adjust it. DASD space might be wasted.

v As the amount of Hiperspace available to the application varies from run to run,
DFSORT can automatically adjust the amount of space it dynamically allocates to
complement the amount of Hiperspace. This eliminates unneeded allocation of
DASD space.

JCL allocation is fixed; DFSORT cannot adjust it, even if all sorting can be done
in Hiperspace. DASD space might be wasted.

Using Work Space

Appendix A. Using Work Space 595

|
|
|
|
|

Dynamic allocation has one drawback: for certain applications, as described in “File
Size and Dynamic Allocation” on page 597, you might need to give DFSORT a
reasonable estimate of the input file size. Later, if the input file size for the
application increases significantly, you must update the file size estimate
accordingly.

However, JCL allocation has a similar drawback, except that it applies to all
applications. Unless you overallocate the work data sets initially and waste space,
you have to update the JCL allocation when the input file size increases significantly
for any application to avoid out-of-space abends.

If you can allocate enough work data set space with JCL to guarantee your
applications will never exceed the space allocated, you do not need dynamic
allocation. However, since efficient use of DASD space is usually desirable,
dynamic allocation is recommended over JCL allocation.

For both dynamic allocation and JCL allocation:

v The amount of work space actually used will often be less than the amount
allocated. DFSORT tries to minimize dynamic over-allocation while making
certain that the application will not fail due to lack of space. With JCL allocation,
you could minimize the amount of allocated space manually, but this might
require changes to JCL allocation as the characteristics of the application change
over time.

v Limiting the virtual storage available to DFSORT can increase the amount of
work space required. With a reasonable amount of storage, 4MB for example,
DFSORT can sort using a reasonable amount of work space. If storage is limited,
more work space might be required. If storage is drastically limited (for example,
to 200KB), significantly more work space might be required.

Dynamic Allocation of Work Data Sets
ICEMAC options are available to request automatic dynamic allocation of work data
sets and to supply defaults for the device type and number of devices.

For certain applications, it is very important to specify a reasonable estimate of the
input file size when using dynamic allocation.

Automatic Dynamic Allocation
Your system programmer has set the DYNAUTO installation option to control
whether dynamic allocation is used automatically, or only when requested by the
DYNALLOC run-time option.

DYNAUTO also controls whether dynamic allocation or JCL allocation takes
precedence when JCL work data sets are specified.

If your system programmer selected DYNAUTO=IGNWKDD, dynamic allocation
takes precedence over JCL allocation (JCL work data sets are actually deallocated).
If you want the opposite precedence for selected applications, use the run-time
option USEWKDD.

If your system programmer selected DYNAUTO=YES, JCL allocation takes
precedence over dynamic allocation. If you want the opposite precedence, you must
remove the JCL allocation statements.

Allocation of Work Data Sets

596 DFSORT R14 Application Programming Guide

If your system programmer selected DYNAUTO=NO, dynamic allocation of work
data sets is not used unless you specify the DYNALLOC run-time option. JCL
allocation takes precedence over dynamic allocation.

Device Defaults
When the device type, or the number of devices for dynamic allocation, is not
explicitly specified, DFSORT obtains the missing information from the DYNALOC
installation option information supplied by your system programmer.

File Size and Dynamic Allocation
DFSORT bases the amount of work space it dynamically allocates on the number of
bytes to be sorted—the input file size. Generally, DFSORT can automatically make
an accurate determination of the file size by determining the number of input
records. However, DFSORT cannot always determine the input file size accurately
in the following cases:

v An E15 user exit routine supplies all input records (an input data set is not
present). DFSORT cannot automatically determine the number of records to be
inserted.

v An input data set is present, along with an E15 user exit routine. DFSORT can
automatically determine the number of records in the input data set, but cannot
automatically determine the number of records to be inserted or deleted.

v A spool (DD *) or pipe data set is used as input.

v The input consists of small data sets on tape that are not managed by
DFSMSrmm or a tape management system that uses ICETPEX. When the tape
data sets are not managed, DFSORT cannot know how much of the tapes are
used, so it determines the file size assuming full volumes at the maximum
regular density for the drives.

v The Improved Data Recording Capability (IDRC) feature is used for the input
device and the tape data sets are not managed by DFSMSrmm or a tape
management system that uses ICETPEX.

v Input data sets are members of partitioned data sets. DFSORT cannot determine
the size of a member in a partitioned data set. Therefore, when input data sets
are partitioned, DFSORT uses the size of the entire data set as the input file
size. This is usually an over-estimation, which leads to over-allocation of work
space.

In the above circumstances, if the number of records is not supplied by the FILSZ
or SIZE option, you will receive message ICE118I. If dynamic allocation of work
data sets is used, DFSORT allocates the primary space according to the DYNSPC
value in effect. This can result in underallocation or overallocation, possibly leading
to wasted space or an out-of-space condition, respectively. If this happens, you
should specify FILSZ=En with a reasonably accurate estimate of the number of
records to be sorted. If you cannot specify FILSZ=En, you should use DYNSPC=n
to adjust the primary space for dynamically allocated work data sets, as
appropriate.

Note: FILSZ=E0 is ignored.

For variable-length records, DFSORT uses one-half of the maximum record length
(LRECL) in conjunction with the number of records to determine the input file size,
unless you specify AVGRLEN=n. If your actual average record length is significantly
different from one-half of the maximum record length, specifying AVGRLEN=n can
prevent DFSORT from overallocating or underallocating dynamic work space.

Allocation of Work Data Sets

Appendix A. Using Work Space 597

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

See “OPTION Control Statement” on page 155 for more information about the
AVGRLEN, DYNSPC, FILSZ, and SIZE options.

Dynamic Over-Allocation of Work Space
DFSORT can dynamically over-allocate the work space even when you specify the
number of records under the following circumstances:

v When you delete a significant number of records using:

– An INCLUDE or OMIT statement, or the SKIPREC option. Use of these
statements and options does not force DFSORT to use a SIZE=En or
FILSZ=En specification. DFSORT ignores the En value unless it cannot
compute the input file size.

– One or more partitioned data set members as input. DFSORT uses the size of
the entire partitioned data set rather than the size of the member in its
calculations. DFSORT ignores any SIZE=En or FILSZ=En value unless it
cannot determine the input file size itself.

You can avoid over-allocation in these cases by specifying SIZE=Un or
FILSZ=Un.

v When the average record length of variable-length records is substantially shorter
than one-half of the maximum record length. If DFSORT uses your exact or
estimated number of records, it uses one-half of the maximum record length to
determine the file size. You can avoid over-allocation in this case by specifying
AVGRLEN=n.

Dynamic over-allocation of work space can occur when you do not specify the
number of records (for example, with small input data sets on tape), or even when
you do (for example, when a significant number of records is deleted). In these
cases, you might prefer to use JCL allocation of work data sets to control the
amount of space allocated. However, there are drawbacks to doing so, as
previously explained. If DYNAUTO=IGNWKDD is used, remember to specify
run-time option USEWKDD when you want to use JCL allocation of work data sets.

JCL Allocation of Work Data Sets
The amount of required work space is dependent on many factors such as virtual
storage and type of devices used, but is especially sensitive to the file size of the
input data set.

Because of the number of variables involved, an exact formula cannot be given for
calculating the needed work space. However, the following guidelines usually hold
true:

v For fixed length record (FLR) sort applications, 1.5 to 2 times the input file size is
usually adequate.

v For variable-length record (VLR) sort applications, 1.5 to 2.5 times the input file
size is usually adequate.

These guidelines assume that a reasonable amount of storage (at least 1M) is
available to DFSORT. Limiting the available amount of storage can increase the
amount of needed work space.

DFSORT can often run with less than the amount of work space indicated by the
above guidelines.

To get the best performance using JCL allocation of work data sets:

Allocation of Work Data Sets

598 DFSORT R14 Application Programming Guide

|
|

v Use devices without much activity on them.

v For best performance, use emulated 3390-9 devices (such as RAMAC) or other
high-speed IBM DASD devices for work data sets, and avoid using tape, virtual
(VIO) or real 3390-9 devices for work data sets.

v Allocate space in cylinders.

v Specify contiguous space for each work data set, and make sure there is enough
primary space so that secondary space is not needed.

v Allocate two or more work data sets.

v Assign one work data set per actuator.

v Use multiple channel paths to the devices.

v Use different spindles and separate channel paths for the work data sets and the
input/output data sets.

The following table shows the work data set space needed with 4M of storage for
applications with various characteristics when Hipersorting and dataspace sorting
are not used (HIPRMAX=0 and DSPSIZE=0).

Table 75. Work Space Requirements for Various Input Characteristics

Input Data set Characteristics Cylinders (3390)

Filesize (MB) FLR/VLR Max LRECL BLKSIZE Input Data
Set

Work Data
Set

4 FLR 80 27920 6 6

4 FLR 160 27840 6 6

20 FLR 80 27920 26 36

20 FLR 160 27840 26 36

20 FLR 1000 27000 26 36

40 FLR 80 27920 51 56

40 FLR 160 27840 51 56

40 FLR 1000 27000 52 56

150 FLR 160 27840 189 198

4 VLR 300 27998 6 9

40 VLR 300 27998 51 63

40 VLR 6000 27998 55 59

150 VLR 300 27998 188 200

150 VLR 6000 27998 203 200

DASD Capacity Considerations
You can specify a mixture of direct access devices for a given sort application. Any
IBM DASD device supported by your operating system can be used for work data
sets.

For best performance, use emulated 3390-9 devices (such as RAMAC) or other
high-speed IBM DASD devices for work data sets, and avoid using real 3390-9
devices for work data sets.

System performance is improved if work data sets are specified in cylinders, rather
than tracks or blocks. Storage on temporary work data sets will be readjusted to

Allocation of Work Data Sets

Appendix A. Using Work Space 599

cylinders if possible. The number of tracks per cylinder for direct access devices is
shown in Table 76.

Table 76. Number of Tracks per Cylinder for Direct Access Devices

Device Tracks per Cylinder Maximum Bytes used
per Track

3380 15 47476

3390 15 56664

9345 15 46456

If WRKSEC is in effect and the work data set is not allocated to VIO, DFSORT
allocates secondary extents as required, even if not requested in the JCL.

Exceeding DASD Work Space Capacity
If during sorting, the allocation of secondary space on one of the work data sets
fails, the system issues a B37 informational message. DFSORT can recover by
allocating space on one of the other work data sets, if one is available.

DFSORT normally allocates secondary extents for work data sets, even if not
requested in the JCL. This reduces the probability of exceeding work space
capacity.

If the DASD work space is not sufficient to perform the sort, DFSORT issues a
message and terminates.

Tape Capacity Considerations
Any IBM tape device supported by your operating system can be used for work
space. However, using tape devices for work data sets rather than DASD causes
significant performance degradation and should, therefore, be avoided.

Three different tape work data set techniques are available to DFSORT: Balanced,
Polyphase, and Oscillating. For information on how to calculate their requirements,
see Table 77.

Note: The value you obtain for “min” is literally a minimum value; if, for example,
your input uses a more efficient blocking factor than DFSORT or is spanned,
you need more work space. Space requirements are also summarized in
Table 77. DFSORT selects the most appropriate tape technique using these
criteria.

Table 77. Work Space Requirements of the Various Tape Techniques

Tape Technique Maximum Input
Work Space Areas
Required

Max. No. of
Work Areas Comments

Balanced tape
(BALN)

15 volumes Min=2(V+1)* tape units 32 volumes Used if more than three work
storage tapes are provided
and file size is not given.

Polyphase tape
(POLY)

1 volume Min=3 tape units 17 volumes Used if three work storage
tapes are provided.

Oscillating tape
(OSCL)

15 volumes Min=V+2* or 4 tape
units, whichever is
greater

17 volumes File size must be given. The
tape drive containing SORTIN
cannot be used as a work
unit.

DASD Capacity Considerations

600 DFSORT R14 Application Programming Guide

Table 77. Work Space Requirements of the Various Tape Techniques (continued)

Tape Technique Maximum Input
Work Space Areas
Required

Max. No. of
Work Areas Comments

Note:

V = Number of input volumes. Number of input volumes of blocking equals work space blocking.

Exceeding Tape Work Space Capacity
At the beginning of a sort using tape work data sets, DFSORT estimatesthe
maximum sort capacity (Nmax) and issues message ICE038I. See the explanation
of this message for details.

The value for Nmax printed in message ICE038I is an average value rounded down
to the nearest thousand. This value assumes random input. If you have a reversed
sequenced file and tape work space, sort capacity may be exceeded at a lower
value because of the higher number of partly empty, end-of-string blocks.

For magnetic tape, a tape length of 2400 feet is assumed in calculating Nmax. For
tapes of other lengths, the figure is not correct. When tapes with mixed density are
used, the smallest density is used in the calculation.

If you specify an actual data set size, and that size is larger than the maximum
capacity estimated by the program (Nmax), the program terminates before
beginning to sort. If you specify an estimated data set size, or none at all, and the
number of records reaches the maximum (Nmax), the program gives control to your
routine at user exit E16, if you have written and included one. This routine can
direct the program to take one of the following actions:

v Continue sorting the entire input data set with available work space. If the
estimate of the input data set size was high, enough work space may remain to
complete the application.

v Continue sorting with only part of the input data set; the remainder could be
sorted later and the two results merged to complete the application.

v Terminate the program without any further processing.

If you do not include an E16 routine, DFSORT continues to process records for as
long as possible. If the work space is sufficient to contain all the records in the input
data set, DFSORT completes normally; when work space is not sufficient, DFSORT
issues a message and terminates.

The program generates a separate message for each of the three possible error
conditions. They are:

1. ICE041A—N GT NMAX: Generated before sorting begins when the exact file
size is greater than Nmax.

2. ICE046A—SORT CAPACITY EXCEEDED: Generated when the sort has used
all available work space.

3. ICE048I—NMAX EXCEEDED: Generated when the sort has exceeded Nmax
and has transferred control to a user-written E16 routine for further action.

The test for message ICE041A is made with the maximum possible calculated
value, that is, DFSORT is sure it will fail. In case of doubt, the message is not
issued.

DASD Capacity Considerations

Appendix A. Using Work Space 601

602 DFSORT R14 Application Programming Guide

Appendix B. Specification/Override of DFSORT Options

“Installation Defaults” on page 16 discusses DFSORT’s installation (ICEMAC)
options and environments, and shows you how to use ICETOOL’s DEFAULTS
operator to list the installation defaults selected at your site.

Listed below are the places in DFSORT where you can specify various options that
will override the IBM-supplied defaults. The sources for the options are listed in
override order; that is, any option specified in a higher place in the list overrides
one specified in a lower place.

Directly Invoked DFSORT
v DFSPARM data set

– PARM options
– DEBUG and OPTION control statements
– Other control statements.

v EXEC statement PARM options
v SYSIN data set

– DEBUG and OPTION control statements
– Other control statements.

v Installation macro (ICEMAC JCL, TSO OR TDx).

Program Invoked DFSORT
v DFSPARM data set

– PARM options
– DEBUG and OPTION control statements
– Other control statements.

v SORTCNTL data set
– DEBUG and OPTION control statements
– Other control statements.

v Parameter list
– DEBUG and OPTION control statements
– Other control statements.

v Installation macro (ICEMAC INV, TSOINV or TDx).

Notes:

1. For the DEBUG and OPTION statements, override is at the option level. For
example, with:

//DFSPARM DD *
OPTION EQUALS

//SYSIN DD *
OPTION NOEQUALS,SKIPREC=50

EQUALS from DFSPARM overrides NOEQUALS from SYSIN, but SKIPREC=50
from SYSIN in not affected by the OPTION statement in DFSPARM, so both
EQUALS and SKIPREC=50 will be used.

For control statements other than DEBUG and OPTION, override is at the
statement level. For example, with:

//DFSPARM DD *
MODS E15=(CHECK,4096,EXIT)

//SYSIN DD *
MODS E35=(MOVE,2048,EXITX)

© Copyright IBM Corp. 1973, 2002 603

the MODS statement in DFSPARM completely overrides the MODS statement
in SYSIN, so the E15 exit will be used, but the E35 exit will not.

2. An EFS program or an installation initialization exit (ICEIEXIT) routine can also
be used to override options. ICEIEXIT changes override any corresponding
changes made by an EFS program.

3. For OUTFIL statements, override is at the ddname level. See “OUTFIL
Statements Notes” on page 267 for details.

Main Features of Sources of DFSORT Options
There are five sources of options in which you can override IBM-supplied standard
defaults. To help you decide which is most efficient for you, compare their main
features using the following lists:

DFSPARM Data Set
v Use with direct or program invocation.

v Overrides all other sources.

v Accepts all DFSORT program control statements, and all EXEC PARM options,
including those OPTION statement parameters ignored by SYSIN and
SORTCNTL.

v Permits comment statements, blank statements, and remarks.

EXEC Statement PARM Options
v Use with direct invocation only.

v Accepts all EXEC PARM options, including those equivalent to the OPTION
statement parameters ignored by SYSIN and SORTCNTL.

SORTCNTL Data Set
v Use with program invocation only.

v Accepts all DFSORT program control statements.

v Ignores these OPTION statement parameters: EFS, LIST, NOLIST, LISTX,
NOLISTX, LOCALE, MSGPRT, MSGDDN, SMF, SORTDD, SORTIN, SORTOUT,
and USEWKDD.

v Permits comment statements, blank statements, and remarks.

v Using multiple parameter lists to rename the SORTCNTL data set permits
different control statements to be used for a program that invokes DFSORT more
than once.

SYSIN Data Set
v Use with direct invocation only.

v Accepts all DFSORT program control statements.

v Ignores these OPTION statement parameters: EFS, LIST, NOLIST, LISTX,
NOLISTX, LOCALE, MSGPRT, MSGDDN, SMF, SORTDD, SORTIN, SORTOUT,
and USEWKDD.

v Permits comment statements, blank statements, and remarks.

v Can contain user exit routines in object deck format for link-editing.

Parameter Lists
v Use with program invocation only.

Specification/Override Of Options

604 DFSORT R14 Application Programming Guide

v Extended parameter list accepts all DFSORT program control statements,
including those OPTION statement parameters ignored by SYSIN and
SORTCNTL.

v 24-bit parameter list accepts a subset of DFSORT program control statements.

v Using multiple parameter lists to rename the SORTCNTL data set permits
different control statements to be used for a program that invokes DFSORT more
than once.

v Can be used to pass the addresses of any user exits that your program has
placed in main storage.

Note: The extended parameter list can perform a superset of the functions in the
24-bit parameter list.

Override Tables
The following tables show the possible sources of specification and order of
override for individual options.

v The order of override between sources of specification is from left to right. A
specification overrides all specifications to its right.

v The order of override within a source is from top to bottom. A specification
overrides all specifications below it.

v EXEC PARM options you can specify in the DFSPARM data set are preceded by
the word “PARM” in the DFSPARM columns of the tables to distinguish them
from control statement options.

v The Function columns indicate which functions (S=sort, M=merge, or C=copy)
can use the option.

v Although alias names are available for many of the options, they are not shown
here.

Directly Invoked DFSORT
Table 78 on page 606 shows where each sort, merge, or copy option may be
specified when DFSORT is directly invoked (that is, not invoked by programs).

DFSPARM: PARM options selectively override corresponding options in any other
source. DEBUG and OPTION control statement options selectively override
corresponding options in EXEC PARM and SYSIN. Control statements other than
DEBUG and OPTION completely override corresponding control statements in
SYSIN.

EXEC PARM options selectively override options in SYSIN.

SORT and MERGE are considered to be corresponding control statements.

INCLUDE and OMIT are considered to be corresponding control statements.

Specification/Override Of Options

Appendix B. Specification/Override of DFSORT Options 605

Table 78. Directly Invoked DFSORT Option Specification/Override. Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the ICEMAC
column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

NO NO NO ABCODE ABEND code S,M,C

DEBUG ABSTP NO DEBUG ABSTP NO Abnormal stop S,M,C

ALTSEQ CODE NO ALTSEQ CODE ALTSEQ Alternate
sequence

S,M

PARM ARESALL
OPTION ARESALL

ARESALL OPTION ARESALL ARESALL System storage
above 16MB
virtual

S,M,C

DEBUG NOASSIST NO DEBUG NOASSIST NO Bypass Sorting
Instructions

S

PARM AVGRLEN
OPTION AVGRLEN

AVGRLEN OPTION AVGRLEN NO Average record
length

S

PARM BSAM
DEBUG BSAM

BSAM DEBUG BSAM NO Force BSAM S,M,C

DEBUG CFW|NOCFW NO DEBUG CFW|NOCFW CFW Cache fast write S

OPTION CHALT|NOCHALT NO OPTION CHALT|NOCHALT CHALT CH field
sequence

S,M

OPTION CHECK|NOCHECK NO OPTION CHECK|NOCHECK CHECK Record count
check

S,M,C

PARM CINV|NOCINV
OPTION CINV|NOCINV

CINV|NOCINV OPTION CINV|NOCINV CINV Control interval
access

S,M,C

PARM COBEXIT
OPTION COBEXIT

COBEXIT OPTION COBEXIT COBEXIT COBOL library S,M,C

INCLUDE|OMIT COND|FORMAT NO INCLUDE|OMIT COND|FORMAT NO Include|Omit
fields

S,M,C

OPTION COPY
SORT|MERGE FIELDS

NO OPTION COPY
SORT|MERGE FIELDS

NO Copy records C

DEBUG CTRx NO DEBUG CTRx NO ABEND record
count

S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

606
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

NO NO NO Time-of-day for
activation

Simulate
SORTDIAG DD
Statement

S,M,C

NO NO NO DIAGSIM Simulate
SORTDIAG DD
Statement

S,M,C

NO NO NO DSA Dynamic storage
adjustment limit

S

PARM DSPSIZE
OPTION DSPSIZE

DSPSIZE OPTION DSPSIZE DSPSIZE Dataspace
sorting

S

PARM DYNALLOC
OPTION DYNALLOC
SORT DYNALLOC

DYNALLOC OPTION DYNALLOC
SORT DYNALLOC

DYNALOC1 Dynamic
SORTWKs

S

PARM DYNALLOC
OPTION DYNALLOC|USEWKDD
SORT DYNALLOC

DYNALLOC OPTION DYNALLOC
SORT DYNALLOC

DYNAUTO Automatic
dynamic
allocation

S

PARM DYNSPC
OPTION DYNSPC

DYNSPC OPTION DYNSPC DYNSPC Dynamic
allocation default
space

S

PARM EFS
OPTION EFS

EFS NO2 EFS EFS program
specified

S,M,C

NO NO NO ENABLE Enable
Time-of-Day
modules

S,M,C

PARM EQUALS|NOEQUALS
OPTION EQUALS|NOEQUALS
SORT|MERGE EQUALS|NOEQUALS

EQUALS|NOEQUALS OPTION EQUALS|NOEQUALS
SORT|MERGE EQUALS|NOEQUALS

EQUALS Equal record
order

S,M

DEBUG EQUCOUNT NO DEBUG EQUCOUNT NO Equal key count
message

S

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

607

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

PARM ABEND|NOABEND
DEBUG ABEND|NOABEND

ABEND|NOABEND DEBUG ABEND|NOABEND ERET Error action S,M,C

DEBUG ESTAE|NOESTAE NO DEBUG ESTAE|NOESTAE ESTAE ESTAE routine S,M,C

OPTION EXITCK NO OPTION EXITCK EXITCK E15/E35 return
code checking

S,M,C

NO NO NO EXPMAX Available
expanded
storage limit for
all DFSORT
Hiperspaces

S

NO NO NO EXPOLD Old expanded
storage limit for
all DFSORT
Hiperspaces

S

NO NO NO EXPRES Available
expanded
storage reserved
for
non-Hipersorting
use

S

PARM E15=COB
PARM E35=COB
MODS Exx|HILEVEL=YES

E15=COB E35=COB MODS Exx|HILEVEL=YES NO User Exit Exx
(xx=11,15-19,
31,35,37-39,
and 61)

S,M,C3

INREC FIELDS NO INREC FIELDS NO INREC fields S,M,C

OUTREC FIELDS NO OUTREC FIELDS NO OUTREC fields S,M,C

SORT|MERGE FIELDS|FORMAT NO SORT|MERGE FIELDS|FORMAT NO Control fields S,M

SUM FIELDS/FORMAT NO SUM FIELDS/FORMAT NO Sum fields S,M

MERGE FILES NO MERGE FILES NO Merge input files M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

608
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

PARM FILSZ
OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE

FILSZ OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE

FSZEST File size S,M

PARM HIPRMAX
OPTION HIPRMAX

HIPRMAX OPTION HIPRMAX HIPRMAX Hipersorting S

NO NO NO IDRCPCT IDRC
compaction

S

NO NO NO IEXIT ICEIEXIT S,M,C

OPTION CKPT4

SORT CKPT4
NO OPTION CKPT4

SORT CKPT4
IGNCKPT Checkpoints S

NO NO NO IOMAXBF Maximum
SORTIN/SORTOUT
data set buffer
space

S,M,C

RECORD LENGTH NO RECORD LENGTH NO Record lengths S,M,C

PARM LIST|NOLIST
OPTION LIST|NOLIST

LIST|NOLIST NO2 LIST Print DFSORT
control
statements5

S,M,C

PARM LISTX|NOLISTX
OPTION LISTX|NOLISTX

LISTX|NOLISTX NO2 LISTX Print control
statements
returned by an
EFS program5

S,M,C

PARM LOCALE
OPTION LOCALE

LOCALE NO2 LOCALE Locale
processing

S,M,C

NO NO NO MAXLIM Maximum
storage below
16MB virtual6

S,M,C

NO NO NO MINLIM Minimum storage S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

609

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

PARM MSGDDN
OPTION MSGDDN

MSGDDN NO2 MSGDDN Alternate
message data
set

S,M,C

NO NO NO MSGCON Write messages
on master
console

S,M,C

PARM MSGPRT
OPTION MSGPRT

MSGPRT NO2 MSGPRT Print messages S,M,C

OPTION NOBLKSET NO OPTION NOBLKSET NO Bypass Blockset S,M

NO NO NO NOMSGDD Action when
message data
set missing

S,M,C

PARM ODMAXBF
OPTION ODMAXBF

ODMAXBF OPTION ODMAXBF ODMAXBF Maximum
OUTFIL data set
buffer space

S,M,C

OUTFIL9 OUTFIL9 OUTFIL9 NO OUTFIL
processing

S,M,C

PARM OUTREL|NOOUTREL
OPTION NOOUTREL

OUTREL|NOOUTREL OPTION NOOUTREL OUTREL Release output
data set space

S,M,C

OPTION NOOUTSEC NO OPTION NOOUTSEC OUTSEC Output data set
secondary
allocation

S,M,C

NO NO NO OVERRGN Storage over
REGION

S,M,C

PARM OVFLO
OPTION OVFLO

OVFLO OPTION OVFLO OVFLO Summary fields
overflow action

S,M

PARM PAD
OPTION PAD

PAD OPTION PAD PAD DFSORT LRECL
padding action

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

610
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

NO NO NO PARMDDN Alternate
ddname for
DFSPARM

S,M,C

PARM RESALL
OPTION RESALL

RESALL OPTION RESALL RESALL System reserved
storage6

S,M,C

PARM RESET|NORESET
OPTION RESET|NORESET

RESET|NORESET OPTION RESET|NORESET RESET NEW or MOD
VSAM output

S,M,C

PARM SDB
OPTION SDB

SDB OPTION SDB SDB System-
determined
output data
set block size

S,M,C

NO NO NO SDBMSG System-
determined
block size for
message and
list data sets

S,M,C

PARM SIZE
OPTION MAINSIZE

SIZE OPTION MAINSIZE SIZE Storage S,M,C

PARM SKIPREC
OPTION SKIPREC
SORT SKIPREC

SKIPREC OPTION SKIPREC
SORT SKIPREC

NO Skip records S,C

OPTION SMF NO NO SMF SMF records S,M,C

PARM SOLRF|NOSOLRF
OPTION SOLRF|NOSOLRF

SOLRF|NOSOLRF OPTION SOLRF|NOSOLRF SOLRF SORTOUT
length

S,M,C

OPTION SORTDD NO NO2 NO ddname prefix S,M,C

OPTION SORTIN7 NO NO2 NO Alternate
SORTIN ddname

S,C

NO NO NO SORTLIB Conventional
modules library

S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

611

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

OPTION SORTOUT8 NO NO2 NO Alternate
SORTOUT
ddname

S,M,C

PARM SPANINC
OPTION SPANINC

SPANINC OPTION SPANINC SPANINC Incomplete
spanned records
action

S,M,C

PARM STIMER|NOSTIMER
OPTION NOSTIMER

STIMER|NOSTIMER OPTION NOSTIMER STIMER Use of STIMER S,M,C

PARM STOPAFT
OPTION STOPAFT
SORT STOPAFT

STOPAFT OPTION STOPAFT
SORT STOPAFT

NO Input limit S,C

NO NO NO SVC DFSORT SVC
Information

S,M,C

PARM SZERO|NOSZERO
OPTION SZERO|NOSZERO

SZERO|NOSZERO OPTION SZERO|NOSZERO SZERO Signed or
unsigned zero

S,M,C

NO NO NO TEXIT ICETEXIT S,M,C

NO NO NO TMAXLIM Maximum
storage above
and below 16MB
virtual6

S,M,C

PARM TRUNC
OPTION TRUNC

TRUNC OPTION TRUNC TRUNC DFSORT LRECL
truncation action

S,M,C

RECORD TYPE NO RECORD TYPE NO Record format S,M,C

PARM VERIFY|NOVERIFY
OPTION VERIFY|NOVERIFY

VERIFY|NOVERIFY OPTION VERIFY|NOVERIFY VERIFY Sequence check S,M

NO NO NO VIO SORTWK virtual
I/O

S

PARM VLLONG|NOVLLONG
OPTION VLLONG|NOVLLONG

VLLONG|NOVLLONG OPTION VLLONG|NOVLLONG VLLONG Truncate long
output records

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

612
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 78. Directly Invoked DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in
the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with EXEC
PARM

Specified with SYSIN Specified with
ICEMAC JCL,
TSO OR TDx

Description of
Option

Function

PARM VLSCMP|NOVLSCMP
OPTION VLSCMP|NOVLSCMP

VLSCMP|NOVLSCMP OPTION VLSCMP|NOVLSCMP VLSCMP Pad short
compare fields

S,M,C

PARM VLSHRT|NOVLSHRT
OPTION VLSHRT|NOVLSHRT

VLSHRT|NOVLSHRT OPTION VLSHRT|NOVLSHRT VLSHRT Action for short
control or
compare fields

S,M,C

NO NO NO VSAMBSP VSAM buffer
space

S

PARM VSAMEMT|NVSAMEMT
OPTION VSAMEMT|NVSAMEMT

VSAMEMT|NVSAMEMT OPTION VSAMEMT|NVSAMEMT VSAMEMT Emty VSAM
input

S,M,C

PARM VSAMIO|NOVSAMIO
OPTION VSAMIO|NOVSAMIO

VSAMIO|NOVSAMIO OPTION VSAMIO|NOVSAMIO VSAMIO Same VSAM
input and output

S

PARM WRKREL|NOWRKREL
OPTION WRKREL|NOWRKREL

WRKREL|NOWRKREL OPTION WRKREL|NOWRKREL WRKREL Release
SORTWK space

S

PARM WRKSEC|NOWRKSEC
OPTION WRKSEC|NOWRKSEC

WRKSEC|NOWRKSEC OPTION WRKSEC|NOWRKSEC WRKSEC SORTWK
secondary
allocation

S

PARM Y2PAST
OPTION Y2PAST
SORT|MERGE Y2PAST

Y2PAST OPTION Y2PAST
SORT|MERGE Y2PAST

Y2PAST Set century
window

S,M,C

PARM ZDPRINT|NZDPRINT
OPTION ZDPRINT|NZDPRINT

ZDPRINT|NZDPRINT OPTION ZDPRINT|NZDPRINT ZDPRINT ZD SUM results S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

613

Notes to Directly Invoked DFSORT Table
1 Does not request dynamic allocation; only supplies defaults.
2 Not used in SYSIN.
3 All functions do not apply to all exits. See Table 48 on page 319 and

Table 49 on page 320 for applicable exits.
4 Not used if Blockset is selected and IGNCKPT=YES was specified.
5 Not used if MSGPRT=NONE is in effect; in this case control statements are

not printed.
6 Not used unless MAINSIZE=MAX is in effect.
7 Overrides SORTDD for the SORT input ddname.
8 Overrides SORTDD for the SORT output ddname.
9 Override is at the ddname level.

Program Invoked DFSORT with the Extended Parameter List
Table 79 on page 615 shows where each sort, merge, or copy option may be
specified when DFSORT is program invoked and an extended parameter list is
passed to it.

DFSPARM: PARM options selectively override corresponding options in any other
source. DEBUG and OPTION control statement options selectively override
corresponding options in SORTCNTL and the Parameter List. Control statements
other than DEBUG and OPTION completely override corresponding control
statements in SORTCNTL and the Parameter List.

SORTCNTL: DEBUG and OPTION control statement options selectively override
corresponding options in the Parameter List. Control statements other than DEBUG
and OPTION completely override corresponding control statements in the
Parameter List.

SORT and MERGE are considered to be corresponding control statements.

INCLUDE and OMIT are considered to be corresponding control statements.

Specification/Override Of Options

614 DFSORT R14 Application Programming Guide

Table 79. Extended Parameter List DFSORT Option Specification/Override. Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

NO NO NO ABCODE ABEND code S,M,C

DEBUG ABSTP DEBUG ABSTP DEBUG ABSTP NO Abnormal stop S,M,C

ALTSEQ CODE ALTSEQ CODE Offset 16 entry
ALTSEQ CODE

ALTSEQ Alternate sequence S,M

PARM ARESALL
OPTION ARESALL

OPTION ARESALL OPTION ARESALL ARESALL System storage
above 16MB virtual

S,M,C

OPTION ARESINV OPTION ARESINV OPTION ARESINV ARESINV Storage above 16MB
virtual for invoking
program

S,M,C

DEBUG NOASSIST DEBUG NOASSIST DEBUG NOASSIST NO Bypass Sorting
Instructions

S

PARM AVGRLEN
OPTION AVGRLEN

OPTION AVGRLEN OPTION AVGRLEN NO Average record
length

S

PARM BSAM
DEBUG BSAM

DEBUG BSAM DEBUG BSAM NO Force BSAM S,M,C

DEBUG CFW|NOCFW DEBUG CFW|NOCFW DEBUG CFW|NOCFW CFW Cache fast write S

OPTION CHALT|NOCHALT OPTION CHALT|NOCHALT OPTION CHALT|NOCHALT CHALT CH field sequence S,M

OPTION CHECK|NOCHECK OPTION CHECK|NOCHECK OPTION CHECK|NOCHECK CHECK Record count check S,M,C

PARM CINV|NOCINV
OPTION CINV|NOCINV

OPTION CINV|NOCINV OPTION CINV|NOCINV CINV Control interval
access

S,M,C

PARM COBEXIT
OPTION COBEXIT

OPTION COBEXIT OPTION COBEXIT COBEXIT COBOL library S,M,C

INCLUDE|OMIT
COND|FORMAT

INCLUDE|OMIT
COND|FORMAT

INCLUDE|OMIT
COND|FORMAT

NO Include|Omit fields S,M,C

OPTION COPY
SORT|MERGE FIELDS

OPTION COPY
SORT|MERGE FIELDS2

OPTION COPY
SORT|MERGE FIELDS

NO Copy records C

DEBUG CTRx DEBUG CTRx DEBUG CTRx NO ABEND record count S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

615

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

NO NO NO day Time-of-day for
activation

S,M,C

NO NO NO DIAGSIM Simulate SORTDIAG
DD statement

S,M,C

NO NO NO DSA Dynamic storage
adjustment limit

S

PARM DSPSIZE
OPTION DSPSIZE

OPTION DSPSIZE OPTION DSPSIZE DSPSIZE Dataspace sorting S

PARM DYNALLOC
OPTION DYNALLOC
SORT DYNALLOC

OPTION DYNALLOC
SORT DYNALLOC2

OPTION DYNALLOC
SORT DYNALLOC

DYNALOC1 Dynamic SORTWKs S

PARM DYNALLOC
OPTION DYNALLOC|
USEWKDD
SORT DYNALLOC

OPTION DYNALLOC
SORT DYNALLOC

OPTION DYNALLOC|
USEWKDD
SORT DYNALLOC

DYNAUTO Automatic
DYNALLOC

S

PARM DYNSPC
OPTION DYNSPC

OPTION DYNSPC OPTION DYNSPC DYNSPC Dynamic allocation
default space

S

PARM EFS
OPTION EFS

NO3 OPTION EFS EFS EFS program
specified

S,M,C

NO NO NO ENABLE Enable Time-of-Day
modules

S,M,C

PARM EQUALS|NOEQUALS
OPTION EQUALS|NOEQUALS
SORT|MERGE
EQUALS|NOEQUALS

OPTION EQUALS|NOEQUALS
SORT|MERGE
EQUALS|NOEQUALS2

OPTION EQUALS|NOEQUALS
SORT|MERGE
EQUALS|NOEQUALS

EQUALS Equal record order S,M

DEBUG EQUCOUNT DEBUG EQUCOUNT DEBUG EQUCOUNT NO Equal key count
message

S

PARM ABEND|NOABEND
DEBUG ABEND|NOABEND

DEBUG ABEND|NOABEND DEBUG ABEND|NOABEND ERET Error action S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

616
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

DEBUG ESTAE|NOESTAE DEBUG ESTAE|NOESTAE DEBUG ESTAE|NOESTAE ESTAE ESTAE routine S,M,C

OPTION EXITCK OPTION EXITCK OPTION EXITCK EXITCK E15/E35 return code
checking

S,M,C

NO NO NO EXPMAX Available expanded
storage limit for all
DFSORT
Hiperspaces

S

NO NO NO EXPOLD Old expanded
storage limit for all
DFSORT
Hiperspaces

S

NO NO NO EXPRES Available expanded
storage reserved for
non-Hipersorting use

S

PARM E15=COB
MODS E154|HILEVEL=YES

MODS E154|HILEVEL=YES Offset 4 entry4

MODS E154|HILEVEL=YES
NO Exit E15 S,C

MODS E184 MODS E184 Offset 24 entry4

MODS E184
NO Exit E18 S

NO NO Offset 4 entry NO Exit E32 M

PARM E35=COB
MODS E354|HILEVEL=YES

MODS E354|HILEVEL=YES Offset 8 entry4

MODS E354|HILEVEL=YES
NO Exit E35 S,M,C

MODS E394 MODS E394 Offset 28 entry4

MODS E394
NO Exit E39 S,M,C

MODS Exx MODS Exx MODS Exx NO User Exit Exx
(xx=11,16,17,19,
31,37,38, and 61)

S,M,C5

INREC FIELDS INREC FIELDS INREC FIELDS NO INREC fields S,M,C

OUTREC FIELDS OUTREC FIELDS OUTREC FIELDS NO OUTREC fields S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

617

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

SORT|MERGE
FIELDS|FORMAT

SORT|MERGE
FIELDS|FORMAT

SORT|MERGE
FIELDS|FORMAT

NO Control fields S,M

SUM FIELDS|FORMAT SUM FIELDS|FORMAT SUM FIELDS|FORMAT NO Sum fields S,M

MERGE FILES MERGE FILES MERGE FILES NO Merge input files M

PARM FILSZ
OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE

OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE2

OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE

FSZEST File size S,M

NO NO NO GENER IEBGENER name C

NO NO NO GNPAD ICEGENER LRECL
padding action

C

NO NO NO GNTRUNC ICEGENER LRECL
truncation action

C

PARM HIPRMAX
OPTION HIPRMAX

OPTION HIPRMAX OPTION HIPRMAX HIPRMAX Hipersorting S

NO NO NO IDRCPCT IDRC compaction S

NO NO NO IEXIT ICEIEXIT S,M,C

OPTION CKPT6

SORT|MERGE CKPT6
OPTION CKPT6

SORT|MERGE CKPT2,6
OPTION CKPT6

SORT|MERGE CKPT6
IGNCKPT Checkpoints S

NO NO NO IOMAXBF Maximum
SORTIN/SORTOUT
data set buffer space

S,M,C

RECORD LENGTH RECORD LENGTH RECORD LENGTH NO Record lengths S,M,C

PARM LIST|NOLIST
OPTION LIST|NOLIST

NO3 OPTION LIST|NOLIST LIST Print DFSORT
control statements7

S,M,C

PARM LISTX|NOLISTX
OPTION LISTX|NOLISTX

NO3 OPTION LISTX|NOLISTX LISTX Print control
statements returned
by an EFS program7

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

618
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

PARM LOCALE
OPTION LOCALE

NO3 OPTION LOCALE LOCALE Locale processing S,M,C

NO NO NO MAXLIM Maximum storage
below 16MB virtual8

S,M,C

NO NO NO MINLIM Minimum storage S,M,C

PARM MSGDDN
OPTION MSGDDN

NO3 OPTION MSGDDN MSGDDN Alternate message
ddname

S,M,C

NO NO NO MSGCON Write messages on
master console

S,M,C

PARM MSGPRT
OPTION MSGPRT

NO3 OPTION MSGPRT MSGPRT Print messages S,M,C

OPTION NOBLKSET OPTION NOBLKSET OPTION NOBLKSET NO Bypass Blockset S,M

NO NO NO NOMSGDD Action when
message data set
missing

S,M,C

PARM ODMAXBF
OPTION ODMAXBF

OPTION ODMAXBF OPTION ODMAXBF ODMAXBF Maximum OUTFIL
data set buffer space

S,M,C

OUTFIL11 OUTFIL11 OUTFIL11 NO OUTFIL processing S,M,C

PARM OUTREL|NOOUTREL
OPTION NOOUTREL

OPTION NOOUTREL OPTION NOOUTREL OUTREL Release output data
set space

S,M,C

OPTION NOOUTSEC OPTION NOOUTSEC OPTION NOOUTSEC OUTSEC Output data set
secondary allocation

S,M,C

NO NO NO OVERRGN Storage over
REGION

S,M,C

PARM OVFLO
OPTION OVFLO

OPTION OVFLO OPTION OVFLO OVFLO Summary fields
overflow action

S,M

PARM PAD
OPTION PAD

OPTION PAD OPTION PAD PAD DFSORT LRECL
padding action

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

619

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

NO NO NO PARMDDN Alternate ddname for
DFSPARM

S,M,C

PARM RESALL
OPTION RESALL

OPTION RESALL OPTION RESALL RESALL System reserved
storage8

S,M,C

PARM RESET|NORESET
OPTION RESET|NORESET

OPTION RESET|NORESET OPTION RESET|NORESET RESET NEW or MOD VSAM
output

S,M,C

OPTION RESINV OPTION RESINV OPTION RESINV RESINV Program reserved
storage8

S,M,C

PARM SDB
OPTION SDB

OPTION SDB OPTION SDB SDB System-determined
output data set block
size

S,M,C

NO NO NO SDBMSG System-determined
block size for
message and list
data sets

S,M,C

PARM SIZE
OPTION MAINSIZE

OPTION MAINSIZE OPTION MAINSIZE SIZE Storage S,M,C

PARM SKIPREC
OPTION SKIPREC
SORT|MERGE SKIPREC

OPTION SKIPREC
SORT|MERGE SKIPREC2

OPTION SKIPREC
SORT|MERGE SKIPREC

NO Skip records S,C

OPTION SMF NO OPTION SMF SMF SMF records S,M,C

PARM SOLRF|NOSOLRF
OPTION SOLRF|NOSOLRF

OPTION SOLRF|NOSOLRF OPTION SOLRF|NOSOLRF SOLRF SORTOUT length S,M,C

OPTION SORTDD NO3 OPTION SORTDD NO ddname prefix S,M,C

OPTION SORTIN9 NO3 OPTION SORTIN9 NO Alternate SORTIN
ddname

S,C

NO NO NO SORTLIB Conventional
modules library

S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

620
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

OPTION SORTOUT10 NO3 OPTION SORTOUT10 NO Alternate SORTOUT
ddname

S,M,C

PARM SPANINC
OPTION SPANINC

OPTION SPANINC OPTION SPANINC SPANINC Incomplete spanned
records action

S,M,C

PARM STIMER|NOSTIMER
OPTION NOSTIMER

OPTION NOSTIMER OPTION NOSTIMER STIMER Use of STIMER S,M,C

PARM STOPAFT
OPTION STOPAFT
SORT|MERGE STOPAFT

OPTION STOPAFT
SORT|MERGE STOPAFT2

OPTION STOPAFT
SORT|MERGE STOPAFT

NO Input limit S,C

NO NO NO SVC DFSORT SVC
information

S,M,C

PARM SZERO|NOSZERO
OPTION SZERO|NOSZERO

OPTION SZERO|NOSZERO OPTION SZERO|NOSZERO SZERO Signed or unsigned
zero

S,M,C

NO NO NO TEXIT ICETEXIT S,M,C

NO NO NO TMAXLIM Maximum storage
above and below
16MB virtual8

S,M,C

PARM TRUNC
OPTION TRUNC

OPTION TRUNC OPTION TRUNC TRUNC DFSORT LRECL
truncation action

S,M,C

RECORD TYPE RECORD TYPE RECORD TYPE NO Record format S,M,C

PARM VERIFY|NOVERIFY
OPTION VERIFY|NOVERIFY

OPTION VERIFY|NOVERIFY OPTION VERIFY|NOVERIFY VERIFY Sequence check S,M

NO NO NO VIO SORTWK virtual I/O S

PARM VLLONG|NOVLLONG
OPTION VLLONG|NOVLLONG

OPTION VLLONG|NOVLLONG OPTION VLLONG|NOVLLONG VLLONG Ttruncate long output
records

S,M,C

PARM VLSCMP|NOVLSCMP
OPTION VLSCMP|NOVLSCMP

OPTION VLSCMP|NOVLSCMP OPTION VLSCMP|NOVLSCMP VLSCMP Pad short compare
fields

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

621

Table 79. Extended Parameter List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is
specified in the ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with Extended
Parameter List

Specified with
ICEMAC INV,
TSOINV or TDx

Description of
Option

Function

PARM VLSHRT|NOVLSHRT
OPTION VLSHRT|NOVLSHRT

OPTION VLSHRT|NOVLSHRT OPTION VLSHRT|NOVLSHRT VLSHRT Action for short
control field or
compare field

S,M,C

NO NO NO VSAMBSP VSAM buffer space S

PARM VSAMEMT|NVSAMEMT
OPTION VSAMEMT|NVSAMEMT

OPTION
VSAMEMT|NVSAMEMT

OPTION
VSAMEMT|NVSAMEMT

VSAMEMT Empty VSAM input S,M,C

PARM VSAMIO|NOVSAMIO
OPTION VSAMIO|NOVSAMIO

OPTION VSAMIO|NOVSAMIO OPTION VSAMIO|NOVSAMIO VSAMIO Same VSAM input
and output

S

PARM WRKREL|NOWRKREL
OPTION WRKREL|NOWRKREL

OPTION WRKREL|NOWRKREL OPTION WRKREL|NOWRKREL WRKREL Release SORTWK
space

S

PARM WRKSEC|NOWRKSEC
OPTION WRKSEC|NOWRKSEC

OPTION
WRKSEC|NOWRKSEC

OPTION
WRKSEC|NOWRKSEC

WRKSEC SORTWK secondary
allocation

S

PARM Y2PAST
OPTION Y2PAST
SORT|MERGE Y2PAST

OPTION Y2PAST
SORT|MERGE Y2PAST2

OPTION Y2PAST
SORT|MERGE Y2PAST

Y2PAST Set century window S,M,C

PARM ZDPRINT|NZDPRINT
OPTION ZDPRINT|NZDPRINT

OPTION ZDPRINT|NZDPRINT OPTION ZDPRINT|NZDPRINT ZDPRINT ZD SUM results S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

622
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Notes to Extended Parameter List Table
1 Does not request dynamic allocation; only supplies defaults.
2 Does not override corresponding option in an OPTION statement specified

via the extended parameter list.
3 Not used in SORTCNTL.
4 DFSORT terminates if the exit is specified via the parameter list entry and

the exit is specified in a MODS statement.
5 All functions do not apply to all exits. See Table 48 on page 319 and

Table 49 on page 320 for applicable exits.
6 Not used if Blockset is selected and IGNCKPT=YES was specified.
7 Not used if MSGPRT=NONE is in effect; in this case control statements are

not printed.
8 Not used unless MAINSIZE=MAX is in effect.
9 Overrides SORTDD for the sort input ddname.
10 Overrides SORTDD for the sort output ddname.
11 Override is at the ddname level.

Program Invoked DFSORT with the 24-Bit Parameter List
Table 80 on page 624 shows where each sort, merge, or copy option may be
specified when DFSORT is program invoked and a 24-bit parameter list is passed
to it.

DFSPARM: PARM options selectively override corresponding options in any other
source. DEBUG and OPTION control statement options selectively override
corresponding options in SORTCNTL and the Parameter List. Control statements
other than DEBUG and OPTION completely override corresponding control
statements in SORTCNTL and the Parameter List.

SORTCNTL: DEBUG control statement options selectively override corresponding
options in the Parameter List. Control statements other than DEBUG completely
override corresponding control statements in the Parameter List.

SORT and MERGE are considered to be corresponding control statements.

INCLUDE and OMIT are considered to be corresponding control statements.

Specification/Override Of Options

Appendix B. Specification/Override of DFSORT Options 623

Table 80. 24-Bit List DFSORT Option Specification/Override. Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the ICEMAC
column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

NO NO NO ABCODE ABEND code S,M,C

DEBUG ABSTP DEBUG ABSTP DEBUG ABSTP NO Abnormal stop S,M,C

ALTSEQ CODE ALTSEQ CODE X'F6' entry
ALTSEQ CODE

ALTSEQ Alternate
sequence

S,M

PARM ARESALL
OPTION ARESALL

OPTION ARESALL NO ARESALL System storage
above 16MB
virtual

S,M,C

OPTION ARESINV OPTION ARESINV NO ARESINV Storage above
16MB virtual for
invoking program

S,M,C

DEBUG NOASSIST DEBUG NOASSIST DEBUG NOASSIST NO Bypass Sorting
Instructions

S

PARM AVGRLEN
OPTION AVGRLEN

OPTION AVGRLEN NO NO Average record
length

S

PARM BSAM
DEBUG BSAM

DEBUG BSAM DEBUG BSAM NO Force BSAM S,M,C

DEBUG CFW|NOCFW DEBUG CFW|NOCFW DEBUG CFW|NOCFW CFW Cache fast write S

OPTION CHALT|NOCHALT OPTION CHALT|NOCHALT NO CHALT CH field sequence S,M

OPTION CHECK|NOCHECK OPTION CHECK|NOCHECK NO CHECK Record count
check

S,M,C

PARM CINV|NOCINV
OPTION CINV|NOCINV

OPTION CINV|NOCINV NO CINV Control interval
access

S,M,C

PARM COBEXIT
OPTION COBEXIT

OPTION COBEXIT NO COBEXIT COBOL library S,M,C

INCLUDE|OMIT COND|FORMAT INCLUDE|OMIT COND|FORMAT INCLUDE|OMIT
COND|FORMAT

NO Include|Omit fields S,M,C

OPTION COPY
SORT|MERGE FIELDS

OPTION COPY
SORT|MERGE FIELDS

SORT|MERGE FIELDS NO Copy records C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

624
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

DEBUG CTRx DEBUG CTRx DEBUG CTRx NO ABEND record
count

S,M

NO NO NO day Time-of-day for
activation

S,M,C

NO NO NO DIAGSIM Simulate
SORTDIAG DD
statement

S,M,C

NO NO NO DSA Dynamic storage
adjustment limit

S

PARM DSPSIZE
OPTION DSPSIZE

OPTION DSPSIZE NO DSPSIZE Dataspace sorting S

PARM DYNALLOC
OPTION DYNALLOC
SORT DYNALLOC

OPTION DYNALLOC
SORT DYNALLOC

SORT DYNALLOC DYNALOC1 Dynamic
SORTWKs

S

PARM DYNALLOC
OPTION DYNALLOC|USEWKDD
SORT DYNALLOC

OPTION DYNALLOC
SORT DYNALLOC

SORT DYNALLOC DYNAUTO Automatic
DYNALLOC

S

PARM DYNSPC
OPTION DYNSPC

OPTION DYNSPC NO DYNSPC Dynamic allocation
default space

S

PARM EFS
OPTION EFS

NO2 NO EFS EFS program
specified

S,M,C

NO NO NO ENABLE Enable
Time-of-Day
modules

S,M,C

PARM EQUALS|NOEQUALS
OPTION EQUALS|NOEQUALS
SORT|MERGE EQUALS|
NOEQUALS

OPTION EQUALS|NOEQUALS
SORT|MERGE EQUALS|
NOEQUALS

SORT|MERGE
EQUALS|NOEQUALS

EQUALS Equal record order S,M

DEBUG EQUCOUNT DEBUG EQUCOUNT DEBUG EQUCOUNT NO Equal key count
message

S

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

625

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

PARM ABEND|NOABEND
DEBUG ABEND|NOABEND

DEBUG ABEND|NOABEND DEBUG
ABEND|NOABEND

ERET Error action S,M,C

DEBUG ESTAE|NOESTAE DEBUG ESTAE|NOESTAE DEBUG ESTAE|NOESTAE ESTAE ESTAE routine S,M,C

OPTION EXITCK OPTION EXITCK NO EXITCK E15/E35 return
code checking

S,M,C

NO NO NO EXPMAX Available
expanded storage
limit for all
DFSORT
Hiperspaces

S

NO NO NO EXPOLD Old expanded
storage limit for all
DFSORT
Hiperspaces

S

NO NO NO EXPRES Available
expanded storage
reserved for
non-Hipersorting
use

S

PARM E15=COB
MODS E153|
HILEVEL=YES

MODS E153|
HILEVEL=YES

Offset 18 entry3

MODS E153|HILEVEL=YES
NO User exit E15 S,C

NO NO Offset 18 entry NO User exit E32 M

PARM E35=COB
MODS E353|HILEVEL=YES

MODS E353|HILEVEL=YES Offset 22 entry3

MODS E353|HILEVEL=YES
NO User exit E35 S,M,C

MODS Exx MODS Exx MODS Exx NO User Exit Exx
(xx=11,16-19,
31,37-39, and 61)

S,M,C4

INREC FIELDS INREC FIELDS INREC FIELDS NO INREC fields S,M,C

OUTREC FIELDS OUTREC FIELDS OUTREC FIELDS NO OUTREC fields S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

626
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

SORT|MERGE FIELDS|FORMAT SORT|MERGE FIELDS|FORMAT SORT|MERGE
FIELDS|FORMAT

NO Control fields S,M,C

SUM FIELDS|FORMAT SUM FIELDS|FORMAT SUM FIELDS|FORMAT NO Sum fields S,M

MERGE FILES MERGE FILES X'04' entry
MERGE FILES

NO Merge input files M

PARM FILSZ
OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE

OPTION FILSZ|SIZE
SORT|MERGE FILSZ|SIZE

SORT|MERGE
FILSZ|SIZE

FSZEST File size S,M

NO NO NO GENER IEBGENER name C

NO NO NO GNPAD ICEGENER
LRECL padding
action

C

NO NO NO GNTRUNC ICEGENER
LRECL truncation
action

C

PARM HIPRMAX
OPTION HIPRMAX

OPTION HIPRMAX NO HIPRMAX Hipersorting S

NO NO NO IDRCPCT IDRC compaction S

NO NO NO IEXIT ICEIEXIT S,M,C

OPTION CKPT5

SORT|MERGE CKPT5
OPTION CKPT5

SORT|MERGE CKPT5
SORT|MERGE CKPT5 IGNCKPT Checkpoints S

NO NO NO IOMAXBF Maximum
SORTIN/SORTOUT
data set buffer
space

S,M,C

RECORD LENGTH RECORD LENGTH RECORD LENGTH NO Record lengths S,M,C

PARM LIST|NOLIST
OPTION LIST|NOLIST

NO2 NO LIST Print DFSORT
control
statements6

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

627

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

PARM LISTX|NOLISTX
OPTION LISTX|NOLISTX

NO2 NO LISTX Print control
statements
returned by an
EFS program6

S,M,C

PARM LOCALE
OPTION LOCALE

NO2 NO LOCALE Locale processing S,M,C

NO NO NO MAXLIM Maximum storage
below 16MB
virtual7

S,M,C

NO NO NO MINLIM Minimum storage S,M,C

PARM MSGDDN
OPTION MSGDDN

NO2 X'03' entry MSGDDN Alternate message
ddname

S,M,C

NO NO NO MSGCON Write messages
on master console

S,M,C

PARM MSGPRT
OPTION MSGPRT

NO2 X'FF' entry MSGPRT Print messages S,M,C

OPTION NOBLKSET OPTION NOBLKSET NO NO Bypass Blockset S,M

NO NO NO NOMSGDD Action when
message data set
missing

S,M,C

PARM ODMAXBF
OPTION ODMAXBF

OPTION ODMAXBF NO ODMAXBF Maximum OUTFIL
data set buffer
space

S,M,C

OUTFIL10 OUTFIL10 OUTFIL10 NO OUTFIL
processing

S,M,C

PARM OUTREL|NOOUTREL
OPTION NOOUTREL

OPTION NOOUTREL NO OUTREL Release output
data set space

S,M,C

OPTION NOOUTSEC OPTION NOOUTSEC NO OUTSEC Output data set
secondary
allocation

S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

628
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

NO NO NO OVERRGN Storage over
REGION

S,M,C

PARM OVFLO
OPTION OVFLO

OPTION OVFLO NO OVFLO Summary fields
overflow action

S,M

PARM PAD
OPTION PAD

OPTION PAD NO PAD DFSORT LRECL
padding action

S,M,C

NO NO NO PARMDDN Alternate ddname
for DFSPARM

S,M,C

PARM RESALL
OPTION RESALL

OPTION RESALL NO RESALL System reserved
storage7

S,M,C

PARM RESET|NORESET
OPTION RESET|NORESET

OPTION RESET|NORESET NO RESET NEW or MOD
VSAM output

S,M,C

OPTION RESINV OPTION RESINV X'01' entry RESINV Program reserved
storage7

S,M,C

PARM SDB
OPTION SDB

OPTION SDB NO SDB System-
determined output
data set block size

S,M,C

NO NO NO SDBMSG System-
determined block
size for message
and list data sets

S,M,C

PARM SIZE
OPTION MAINSIZE

OPTION MAINSIZE X'00' entry SIZE Storage S,M,C

PARM SKIPREC
OPTION SKIPREC
SORT|MERGE SKIPREC

OPTION SKIPREC
SORT|MERGE SKIPREC

SORT|MERGE SKIPREC NO Skip records S,C

OPTION SMF NO NO SMF SMF records S,M,C

PARM SOLRF|NOSOLRF
OPTION SOLRF|NOSOLRF

OPTION SOLRF|NOSOLRF NO SOLRF SORTOUT length S,M,C

OPTION SORTDD NO2 Prefix entry NO ddname prefix S,M,C

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

629

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

OPTION SORTIN8 NO2 NO NO Alternate SORTIN
ddname

S,C

NO NO NO SORTLIB Conventional
modules library

S,M

OPTION SORTOUT9 NO2 NO NO Alternate
SORTOUT
ddname

S,M,C

PARM SPANINC
OPTION SPANINC

OPTION SPANINC NO SPANINC Incomplete
spanned records
action

S,M,C

PARM STIMER|NOSTIMER
OPTION NOSTIMER

OPTION NOSTIMER NO STIMER Use of STIMER S,M,C

PARM STOPAFT
OPTION SORT
OPTION STOPAFT
SORT|MERGE STOPAFT

OPTION STOPAFT
SORT|MERGE STOPAFT

SORT|MERGE STOPAFT NO Input limit S,C

NO NO NO SVC DFSORT SVC
information

S,M,C

PARM SZERO|NOSZERO
OPTION SZERO|NOSZERO

OPTION SZERO|NOSZERO NO SZERO Signed or
unsigned zero

S,M,C

NO NO NO TEXIT ICETEXIT S,M,C

NO NO NO TMAXLIM Maximum storage
above and below
16MB virtual7

S,M,C

PARM TRUNC
OPTION TRUNC

OPTION TRUNC NO TRUNC DFSORT LRECL
truncation action

S,M,C

RECORD TYPE RECORD TYPE RECORD TYPE NO Record format S,M,C

PARM VERIFY|NOVERIFY
OPTION VERIFY|NOVERIFY

OPTION VERIFY|NOVERIFY NO VERIFY Sequence check S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

630
D

F
S

O
R

T
R

14
A

pplication
P

rogram
m

ing
G

uide

Table 80. 24-Bit List DFSORT Option Specification/Override (continued). Options are arranged alphabetically on the ICEMAC column. If “NO” is specified in the
ICEMAC column, move to the next column to the left and so on.

The order of override is from left to right and from top to bottom within a row.

Specified with DFSPARM Specified with SORTCNTL Specified with 24-Bit List Specified with ICEMAC
INV, TSOINV or TDx

Description of
Option

Function

NO NO NO VIO SORTWK virtual
I/O

S

PARM VLLONG|NOVLLONG
OPTION VLLONG|NOVLLONG

OPTION VLLONG|NOVLLONG NO VLLONG Trucate long
output records

S,M,C

PARM VLSCMP|NOVLSCMP
OPTION VLSCMP|NOVLSCMP

OPTION VLSCMP|NOVLSCMP NO VLSCMP Pad short compare
fields

S,M,C

PARM VLSHRT|NOVLSHRT
OPTION VLSHRT|NOVLSHRT

OPTION VLSHRT|NOVLSHRT NO VLSHRT Action for short
control or compare
field

S,M,C

NO NO NO VSAMBSP VSAM buffer
space

S

PARM VSAMEMT|NVSAMEMT
OPTION VSAMEMT|
NVSAMEMT

OPTION VSAMEMT|NVSAMEMT NO VSAMEMT Empty VSAM input S,M,C

PARM VSAMIO|NOVSAMIO
OPTION VSAMIO|NOVSAMIO

OPTION VSAMIO|NOVSAMIO NO VSAMIO Same VSAM input
and output

S

PARM WRKREL|NOWRKREL
OPTION WRKREL|NOWRKREL

OPTION WRKREL|NOWRKREL NO WRKREL Release SORTWK
space

S

PARM WRKSEC|NOWRKSEC
OPTION WRKSEC|NOWRKSEC

OPTION WRKSEC|
NOWRKSEC

NO WRKSEC SORTWK
secondary
allocation

S

PARM Y2PAST
OPTION Y2PAST
SORT|MERGE Y2PAST

OPTION Y2PAST
SORT|MERGE Y2PAST

SORT|MERGE Y2PAST Y2PAST Set century
window

S,M,C

PARM ZDPRINT|NZDPRINT
OPTION ZDPRINT|NZDPRINT

OPTION ZDPRINT|NZDPRINT NO ZDPRINT ZD SUM results S,M

S
p

ecificatio
n

/O
verrid

e
O

f
O

p
tio

n
s

A
ppendix

B
.

S
pecification/O

verride
of

D
F

S
O

R
T

O
ptions

631

Notes to 24-Bit List Table
1 Does not request dynamic allocation; only supplies defaults.
2 Not used in SORTCNTL.
3 DFSORT terminates if the exit is specified via the parameter list entry and

the user exit is specified in a MODS statement.
4 All functions do not apply to all user exits. See Table 48 on page 319 and

Table 49 on page 320 for applicable user exits.
5 Not used if Blockset is selected and IGNCKPT=YES was specified.
6 Not used if MSGPRT=NONE or MSGPRT=CRITICAL is in effect; in this

case control statements are not printed.
7 Not used unless MAINSIZE=MAX is in effect.
8 Overrides SORTDD for the sort input ddname.
9 Overrides SORTDD for the sort output ddname.
10 Override is at the ddname level.

Specification/Override Of Options

632 DFSORT R14 Application Programming Guide

Appendix C. Data Format Descriptions

The format descriptions refer to the assembled data formats as used with IBM
System/390. If, for example, a data variable is declared in PL/I as FIXED DECIMAL,
it is the compiled format of the variable that must be given in the 'f' field of the
SORT control statement, not the PL/I-declared format. In this case, the 'f' field
would be PD (packed decimal) because the PL/I compiler converts fixed decimal to
packed decimal form.

Format Description

CH (character EBCDIC, unsigned). Each character is represented by its 8-bit EBCDIC code.
Example: AB7 becomes
C1 C2 F7 Hexadecimal
11000001 11000010 11110111 Binary

Notes:

1. If CHALT is in effect, a format CH field collates according to the ALTSEQ (alternate collating
sequence) table in effect. AQ format can be used for the same purpose.

2. If locale processing is in effect, a format CH field collates according to the collating rules of
the active locale.

ZD (zoned decimal, signed). Each digit of the decimal number is converted into its 8-bit EBCDIC
representation. The sign indicator replaces the first four bits of the low order byte of the number.

Example: -247 becomes
2 4 - 7 Decimal
F2 F4 D7 Hexadecimal

11110010 11110100 11010111 Binary
The number +247 becomes

F2 F4 C7
11110010 11110100 11000111

Notes:

1. The following are treated as positive sign indicators: F, E, C, A, 8, 6, 4, 2, 0.

2. The following are treated as negative sign indicators: D, B, 9, 7, 5, 3, 1.

3. For SUM processing, 0 through 9 for the sign or A through F for a digit results in a data
exception (0C7 ABEND). For example, a ZD value such as 3.5 (X'F34BF5') results in an 0C7
because B is treated as an invalid digit. ICETOOL’s DISPLAY or VERIFY operator can be
used to identify ZD values with invalid digits. ICETOOL’s VERIFY operator can be used to
identify ZD values with invalid signs.

4. The first four bits of the last digit is the sign indicator. The first four bits of each other digit is
ignored. Thus the EBCDIC strings '0025' and ' 25' are both treated as 25 because a leading
blank (X'40') is equivalent to a 0 digit (X'F0').

© Copyright IBM Corp. 1973, 2002 633

Format Description

PD (packed decimal, signed). Each digit of the decimal number is converted into its 4-bit binary
equivalent. The sign indicator is put into the rightmost four bits of the number.

Example: -247 becomes
2 4 7- Decimal
2 4 7D Hexadecimal

00100100 01111101 Binary
The number +247 becomes 247C in hexadecimal.

Notes:

1. The following are treated as positive sign indicators: F, E, C, A, 8, 6, 4, 2, 0.

2. The following are treated as negative sign indicators: D, B, 9, 7, 5, 3, 1.

3. For SUM processing, 0 through 9 for the sign or A through F for a digit results in a data
exception (0C7 ABEND). For example, a PD value such as X'0123BF' results in an 0C7
because B is treated as an invalid digit. ICETOOL’s DISPLAY or VERIFY operator can be
used to identify PD values with invalid digits. ICETOOL’s VERIFY operator can be used to
identify PD values with invalid signs.

PD0 (packed decimal, with sign and first digit ignored) The PD0 format can be represented as follows:

xddd...ds
x is hexadecimal 0-F and is ignored.
d is hexadecimal 0-9 and represents a decimal digit.
s is hexadecimal 0-F and is ignored.

PD0 can be used for parts of PD fields. For example, in the PD field P’mmddyy’ (hexadecimal
0mmddyyC), PD0 can be used separately for 0mmd (mm), mddy (dd) and dyyC (yy).

FI (fixed point, signed). The complete number is represented by its binary equivalent with the sign
indicator placed in the most significant bit position.

0 for + or 1 for -. Negative numbers are in 2’s complement
form.

Example: +247 becomes in halfword form
00F7 Hexadecimal

0000000011110111 Binary
The number -247 becomes

FF09 Hexadecimal

BI (binary unsigned). Any bit pattern.

FL (floating point, signed). The specified number is in the two-part format of characteristic and
fraction with the sign indicator in bit position 0.

Example: +247 becomes
0 1000010 111101110000000.......
+ chara. fraction
-247 is identical, except that the sign bit is
changed to 1.

AC (character ASCII, unsigned). This is similar to format CH but the characters are represented with
ASCII code.

Example: AB7 becomes
41 42 37 Hexadecimal

01000001 01000010 00110111 Binary (ASCII code)

Data Format Examples

634 DFSORT R14 Application Programming Guide

Format Description

CSF or FS (signed numeric with optional leading floating sign).

The floating sign format can be represented as follows:
<s>d . . .d

s is an optional sign immediately to the left of the digits d . . .d. If s is a −, the number is treated
as negative, otherwise it is treated as positive. Thus, − must be used for a minus sign, but any
other character (for example, + or blank) can be used for a plus sign. The first non-decimal digit
(that is, not 0-9) going from right to left is treated as the sign and anything to the left of the sign
is ignored.

Examples:
Value:
Treated as:

34 +34
+34 +34

00034 +34
-003 -3
-1234 -1234
1234 +1234

+01234 +1234
0 +0

The types of data handled by the CSF/FS format encompass those produced by several different
FORTRAN, PL/I and COBOL formats, such as those shown below (using a width of 4 for
purposes of illustration):

* FORTRAN: I4 ; G4.0 ; SP,I4 ; SP,I4.3 ; S,I4.3
* PL/I: F(4) ; P’S999’ ; P’SSS9’ ; P’---9’
* COBOL: PIC +++9 ; PIC +999 ; PIC ++++ ; PIC ---9 ;

PIC ---- ; PIC ZZZZ

Because CSF/FS format fields are processed less efficiently than the other formats, CSF/FS
should not be used when another format is also appropriate (for example, CSL).

CSL or LS (signed number, leading separate sign). This format refers to decimal data as punched into cards,
and then assembled into EBCDIC code.

Example: +247 punched in a card becomes
+ 2 4 7 Punched numeric data
4E F2 F4 F7 Hexadecimal
01001110 11110010 11110100 11110111 Binary EBCDIC code

-247 becomes
- 2 4 7 Punched numeric data

60 F2 F4 F7 Hexadecimal
01100000 11110010 11110100 11110111 Binary EBCDIC code

CST or TS (signed numeric, trailing separate sign). This has the same representation as the CSL format,
except that the sign indicator is punched after the number.

Example: 247+ punched on the card becomes
F2 F4 F7 4E Hexadecimal

CLO1 or OL1 (signed numeric, leading overpunch sign). This format again refers to decimal data punched into
cards and then assembled into EBCDIC code. The sign indicator is, however, overpunched with
the first decimal digit of the number.

Example: +247 with + overpunched
on 2 becomes

+2 4 7 Punched numeric data
C2 F4 F7 Hexadecimal

11000010 11110100 11110111 Binary EBCDIC code
Similarly -247 becomes
D2 F4 F7

Data Format Examples

Appendix C. Data Format Descriptions 635

Format Description

CTO or OT (signed numeric, trailing overpunch sign). This format has the same representation as for the
CLO format, except that the sign indicator is overpunched on the last decimal digit of the number.

Example: +247 with + overpunched on 7 becomes
F2 F4 C7 hexadecimal

ASL (signed numeric, ASCII, leading separate sign). Similar to the CSL format but with decimal data
assembled into ASCII code.

Example: +247 punched into card becomes
+ 2 4 7 Punched numeric data
2B 32 34 37 Hexadecimal

0101011 00110010 00110100 00110111 Binary ASCII code
Similarly -247 becomes
2D 32 34 37 hexadecimal

AST (signed numeric, ASCII, trailing separate sign). This gives the same bit representation as the ASL
format, except that the sign is punched after the number.

Example: 247+ becomes
32 34 37 2B hexadecimal

Y2T (character or zoned decimal yyx, yyxx, yyxxx and yyxxxx full date format with special indicators).

The date field can be represented as follows:
3,Y2T: C’yyx’ or Z’yyx’
4,Y2T: C’yyxx’ or Z’yyxx’
5,Y2T: C’yyxxx’ or Z’yyxxx’
6,Y2T: C’yyxxxx’ or Z’yyxxxx’

y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-9 and represents a non-year
digit. x...x must be in correct collating order.

The special indicators are X’00...00’ (BI zeros), X’40...40’ (blanks), C’0...0’ (CH zeros), Z’0...0’
(ZD zeros), C’9...9’ (CH nines), Z’9...9’ (ZD nines) and X’FF...FF’ (BI ones).

Y2U (packed decimal yyx and yyxxx full date format with special indicators).

The date field can be represented as follows:
2,Y2U: P’yyx’ (X’yyxs’)
3,Y2U: P’yyxxx’ (X’yyxxxs’)

y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-9 and represents a non-year
digit. s is hexadecimal 0-F and is ignored. xxx must be in correct collating order.

The special indicators are P’0...0’ (PD zeros) and P’9...9’ (PD nines).

Y2V (packed decimal yyxx and yyxxxx full date format with special indicators).

The date field can be represented as follows:
3,Y2V: P’yyxx’ (X’0yyxxs’)
4,Y2V: P’yyxxxx’ (X’0yyxxxxs’)

y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-9 and represents a non-year
digit. s is hexadecimal 0-F and is ignored. xx or xxxx must be in correct collating order.

The special indicators are P’0...0’ (PD zeros) and P’9...9’ (PD nines).

Data Format Examples

636 DFSORT R14 Application Programming Guide

Format Description

Y2W (character or zoned decimal xyy, xxyy, xxxyy and xxxxyy full date format with special indicators).

The date field can be represented as follows:
3,Y2W: C’xyy’ or Z’xyy’
4,Y2W: C’xxyy’ or Z’xxyy’
5,Y2W: C’xxxyy’ or Z’xxxyy’
6,Y2W: C’xxxxyy’ or Z’xxxxyy’

y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-9 and represents a non-year
digit. x...x must be in correct collating order. x...xyy will be treated as yyx...x when collating the
date field.

The special indicators are X’00...00’ (BI zeros), X’40...40’ (blanks), C’0...0’ (CH zeros), Z’0...0’
(ZD zeros), C’9...9’ (CH nines), Z’9...9’ (ZD nines) and X’FF...FF’ (BI ones).

Y2X (packed decimal xyy and xxxyy full date format with special indicators).

The date field can be represented as follows:
2,Y2X: P’xyy’ (X’xyys’)
3,Y2X: P’xxxyy’ (X’xxxyys’)

y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-9 and represents a non-year
digit. s is hexadecimal 0-F and is ignored. xxx must be in correct collating order. x...xyy will be
treated as yyx...x when collating the date field.

The special indicators are P’0...0’ (PD zeros) and P’9...9’ (PD nines).

Y2Y (packed decimal xxyy and xxxxyy full date format with special indicators).

The date field can be represented as follows:
3,Y2Y: P’xxyy’ (X’0xxyys’)
4,Y2Y: P’xxxxyy’ (X’0xxxxyys’)

y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-9 and represents a non-year
digit. s is hexadecimal 0-F and is ignored. xx or xxxx must be in correct collating order. x...xyy will
be treated as yyx...x when collating the date field.

The special indicators are P’0...0’ (PD zeros) and P’9...9’ (PD nines).

Y2C or Y2Z (two-digit, two-byte character or zoned-decimal year data). The two-digit year data can be
represented as follows:
xyxy
y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-F and is ignored.

Thus, 96 might be represented as hexadecimal F9F6 (character 96) or as hexadecimal F9C6 or
0906 (zoned decimal 96).

Y2P (two-digit, two-byte packed-decimal year data). The two-digit year data can be represented as
follows:
xyyx
y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-F and is ignored.

Thus, 96 might be represented as hexadecimal 096F or 896C (packed decimal 96).

Y2D (two-digit, one-byte decimal year data). The two-digit year data can represented as follows:
yy
y is hexadecimal 0-9 and represents a year digit.

Thus, 96 would be represented as hexadecimal 96 (decimal 96).

Data Format Examples

Appendix C. Data Format Descriptions 637

Format Description

Y2S (two-digit, two-byte character or zoned-decimal year data with special indicators).

The two-digit year data can represented as follows:
xyxy
y is hexadecimal 0-9 and represents a year digit. x is hexadecimal 0-F and is ignored.

Thus, 96 might be represented as hexadecimal F9F6 (character 96) or as hexadecimal F9C6 or
0906 (zoned decimal 96).

The special indicators can be represented as follows:
qxzx
qx is hexadecimal 00, 40 or FF. zx is hexadecimal 00-FF (although typically 00, 40 and FF).

Thus, special indicators might be hexadecimal 0000, 0005, 4040, FFFF, FF85 and so on.

Y2B (two-digit, one-byte binary year data). The binary year data can be represented as follows:
hh
hh is the hexadecimal equivalent of a decimal yy value as follows:

Binary Values Decimal Values yy
X’00’-X’63’ 00-99 00-99
X’64’-X’C7’ 100-199 00-99
X’C8’-X’FF 200-255 00-55

Thus, 96 might be represented as hexadecimal 60 (decimal 96) or C4 (decimal 196).

DT1 (SMF date interpreted as Z'yyyymmdd'). A 4-byte SMF date value in the form P'cyyddd'
(X'0cyydddF') is converted to a Z'yyyymmdd' value. c represents the century indicator (c=0 is
transformed to 19, c=1 is transformed to 20 and c>1 is transformed to 21), yy represents the
two-digit year (00-99), ddd represents the day of the year (000-366), yyyy represents the
four-digit year, mm represents the month (00-12) and dd represents the day (00-31).

DT2 (SMF date interpreted as Z'yyyymm'). A 4-byte SMF date value in the form P'cyyddd'
(X'0cyydddF') is converted to a Z'yyyymm' value. c represents the century indicator (c=0 is
transformed to 19, c=1 is transformed to 20 and c>1 is transformed to 21), yy represents the
two-digit year (00-99), ddd represents the day of the year (000-366), yyyy represents the
four-digit year and mm represents the month (00-12).

DT3 (SMF date interpreted as Z'yyyyddd'). A 4-byte SMF date value in the form P'cyyddd'
(X'0cyydddF') is converted to a Z'yyyyddd' value. c represents the century indicator (c=0 is
transformed to 19, c=1 is transformed to 20 and c>1 is transformed to 21), yy represents the
two-digit year (00-99), ddd represents the day of the year (000-366) and yyyy represents the
four-digit year.

TM1 (SMF time interpreted as Z'hhmmss'). A 4-byte binary SMF time value in hundredths of a second
is converted to a Z'hhmmss' value. hh represents the hour (00-23), mm represents the minutes
(00-59) and ss represents the seconds (00-59).

TM2 (SMF time interpreted as Z'hhmm'). A 4-byte binary SMF time value in hundredths of a second is
converted to a Z'hhmm' value. hh represents the hour (00-23) and mm represents the minutes
(00-59).

TM3 (SMF time interpreted as Z'hh'). A 4-byte binary SMF time value in hundredths of a second is
converted to a Z'hh' value. hh represents the hour (00-23).

TM4 (SMF time interpreted as Z'hhmmssxx'). A 4-byte binary SMF time value in hundredths of a
second is converted to a Z'hhmmssxx' value. hh represents the hour (00-23), mm represents the
minutes (00-59), ss represents the seconds (00-59), and xx represents hundredths of a second
(00-99).

1 The overpunch sign bit is always 'C' for positive and 'D' for negative.

A detailed description of CH, ZD, PD, FI, BI, and FL data formats are found in
Assembler Reference.

Data Format Examples

638 DFSORT R14 Application Programming Guide

||
|
|
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|

||
|
|

||
|

||
|
|
|

The following tables show the statements, operands, and operators allowed with
each of the various data formats.

Table 81. Allowed with Frequently Used Data Types

Statement, Operand, or Operator CH BI FI PD ZD
FS or
CSF

DTn or
TMn

DFSORT statements
INCLUDE X X X X X X
INREC X X X X X X
MERGE X X X X X X
OMIT X X X X X X
OUTREC X X X X X X
SORT X X X X X X
SUM X X X X

OUTFIL statement operands
INCLUDE X X X X X X
OMIT X X X X X X
OUTREC X X X X X X
TRAILERx X X X X X

ICETOOL operators
DISPLAY (ON, BREAK) X X X X X X X
OCCUR (ON) X X X X X X X
RANGE (ON) X X X X X
SELECT (ON) X X X X X X
STATS (ON) X X X X X
UNIQUE (ON) X X X X X
VERIFY (ON) X X

Table 82. Allowed with Other Data Types

Statement or Operand AQ AC FL

LS
or

CSL

TS
or

CST

OL
or

CLO

OT
or

CTO ASL AST D1 D2 PD0 Y2x

DFSORT statements
INCLUDE X X X X X X X X X X
INREC X X
MERGE X X X X X X X X X X X X
OMIT X X X X X X X X X X
OUTREC X X
SORT X X X X X X X X X X X X
SUM X

OUTFIL statement
operands

INCLUDE X X X X X X X X X
OMIT X X X X X X X X X
OUTREC X X

Data Format Examples

Appendix C. Data Format Descriptions 639

Data Format Examples

640 DFSORT R14 Application Programming Guide

Appendix D. EBCDIC and ISCII/ASCII Collating Sequences

EBCDIC
Table 83 shows the collating sequence for EBCDIC character and unsigned decimal
data. The collating sequence ranges from low (00000000) to high (11111111). The
bit configurations which do not correspond to symbols (that is, 0 through 73, 81
through 89, and so forth) are not shown. Some of these correspond to control
commands for the printer and other devices.

ALTSEQ, CHALT, and LOCALE can be used to select alternate collating sequences
for character data.

Packed decimal, zoned decimal, fixed-point, and normalized floating-point data are
collated algebraically, that is, each quantity is interpreted as having a sign.

Table 83. EBCDIC Collating Sequence

Collating Sequence Bit Configuration Symbol Meaning

0 00000000
.
.
64 01100100 SP Space
.
.
74 01001010 θ Cent sign
75 01001011 . Period, decimal point
76 01001100 < Less than sign
77 01001101 (Left parenthesis
78 01001110 + Plus sign
79 01001111 I Vertical bar, Logical OR
80 01010000 & Ampersand
.
.
90 01011010 ! Exclamation point
91 01011011 $ Dollar sign
92 01011100 * Asterisk
93 01011101) Right parenthesis
94 01011110 ; Semicolon
95 01011111 Logical not
96 01100000 — Minus, hyphen
97 01100001 / Slash
107 01101011 , Comma
108 01101100 % Percent sign
109 01101101 _ Underscore
110 01101110 > Greater than sign
111 01101111 ? Question mark
.
.
122 01111010 : Colon
123 01111011 # Number sign
124 01111100 @ Commercial At
125 01111101 ’ Apostrophe, prime
126 01111110 = Equal sign
127 01111111 ″ Quotation marks

© Copyright IBM Corp. 1973, 2002 641

Table 83. EBCDIC Collating Sequence (continued)

Collating Sequence Bit Configuration Symbol Meaning

.

.
129 10000001 a
130 10000010 b
131 10000011 c
132 10000100 d
133 10000101 e
134 10000110 f
135 10000111 g
136 10001000 h
137 10001001 i
.
.
145 10010001 j
146 10010010 k
147 10010011 l
148 10010100 m
149 10010101 n
150 10010110 0
151 10010111 p
152 10011000 q
153 10011001 r
.
.
162 10100010 s
163 10100011 t
164 10100100 u
165 10100101 v
166 10100110 w
167 10100111 x
168 10101000 y
169 10101001 z
193 11000001 A
194 11000010 B
195 11000011 C
196 11000100 D
197 11000101 E
198 11000110 F
199 11000111 G
200 11001000 H
201 11001001 I
.
.
209 11010001 J
210 11010010 K
211 11010011 L
212 11010100 M
213 11010101 N
214 11010110 O
215 11010111 P
216 11011000 Q
217 11011001 R
.

642 DFSORT R14 Application Programming Guide

Table 83. EBCDIC Collating Sequence (continued)

Collating Sequence Bit Configuration Symbol Meaning

.
226 11100010 S
227 11100011 T
228 11100100 U
229 11100101 V
230 11100010 W
231 11100111 X
232 11101000 Y
233 11101001 Z
.
.
240 11110000 0
241 11110001 1
242 11110010 2
243 11110011 3
244 11110100 4
245 11110101 5
246 11110110 6
247 11110111 7
248 11111000 8
249 11111001 9
.
.
255 11111111

ISCII/ASCII
Table 84 shows the collating sequence for ISCII/ASCII, character, and unsigned
decimal data. The collating sequence ranges from low (00000000) to high
(01111111). Bit configurations that do not correspond to symbols are not shown.

Packed decimal, zoned decimal, fixed-point normalized floating-point data, and the
signed numeric data formats are collated algebraically; that is, each quantity is
interpreted as having a sign.

Table 84. ISCII/ASCII Collating Sequence

Collating Sequence Bit Configuration Symbol Meaning

0 00000000 Null
.
.
32 00100000 SP Space
33 00100001 ! Exclamation point
34 00100010 ″ Quotation mark
35 00100011 # Number sign
36 00100100 $ Dollar sign
37 00100101 % Percent
38 00100110 & Ampersand
39 00100111 ’ Apostrophe, prime
.
.
40 00101000 (Opening parenthesis
41 00101001) Closing parenthesis

Appendix D. EBCDIC and ISCII/ASCII Collating Sequences 643

Table 84. ISCII/ASCII Collating Sequence (continued)

Collating Sequence Bit Configuration Symbol Meaning

42 00101010 * Asterisk
43 00101011 + Plus
44 00101100 , Comma
45 00101101 — Hyphen, minus
46 00101110 . Period, decimal point
47 00101111 / Slash
48 00110000 0
49 00110001 1
50 00110010 2
51 00110011 3
52 00110100 4
53 00110101 5
54 001101100 6
55 00110111 7
56 00111000 8
57 00111001 9
58 00111010 : Colon
59 00111011 ; Semicolon
60 00111100 < Less than
61 00111101 = Equals
62 00111110 > Greater than
63 00111111 ? Question mark
64 01000000 @ Commercial At
65 01000001 A
66 01000010 B
67 01000011 C
68 01000100 D
69 01000101 E
70 01000110 F
71 01000111 G
72 01001000 H
73 01001001 I
74 01001010 J
75 01001011 K
76 01001100 L
77 01001101 M
78 01001110 N
79 01001111 O
80 01010000 P
81 01010001 Q
82 01010010 R
83 01010011 S
84 01010100 T
85 01010101 U
86 01010110 V
87 01010111 W
88 01011000 X
89 01011001 Y
90 01011010 Z
91 01011011 [Opening bracket
92 01011100 \ Reverse slash
93 01011101] Closing bracket
94 01011110 ^ Circumflex, Logical NOT

644 DFSORT R14 Application Programming Guide

Table 84. ISCII/ASCII Collating Sequence (continued)

Collating Sequence Bit Configuration Symbol Meaning

95 01011111 _ Underscore
96 01100000 ` Grave Accent
97 01100001 a
98 01100010 b
99 01100011 c
100 01100100 d
101 01100101 e
102 01100110 f
103 01100111 g
104 01101000 h
105 01101001 i
106 01101010 j
107 01101011 k
108 01101100 l
109 01101101 m
110 01101110 n
111 01101111 o
112 01110000 p
113 01110001 q
114 01110010 r
115 01110011 s
116 01110100 t
117 01110101 u
118 01110110 v
119 01110111 w
120 01111000 x
121 01111001 y
122 01111010 z
123 01111011 { Opening Brace
124 01111100 I Vertical Line
125 01111101 } Closing Brace
126 01111110 ~ Tilde

Appendix D. EBCDIC and ISCII/ASCII Collating Sequences 645

646 DFSORT R14 Application Programming Guide

Appendix E. DFSORT Abend Processing

This appendix explains how DFSORT processes an abend. It is intended to help
you get the dump you need to diagnose the error causing the abend.

All abend dumps produced by DFSORT are system abend dumps that can be
processed by standard dump analysis programs. A dump will be generated if you
have included a SYSUDUMP, SYSABEND, or SYSMDUMP DD statement in your
application. The actual output of the system dump depends on the system
parameters specified in the IEADMP00, IEAABD00 or IEADMR00 members of
SYS1.PARMLIB by your installation.

At the beginning of each run, DFSORT establishes an ESTAE recovery routine to
trap system or user abends for Blockset and Peer/Vale applications. You can delete
the routine by specifying ICEMAC ESTAE=NO during installation, or by specifying
NOESTAE on the DEBUG control statement. We recommend that you always run
with ESTAE in effect so that in the event of an abend the following benefits are
available:

v In general, you get dumps closer to the time of the abend.

v You get additional information useful in diagnosing the problem causing the
abend.

v If you have activated SMF, an ICETEXIT routine, or an EFS program, DFSORT
attempts to continue processing. That is, an SMF record is created, the
termination exit is called, or Major Calls 4 and 5 are made to the EFS program
before the application terminates processing. Of course, if one of these functions
caused the abend, that function will not complete successfully.

At the end of its recovery routine, DFSORT always returns control to the system to
allow termination to continue. The system will then invoke the next higher level
ESTAE recovery routine.

Checkpoint/Restart
Checkpoint/Restart is a facility of the operating system that allows information about
an application to be recorded so that same application can be restarted after
abnormal termination or after some portion of the application has been completed.
Restart can take place immediately or be deferred until the application is
resubmitted.

DFSORT takes checkpoints when requested during a sort that uses the Peerage or
Vale techniques.

To have DFSORT record checkpoints you must code a SORTCKPT DD statement
and ensure the Peerage or Vale technique is selected. See “SORTCKPT DD
Statement” on page 73 and “OPTION Control Statement” on page 155 for more
information on the SORTCKPT and CKPT options, respectively.

In general, no checkpoints are taken if the following conditions exist:

v No work data set is specified.

v The application is a copy or merge.

v Blockset is selected.

© Copyright IBM Corp. 1973, 2002 647

Notes:

1. No ANSI Standard Label tape files can be open during Checkpoint/Restart
processing.

2. Do not specify CHKPT=EOV on any DFSORT DD statement.

For more information on the Checkpoint/Restart facility, see z/OS DFSMS
Checkpoint/Restart.

DFSORT Abend Categories
There are two categories of abends for DFSORT: unexpected abends and user
abends issued by DFSORT.

v Unexpected abends

These are system abends or user abends not issued by DFSORT. The abend
code in these cases is the system abend code or the user abend code. See
DFSORT Messages, Codes and Diagnosis Guide R14 for information about
detecting common user errors and reporting DFSORT program failures.

v User abends issued by DFSORT

DFSORT will issue user abends under the following circumstances:

– The ABEND or ABSTP option is in effect and DFSORT encounters an error
that prevents completion of the run.

– DFSORT detects an error in its internal logic.

See DFSORT Messages, Codes and Diagnosis Guide R14 for complete
information about user abends issued by DFSORT.

Note: See “SmartBatch Pipe Considerations” on page 15 for information about
special user abend processing in conjunction with SmartBatch pipe data
sets.

Abend Recovery Processing for Unexpected Abends
DFSORT normally has an ESTAE recovery routine established to trap system or
user exit routine abends for Blockset and Peer/Vale applications. If an abend
occurs, the system will pass control to this routine. The DFSORT ESTAE recovery
routine functions are shown below:

v Abend dump

The recovery routine will first have the system issue an abend dump to capture
the environment at the time the error occurred.

v Termination functions

DFSORT tries to accomplish the following tasks when they are specified, whether
the program terminates normally or abnormally.
– Calls 4 and 5 to an EFS program
– Create the SMF record
– Call the ICETEXIT routine

The DFSORT recovery routine runs any of the functions specified above if they
have not already been run at the time of the abend.

v Abend information message

For unexpected system or user exit routine abends, the DFSORT recovery
routine issues message ICE185A giving information about when the abend
occurred. The description of this message is in DFSORT Messages, Codes and
Diagnosis Guide R14.

Abend Processing

648 DFSORT R14 Application Programming Guide

v Snap dumps

The DFSORT recovery routine provides a snap dump of the system diagnostic
work area (SDWA). The snap dumps are written to a dynamically allocated data
set whether or not a SYSUDUMP (or SYSABEND or SYSMDUMP) DD statement
is included in the application.

v Copy system diagnostic work area

If an invoking program passes the address of an SDWA area in the 24-bit or
extended parameter list, DFSORT will copy the first 104 or 112 bytes of the
system diagnostic work area into the user SDWA area. See Chapter 5, “Invoking
DFSORT from a Program” on page 367 for more information.

v Continuation of an application after successful SORTOUT output

If an unexpected abend occurs after the sort, merge, or copy application writes
the SORTOUT data set successfully, DFSORT issues message ICE186A and
completes its normal cleanup and termination functions. The SORTOUT data set
written by DFSORT is closed. The run is successful except for the function
causing the abend. Message ICE186A says that the SORTOUT data set is
usable even though the run has abended. You can then decide to use the
SORTOUT data set or rerun the application.

v DFSORT returns control to the system at the end of its abend recovery
processing so that recovery routines can be invoked.

The DFSORT abend recovery routine functions described above may not be
performed after an abend if NOESTAE is in effect. The DFSORT ESTAE
recovery routine is always established at the beginning of a run. It is deleted
early in DFSORT processing if NOESTAE is in effect.

Processing of Error Abends with A-Type Messages
When DFSORT encounters a critical error, it issues an A-type message and
terminates. You can specify that DFSORT is to terminate the application with an
abend through the ABEND or ABSTP options.

If abend termination is in effect and DFSORT encounters a critical error, DFSORT
first causes an abend dump to capture the environment at the time of the error.
Then, it issues the A-type message. It also runs the termination functions described
earlier before terminating with an abend. The abend code will be the error message
number, or a number between 1-99, as determined during installation with the
ICEMAC ABCODE option.

With NOESTAE and ABEND in effect, the abend dump is produced after the A-type
message is printed and other termination functions are run. As a result, the dump
produced might not reflect the conditions at the time of the error. It may not include
the module that encountered the error.

With NOESTAE and ABSTP in effect, the correct module will be dumped but the
A-type message will not be issued.

CTRx Abend processing
The CTRx option can be used to diagnose a problem by requesting that DFSORT
abend during record input or output processing. See the DEBUG control statement
in Chapter 3, “Using DFSORT Program Control Statements” on page 95. DFSORT
will cause an 0C1 abend when the CTRx count is satisfied. The DFSORT ESTAE
recovery routine will process the abend in the same way as it does for an
unexpected abend described earlier.

Abend Processing

Appendix E. DFSORT Abend Processing 649

The DFSORT ESTAE recovery routine will return control to the system which will
pass control to any ESTAE recovery routine(s) established by invoking programs.

As described earlier, the DFSORT ESTAE recovery routine will save the first 104 or
112 bytes of the system diagnostic work area in the invoking program’s SDWA area
if the address of the area is passed to DFSORT.

Since PL/I normally has an ESPIE in effect to intercept program checks (0Cx abend
codes), the DFSORT ESTAE recovery routine is not entered after these errors
unless you have specified NOSPIE. DFSORT abend recovery processing will occur
for all other types of abends.

Invocations from COBOL programs or use of COBOL exits can result in more than
one abend dump.

Abend Processing

650 DFSORT R14 Application Programming Guide

Appendix F. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Information Enabling Requests
Dept. DZWA

© Copyright IBM Corp. 1973, 2002 651

5600 Cottle Road
San Jose, CA 95193 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain services of DFSORT.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle
COBOL/370
DFSMS/MVS
DFSMSrmm
DFSORT
ES/9000
ESCON

Hiperspace
IBM
Language Environment
MVS/ESA
OS/390
RACF

RAMAC
System/390
VM/ESA
z/OS
z/VM
3090

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of other companies.

652 DFSORT R14 Application Programming Guide

Summary of Changes

New Programming Support for Release 13 (PTFs after April, 1996)

Additional Year 2000 Features
A new Y2S format can order and transform two-digit character or zoned decimal
year data according to the century window, while handling binary zeros, blanks and
binary ones in the year field as special indicators.

A new Y2B format can order and transform two-digit binary year data according to
the century window.

FREE=CLOSE support for DFSPARM makes it possible to override the SORT
statements generated by multiple COBOL SORT verbs in the same COBOL
program.

OS/390 Registration
With OS/390 R2 and above, a check is performed to ensure that the DFSORT
product is licensed for use, either as a feature of OS/390 or as a separate program
product.

New Programming Support for Release 13 (PTFs – April, 1996)

Year 2000 Features
New Y2C, Y2Z, Y2P and Y2D formats, in conjunction with a new Y2PAST
installation and run-time option, allow you to handle two-digit year data in the
following ways:

v Set the appropriate century window for your applications (for example, 1915-2014
or 1950-2049).

v Order two-digit character, zoned decimal, packed decimal or decimal year data
according to the century window using Blockset SORT or MERGE (for example,
order 96 representing 1996 before 00 representing 2000 in ascending sequence,
or order 00 before 96 in descending sequence).

v Transform two-digit character, zoned decimal, packed decimal or decimal year
data to four-digit character year data according to the century window using
OUTFIL OUTREC (for example, transform 96 to 1996 and 00 to 2000).

A new PD0 format allows you to order and transform parts of packed decimal fields
(for example, month and day in date fields) using SORT, MERGE and OUTFIL.

Performance Improvements for FLR and VLR Blockset Sorts
Performance improvements for FLR and VLR Blockset sorts include the following:

v Dataspace sorting can now be used for variable-length record sort applications.

v DFSORT data processing methods have been improved.

v Dynamic storage adjustment is a new feature that allows DFSORT to
automatically use more storage than the TMAXLIM value for a Blockset sort
application if DFSORT determines that doing so should improve performance.
New installation option DSA=n has been added to enable you to specify the
dynamic storage adjustment limit.

© Copyright IBM Corp. 1973, 2002 653

v The upper limit for the amount of main storage that can be specified and used by
DFSORT has been raised from 32M to 2000M. Specifying more main storage
can provide the following benefits:

– It allows DFSORT to sort very large data sets more efficiently.

– It allows more sort applications to be done entirely in main storage,
eliminating the need for intermediate work space and greatly reducing the
EXCP counts for those applications.

– It increases the maximum amount of data DFSORT can process in a single
sort application.

v New installation option IOMAXBF=n has been added to enable you to specify the
upper limit for the amount of storage to be used for SORTIN and SORTOUT data
set buffers, which in turn limits the amount of data that can be transferred in a
single I/O operation.

v The upper limit for the number of JCL and dynamically allocated work data sets
that can be specified and used by DFSORT’s Blockset technique has been
raised from 32 to 100. The use of more work data sets increases the maximum
amount of data DFSORT can process in a single sort application.

v Changes to the DFSORT SVC provide caching selection enhancements that
improve storage control caching performance, especially for SORTIN and
SORTOUT devices.

v DFSORT can now use NOEQUALS for VLR Blockset applications if
EQUALS=NO is specified at installation or NOEQUALS is specified at run-time.
The use of NOEQUALS can improve performance and is recommended for
applications for which the order of records that collate identically need not be
preserved from input to output. To minimize migration concerns, the IBM-supplied
default for the ICEMAC EQUALS option is the new value VLBLKSET, which is
equivalent to EQUALS=YES for VLR Blockset applications and to EQUALS=NO
for all other applications.

Floating Point for SUM
FL format can now be used with the SUM control statement for short (4-byte), long
(8-byte) and extended (16-byte) floating point data.

Security Improvements
Changes to the DFSORT SVC provide security improvements that bring DFSORT
up to B1 security standards.

EXCPVR Processing Removed
To enhance DFSORT’s protection of system integrity, EXCPVR processing will no
longer be used. EXCPVR parameter values will continue to be accepted, but will
have no effect on DFSORT processing. In general, the performance improvements
provided by EXCPVR processing have diminished with newer technologies and will
be more than offset by the performance improvements listed above. Please ignore
any references to EXCPVR in this book; all such references will be deleted when
the book is updated.

New Device Support for Release 13 (PTFs)
The IBM 3590 Magnetic Tape Subsystem is supported for input, output and work
data sets.

654 DFSORT R14 Application Programming Guide

New Programming Support for Release 13

DFSORT’s Performance Booster for The SAS** System
DFSORT Release 13 provides significant CPU time improvements for SAS
applications. To take advantage of this new feature, contact SAS Institute Inc. for
details of the support they provide to enable this enhancement.

Dynamic Hipersorting
Dynamic Hipersorting is a new, automatic feature that eliminates the unintended
system paging activity and expanded storage and paging data set space shortages
that sometimes resulted from a large amount of Hipersorting activity, especially from
multiple concurrent Hipersorting applications.

Dynamic Hipersorting allows for more optimal DFSORT and system performance
and provides installation options that allow you to customize HIPRMAX=OPTIMAL
to your own criteria. With the advent of this feature, we recommend that you use
HIPRMAX=OPTIMAL as your site default.

Performance
Performance enhancements for DFSORT applications that use the Blockset
technique include the following:

v Dataspace sorting, introduced in R12 for fixed-length record sort applications,
now available for variable-length record sort applications (MVS/ESA only)

v Improved data processing methods for fixed-length record sort applications

v OUTFIL processing for producing multiple output data sets using a single pass
over one or more input data sets.

OUTFIL Processing
OUTFIL is a new DFSORT control statement that allows you to create one or more
output data sets for a sort, copy, or merge application from a single pass over one
or more input data sets. You can use multiple OUTFIL statements, with each
statement specifying the OUTFIL processing to be performed for one or more
output data sets. OUTFIL processing begins after all other processing ends (that is,
after processing for exits, options, and other control statements). OUTFIL
statements support a wide variety of output data set tasks, including:

v Creation of multiple output data sets containing unedited or edited records from a
single pass over one or more input data sets.

v Creation of multiple output data sets containing different ranges or subsets of
records from a single pass over one or more input data sets. In addition, records
that are not selected for any subset can be saved in another output data set.

v Conversion of variable-length record data sets to fixed-length record data sets.

v Sophisticated editing capabilities such as hexadecimal display and control of the
way numeric fields are presented with respect to length, leading or suppressed
zeros, symbols (for example, the thousands separator and decimal point), leading
and trailing positive and negative signs, and so on. Twenty-six pre-defined editing
masks are available for commonly used numeric editing patterns, encompassing
many of the numeric notations used throughout the world. In addition, a virtually
unlimited number of numeric editing patterns are available via user-defined
editing masks.

Summary of Changes 655

v Selection of a character or hexadecimal string for output from a lookup table,
based on a character, hexadecimal, or bit string as input (that is, lookup and
change).

v Highly detailed three-level (report, page, and section) reports containing a variety
of report elements you can specify (for example, current date, current time, page
number, character strings, and blank lines) or derive from the input records (for
example, character fields, edited numeric input fields, record counts, and edited
totals, maximums, minimums, and averages for numeric input fields).

National Language Support

Cultural Sort and Merge
DFSORT will allow the selection of an active locale at installation or run time and
will produce sorted or merged records for output according to the collating rules
defined in the active locale. This provides sorting and merging for single- or
multi-byte character data based on defined collating rules which retain the cultural
and local characteristics of a language.

Cultural Include and Omit
DFSORT will allow the selection of an active locale at installation or run time and
will include or omit records for output according to the collating rules defined in the
active locale. This provides inclusion or omission for single- or multi-byte character
data based on defined collating rules which retain the cultural and local
characteristics of a language.

OUTFIL Reports
OUTFIL allows date, time, and numeric values in reports to be formatted in many of
the notations used throughout the world.

ICETOOL Reports
ICETOOL’s DISPLAY operator allows date, time, and numeric values in reports to
be formatted in many of the notations used throughout the world.

ICETOOL Enhancements
ICETOOL is now even more versatile as a result of enhancements to the existing
operators. The improvements to ICETOOL include:

v Allowing more data to be displayed with the DISPLAY and OCCUR operators.
DISPLAY now allows up to 20 fields (increased from 10) and a line length of up
to 2048 characters (increased from 121). OCCUR now allows a line length of up
to 2048 characters (increased from 121).

v More extensive formatting capabilities for numeric fields with the DISPLAY
operator. Formatting items can be used to change the appearance of individual
numeric fields in reports with respect to separators, decimal point, decimal
places, signs, division, leading strings, floating strings and trailing strings.
Thirty-three pre-defined editing masks are available for commonly used numeric
editing patterns, encompassing many of the numeric notations used throughout
the world. Leading and trailing strings can also be used with character fields.

v Display of the four-digit or two-digit year with the DISPLAY and OCCUR
operators.

v Division of reports into sections with the DISPLAY operator, based on the values
in a character or numeric break field. Statistics (total, maximum, minimum and/or
average) can be displayed for each section as well as for the entire report.

v Automatic use of OUTFIL processing for a list of TO ddnames with the COPY
and SORT operators, resulting in creation of multiple TO (output) data sets from
a single pass over the FROM (input) data set.

656 DFSORT R14 Application Programming Guide

v Allowing OUTFIL statements to be specified in the USING data set in addition to
or instead of the TO operand with the COPY and SORT operators.

v Allowing the active locale to be specified for the COPY, COUNT and SORT
operators, in order to override the installation default for the active locale. Thus,
multiple active locales can be used in the same ICETOOL job step for these
operators.

v Allowing the last record for each unique field value to be kept with the SELECT
operator.

INCLUDE/OMIT Substring Search
INCLUDE and OMIT function enhancements provide powerful substring search
capability to allow inclusion or omission of records when:

v A specified character or hexadecimal constant is found anywhere within a
specified input field (that is, a constant is a substring within a field) or

v A specified input value is found anywhere within a specified character or
hexadecimal constant (that is, a field is a substring within a constant).

SMF Type-16 Record Enhancements
New fields, such as information pertaining to each DFSORT run about SORTIN,
SORTINnn, SORTOUT and OUTFIL data sets, control statements, record counts,
specified values for E15, E35, HIPRMAX, DSPSIZE, FILSZ, LOCALE and
AVGRLEN, have been added to DFSORT’s SMF type-16 record.

SMF=FULL, SMF=SHORT, and SMF=NO can now be specified in an OPTION
statement in DFSPARM or the extended parameter list, to produce or suppress the
SMF type-16 record for an individual application.

Note: The offsets of fields ICESPGN, ICEUSER, and ICEGROUP have changed in
the Release 13 SMF record. If you have programs that reference those
fields, recompile them using the Release 13 version of the ICESMF macro,
before attempting to run them against Release 13 SMF records.

Other Enhancements
Several ICEMAC installation options have been added or changed:

v The IBM-supplied default for EXCPVR has been changed from ALL to NONE.

v The IBM-supplied default for DYNAUTO has been changed from NO to YES.

v SDBMSG enables you to specify whether DFSORT should use the
system-determined optimum block size for DFSORT message data sets and
ICETOOL message and list data sets.

v LOCALE enables you to select an active locale.

v ODMAXBF enables you to specify the maximum buffer space DFSORT can use
for each OUTFIL data set.

v EXPMAX enables you to specify the maximum total amount of available storage
to be used for all Hipersorting applications.

v EXPOLD enables you to specify the maximum total amount of old expanded
storage to be used at any one time by all Hipersorting applications.

v EXPRES enables you to specify the minimum amount of available expanded
storage to be reserved by DFSORT for use by non-Hipersorting applications.

Several run-time options have been added or changed:

v LOCALE enables you to select an active locale.

Summary of Changes 657

v SMF enables you to specify whether DFSORT is to produce SMF type-16
records.

v ODMAXBF enables you to specify the maximum buffer space DFSORT can use
for each OUTFIL data set.

v NZDPRINT enables you to indicate that positive ZD summation results are not to
be converted to printable numbers (overrides ZDPRINT).

v HILEVEL=YES on the MODS statement enables you to indicate that the E15 and
E35 routines are to be treated as COBOL exits.

v DEBUG options BUFFERS=ANY and BUFFERS=BELOW will now be recognized
but not used.

DFSORT will now ignore any DD statements not needed for the application (for
example, a SORTIN DD statement will be ignored for a merge application).

For unsuccessful completion due to an unsupported operating system, DFSORT,
ICEGENER, and ICETOOL will now pass back a return code of 24 to the operating
system or invoking program.

The installation initialization exit, ICEIEXIT, enables you to specify the maximum
buffer space DFSORT can use for each OUTFIL data set.

The installation termination exit, ICETEXIT, contains additional fields such as a flag
to indicate that OUTFIL processing was used.

For INREC and OUTREC:

v The upper limit for columns and the end of fields has been raised from 32000 to
32752.

v 1: before the RDW field of variable-length records will be accepted and ignored.

For INCLUDE and OMIT, COND=ALL, COND=(ALL), COND=NONE, and
COND=(NONE) enable you to include or omit all records.

The L2 value from the RECORD statement will be used if the L1 value is not
specified when an E15 or E32 user exit passes all of the input records.

When input is a VSAM data set and output is a non-VSAM data set with RECFM
not specified, DFSORT will now set the output RECFM as blocked rather than
unblocked, when doing so will allow the use of the system-determined optimum
block size for output.

New Programming Support for Release 12 (PTFs)
ICEGENER, copy, and Blockset sort and merge can now be used when a tape
output data set is specified with DISP=MOD or DISP=OLD, without specifying the
RECFM, LRECL, or BLKSIZE in the DD statement.

Sequential striping is supported for input and output data sets.

Compression is supported for input and output data sets.

BatchPipes/MVS input and output pipes are supported.

658 DFSORT R14 Application Programming Guide

New Device Support for Release 12 (PTFs)
Four-digit device numbers are supported.

The IBM 3390-9 DASD is supported for input, output, and work data sets, although
it is not recommended for work data sets for performance reasons.

The IBM RAMAC Array DASD and RAMAC Array Subsystem are supported for
input, output, and work data sets.

The IBM 3990 Model 6 control unit is supported.

The IBM cached 9343 control unit models are supported.

Summary of Changes 659

660 DFSORT R14 Application Programming Guide

Index

Numerics
24-bit parameter list

examples 379, 382
format 370, 375

A
ABCODE

ABEND Code 33
installation option 17

abend
categories 648
checkpoint/restart 647
critical 649
CTRx processing 649
processing 647, 650
processing for unexpected abends 648, 649
recovery 648, 650

ESTAE 647
ABEND

DEBUG control statement option 105
EXEC PARM option 33

ABSTP
DEBUG control statement option 106
processing 648

AC (ISCII/ASCII character) format
description 634
INCLUDE statement 114
SORT statement 303

action codes 521
adding record values 2
adding records 321

E15 user exit 327, 348
E35 user exit 354

addressing
EFS program 510
EFS program user exit routine 534
user exits 322

ALIAS statement 324
aliases

DFSORT 27
OPTION statement options 200
PARM options 58

alignment field 132, 286
allocating storage

intermediate storage 553
main storage 549, 550
temporary work space 553

allocating temporary work space efficiently 553, 555
altering records 321

See also reformatting records 131
ALTSEQ

installation option 17
ALTSEQ control statement 104

examples 104
function 99
TABLE Option 103

ALTSEQ control statement (continued)
using 103, 105

ALTSEQ Statement Examples 104, 105
AMODE 322, 325
AQ (alternate character) format

INCLUDE statement 114
SORT statement 303

ARESALL
EXEC PARM option 33
installation option 17
OPTION control statement option 157
releasing main storage 552
using RESERVEX instead of ARESALL 34

ARESINV
installation option 17
OPTION control statement option 158
releasing main storage 552

ASL (ISCII/ASCII leading sign) format
description 636
INCLUDE statement 114
SORT statement 303

Assembler user exit routines
input phase user exits 326, 335
output phase user exits 336, 342

AST (ISCII/ASCII trailing sign) format
description 636
INCLUDE statement 114
SORT statement 303

ATTACH
description 367
writing macro instructions 379

AVGRLEN
EXEC PARM option 34
OPTION control statement option 159

B
BI (binary) format

description 634
DISPLAY operator 411
INCLUDE statement 114
INREC statement 134
OCCUR operator 449
OUTFIL statements 223
RANGE operator 459
SELECT operator 463
SORT statement 303
STATS operator 472
SUM statement 311
UNIQUE operator 474

bit comparison tests 122
bit operators 122
BLDINDEX 559
block

minimum length 13
blocking records 543
Blockset

DFSORT 23

© Copyright IBM Corp. 1973, 2002 661

BSAM
DEBUG control statement option 106
E18 user exit 330
E19 user exit 333
EXEC PARM option 34

C
cache fast write

specifying use of with OPTION control
statement 107

using to improve performance 546
cataloged procedures

defined 28
SORT 28
SORT cataloged procedure 28
SORTD 29
SORTD cataloged procedure 29
specifying 28

century window 198, 278, 304, 613
CFW

installation option 17
using on OPTION control statement 107
using to improve performance 546

CH (character) format
description 633
DISPLAY operator 411
INCLUDE statement 114
OCCUR operator 449
SELECT operator 463
SORT statement 303
UNIQUE operator 474

CHALT
installation option 17
OPTION control statement option 159

changing records 2, 321
E15 user exit 326, 327, 348
E35 337, 338
E35 user exit 354
See also reformatting records 131

changing the collating sequence 103
character constants 117
CHECK

installation option 17
OPTION control statement option 159

checkpoint/restart (CHKPT)
restrictions 648
using 647

CINV
EXEC PARM option 35
installation option 17
OPTION control statement option 160

CKPT
efficiency 549
OPTION control statement option 160
SORT control statement option 307

CLIST examples 563
CLO/OL (leading overpunch sign) format

description 635
INCLUDE statement 114
SORT statement 303

closing data sets
E17 user exit 330
E37 user exit 341
housekeeping 519
with an EFS program 515, 519
with user exits 322

COBEXIT
efficiency 546
EXEC PARM option 35
installation option 17
OPTION control statement option 161

COBOL
input phase user exits 348
output phase user exit 354
overview 345
requirements for copy processing 347
storage requirements 347
user exit routine requirements 345
user exit routines 345, 348, 354

COBOL E15 user exit
altering records 360
changing records for Sort 348
passing records for Sort 348

COBOL E35 user exit
changing records 354
inserting records 361

CODE
ALTSEQ control statement option 103

coding control statements 100
coding restrictions 102, 103
collating sequence 103

altering with user exit 320
alternate 6
defined 6
EBCDIC 6
ISCII/ASCII 6
modifying 6

combining data sets
See merging records 145

comment statement 102
Compare Field Formats and Lengths Table 114
comparison operator 114, 128
comparisons

OMIT control statement 152
COND

INCLUDE control statement option 112
OMIT control statement option 153

considerations
data set 11
key-sequenced data set (KSDS) 14
QSAM data set 14
record descriptor word (RDW) 15
VSAM data set 14

constants
bit string 126, 132
character string 117
date string 129
decimal number 116
hexadecimal string 118

continuation column 101
continuation lines 101, 102

662 DFSORT R14 Application Programming Guide

continuing control statements 101
control field

defined 5, 6
deleting

with INREC control statement 131
with OUTREC control statement 285

describing on MERGE control statement 146
describing on SORT control statement 301
efficient design 543
equal 5
format 303
length 303
modifying with E61 user exit 334
modifying with user exit 320
overview 5, 6
reordering

with INREC control statement 131
with OUTREC control statement 285

Control Field Formats and Lengths Table 303
control statement

coding 100
coding restrictions 102
comment statement 102
continuation column 101
EFS coding rules 522, 524
EFS interface request list 522
EFS string 522
examining, altering, or ignoring 517
format 100
functions 98, 99
label field 100
operand field 100
operation field 100
overview 97
preparing image 369
printing with an EFS program 519
remark field 101
request list 522
string returned by the EFS program 524
string sent to the EFS program 522
summary 98, 99
using with EXEC statement 29

control statements
using other IBM programs 103

control word 301
conventions, notational xiii
CONVERT parameter

OUTFIL control statements option 206, 238
COPY

OPTION control statement option 161
copy examples 585, 587
COPY operator (ICETOOL) 397
copy restrictions 383, 384
copying

data set requirements 11
defined 1
overview 11

copying records
SORT control statement option 306
with MERGE control statement 146

COUNT operator (ICETOOL) 401

critical errors 649
CSF/FS (floating sign) format

description 635
DISPLAY operator 411
INCLUDE statement 114
OCCUR operator 449
OUTFIL statements 223
RANGE operator 459
SELECT operator 463
SORT statement 303
STATS operator 472
UNIQUE operator 474

CSL/LS (leading sign) format
description 635
SORT statement 303

CST/TS (trailing sign) format
description 635
INCLUDE statement 114
SORT statement 303

CTO/OT (trailing overpunch sign) format
description 636
INCLUDE statement 114
SORT statement 303

CTRx
abend processing 649
DEBUG control statement option 107

cultural environment
See LOCALE 6

cylinders 544, 600

D
D1 format

FIELDS operand 525
SORT statement 303

D2 format
COND operand 526
INCLUDE statement 114

DASD
capacity considerations 599, 600
efficiency 544, 553
exceeding capacity 600

data formats 416
descriptions 633, 641
DFSORT statements 639
ICETOOL operators 639
OUTFIL statement operands 639

data management rules
system data management rules 12

data set 11
closing 322
closing with user exit routines 330, 341
defining 11
handling input with user exit routines 341
handling output with user exit routines 341
input 10

shared tape unit 61, 79
key-sequenced, considerations 14
message data set 22
notes and limitations 12, 15
opening with user exit routines 320, 326, 336

Index 663

data set (continued)
output 10

shared tape unit 61, 79
page=end.considerations 15
QSAM considerations 14
requirements 11
SmartBatch pipe 15
system data management rules 12
valid types 11
VSAM considerations 14

data space
definition 162
specifying with EXEC PARM 36
specifying with OPTION control statement 162

data types 12
dataspace sorting

advantages 555
considerations 555
definition 555

date constant 118, 129, 135, 216, 287
date formats

DISPLAY 638
INCLUDE and OMIT 152
OCCUR 449
OUTFIL 221
SORT and MERGE 303

DBCS ordering 510
DD statements

overview 59, 76
program DD statements 64, 81
summary 26
system DD statements 62, 79
using 59, 76, 94

ddnames
duplicate 61, 79

DEBUG control statement
example 105, 110
function 99
special handling 523
using 105, 110

DEBUG Statement Examples 110
debugging jobs 105
decimal number constants 116
defaults

installation 16
listing with ICETOOL 17

DEFAULTS operator (ICETOOL) 403
defaults, installation 16
definitions

cataloged procedures 28
collating sequence 6
control field 5
copying 1
DD statements 26
direct invocation 4
EXEC statement 27
installation options 17, 21
JOB statement 27
key 5
merging 1
program invocation 4

definitions (continued)
sorting 1

deleting control fields
with INREC 131
with OUTREC control statement 286

deleting records 321
E15 user exit 327, 348
E35 user exit 354
with INCLUDE control statement 111, 151
with OMIT control statement 151

designing applications to maximize performance 542,
549

designing new applications 543
determining action when intermediate storage is

insufficient 322
devices, improving elapsed time with 546
DFSORT 16

calls to your EFS program 512
compatible operating systems 5
dynamic invocation 367
exit routines 316
improving efficiency 542
invoking 4
job control statements 25, 76, 94
logic examples for input/user exit/output 319
messages 22
operating as a guest under VM 5
override of options 603
overview 1
processing order 7
processing OUTFIL operands 208
program control statements 97, 315
program phases 317, 319, 511
terminating with user exit 322

DFSORT home page 3
DFSORT phases

definition 511
initialization 513, 538
input 515
termination 515, 540

DFSPARM data set 604
DFSPARM DD statement

defined 26
function 65, 82
using 74, 76, 92, 93

DFSPARM statement
PARM options 29

alias PARM options 58
diagnosis

EFS program 537
diagnostic messages 22
DIAGSIM

installation option 18
direct access storage devices

See DASD 544
direct access work storage devices 553
direct invocation

definition 4
DFSORT processing 542
using JCL 605

DISPLAY operator (ICETOOL) 407

664 DFSORT R14 Application Programming Guide

Double Byte Character Set (DBCS) ordering
See DBCS ordering 12

Double Byte Character Set Ordering Support Program
See DBCS ordering 510

DSA (Dynamic Storage Adjustment)
enhancing performance 546
installation option 18
limit 607

DSPSIZE
enhancing performance 546
EXEC PARM option 35
installation option 18
OPTION control statement option 162

DTn (date) format
description 638
DISPLAY operator 411
OCCUR operator 449
OUTFIL statements 224

duplicate ddnames 61, 79
duplicate records

OCCUR operator (ICETOOL) 446
SELECT operator (ICETOOL) 461
SUM control statement 310

DYNALLOC
EXEC PARM option 36
OPTION control statement option 162
SORT control statement option 307

DYNALLOC=OFF
EXEC PARM option 37
OPTION control statement option 164

DYNALOC
installation option 18

dynamic link-editing
See link-editing 325

Dynamic Storage Adjustment (DSA)
enhancing performance 546
installation option 18
limit 607

dynamically-invoked DFSORT
with the 24-bit parameter list 623, 633
with the extended parameter list 614, 623

DYNAUTO
installation option 18

DYNSPC
EXEC PARM option 37
installation option 18
OPTION control statement option 164

E
E11 user exit

initializing routines 326
opening data sets 326

E15 user exit
changing records for sort and copy applications 326
EXEC PARM option 38
passing records for sort and copy applications 326
return codes 328

E15 User Exit
altering record length 342
interface with COBOL 348

E15 User Exit (continued)
LINKAGE SECTION code example for fixed-length

records 351
LINKAGE SECTION code example for

variable-length records 352
LINKAGE SECTION fields for fixed-length

records 351
LINKAGE SECTION fields for variable-length

records 351
PROCEDURE DIVISION requirements 354
return codes 352

E15/E35 return codes and EXITCK 363, 367
E16 user exit

handling intermediate storage miscalculation 329
return codes 329
sorting current records when NMAX is

exceeded 343
E17 user exit

closing data sets 330
E18 user exit

handling input data sets 330
using with QSAM/BSAM 330
using with VSAM 331

E19 user exit
handling output to work data sets 333
using with QSAM/BSAM 333

E31 user exit
initializing routines 336
opening data sets 336

E32 user exit
handling input to a merge only 336
restriction with MERGE control statement 148
return codes 337

E35 user exit
altering record length 344
Changing Records 337
EXEC PARM option 39
interface with COBOL 355
LINKAGE SECTION fields for fixed-length

records 357
LINKAGE SECTION fields for variable-length

records 357
Procedure Division Requirements 360
return codes 339

E37 user exit
closing data sets 341

E38 user exit
handling input data sets 341
using with VSAM 341

E39 user exit
handling output data sets 341
using with QSAM/BSAM 341
using with VSAM 341

E61 user exit
altering control fields 344
information DFSORT passes to your routine 335
modifying control fields 334
uses 334

edit masks
ICETOOL DISPLAY operator 412, 414
OUTFIL 224, 232

Index 665

editing records
See reformatting records

efficiency
using main storage 542

EFS 525
efficiency 549
EXEC PARM option 37
exit routines 515
initialization phase 513
input phase 515
installation option 18
OPTION control statement option 165
phases 511
processing 512
termination phase 515
using 510, 540
what you can do with EFS 516, 519

EFS interface
control statement length 527
control statement request list 522
control statement string 522, 524
D1 format 525
D2 format 526
defined 519
DFSORT action codes 521
extract buffer offsets list 528
function 511
information flags 528
message list 530
program context area 528
record lengths list 528

EFS program
activating 511
addressing and residence mode 510
closing data sets 519
context area 528
examining, altering, ignoring control statements 517
example 538
exit routine 519, 531, 532

function 531
functions 510, 516
interface parameter list 519, 530
opening and initializing data sets 517
restrictions program in effect 102
restrictions when program in effect 103
return codes you must supply 535
supplying messages 519
terminating DFSORT 519
user exit routine

addressing and residence mode 534
EFS Program

example 540
EFS01

function description 531
parameter list 532
user exit routine 531

EFS02
address=0 540
function description 531
parameter list 534
user exit routine 532

EFSDPAFT 537
DEBUG control statement option 107

EFSDPBFR 537
DEBUG control statement option 108

elapsed time
improving with devices 546

END control statement
examples 110
function 99
using 110, 111

ENDREC parameter
OUTFIL control statements option 206, 210

enhancing performance with installation options 546
EODAD 331
EQUALS 5

efficiency 549
EXEC PARM option 38
installation option 18
MERGE control statement option 146
OPTION control statement option 166
SORT control statement option 307

EQUCOUNT
DEBUG control statement option 108
efficiency 549

ERET
installation option 18

EROPT 331
error messages 22
error recovery routine

user exit 321
errors

critical 649
debugging jobs 105
diagnosing EFS 537
error recovery routines 321

ESTAE
DEBUG control statement option 108
installation option 18
recovery routine 647

exceeding tape work space capacity 601
EXEC statement

cataloged procedure
SORT 28, 63, 81
SORTD 29, 64, 81

cataloged procedures 28
defined 27
operands 30, 57
PARM options 29, 604

alias PARM options 58
syntax 30
using 27, 59
using with control statements 29

execution phase 511
exit

MODS control statement option 148
See also user exit 316

exit routine
EFS 530

EXITCK
ICEMAC installation option 326, 363
installation option 18

666 DFSORT R14 Application Programming Guide

EXITCK (continued)
OPTION control statement option 167
user exit return codes 363

EXLST 331, 334
EXPMAX installation option 18, 547, 593
EXPOLD installation option 18, 547, 593
EXPRES installation option 18, 547, 593
Extended Function Support

See EFS 510
extended parameter list

example 382
format 376, 378

extract buffer offsets list 528

F
FASTSRT

efficiency 546
FI (fixed-point) format

description 634
DISPLAY operator 411
INCLUDE statement 114
OCCUR operator 449
OUTFIL statements 223
RANGE operator 459
SELECT operator 463
SORT statement 303
STATS operator 472
SUM statement 311
UNIQUE operator 474

Field and Constant Symbols
overview 485

field formats
compare 114
control 303
ICETOOL operators

DISPLAY 411
RANGE 449, 459
SELECT 463
STATS 472
UNIQUE 474
VERIFY 476

summary 311
FIELDS

D1 format (EFS) 525
INREC control statement option 132
MERGE control statement option 146
OUTREC control statement option 286
SORT control statement option 301
SUM control statement option 310

FIELDS=(COPY)
SORT control statement option 306

FIELDS=COPY
MERGE control statement option 146
SORT control statement option 306

FILES parameter
MERGE control statement option 146
OUTFIL control statements option 205, 209

FILSZ
EXEC PARM option 39

variation summary 41

FILSZ (continued)
MERGE control statement option 147
OPTION control statement option 167
SORT control statement option 307

filtering records 111, 151
fixed century window 198
FL (floating-point) format

description 634
SORT statement 303
SUM statement 311

floating sign format
using ICETOOL 411

floating-point data 130, 306, 320
floating-point fields 312
FNAMES parameter

OUTFIL control statements option 205, 208
format

alternate character format
See AQ (alternate character) format

binary format
See BI (binary) format

character format
See CH (character) format

fixed-point format
See FI (fixed-point) format

floating sign format
See CSF/FS (floating sign) format

floating-point format
See FL (floating-point) format

ISCII/ASCII character format
See AC (ISCII/ASCII character) format

ISCII/ASCII leading sign format
See ASL (ISCII/ASCII leading sign) format

ISCII/ASCII trailing sign format
See AST (ISCII/ASCII trailing sign) format

leading overpunch sign format
See CLO/OL (leading overpunch sign) format

leading sign format
See CSL/LS (leading sign) format

packed decimal format
See PD (packed decimal) format

trailing overpunch sign format
See CTO/OT (trailing overpunch sign) format

trailing sign format
See CST/TS (trailing sign) format

user defined format (D1)
See D1 format

user defined format (D2)
See D2 format

zoned decimal format
See ZD (zoned decimal) format

format of 24-bit parameter list 370, 375
format of extended parameter list 376, 378
FORMAT=f

INCLUDE control statement option 111, 113
MERGE control statement option 146
OMIT control statement option 151, 153
SORT control statement option 306
SUM control statement option 311

formats for SORT, MERGE, INCLUDE, and OMIT
control statements 525

Index 667

formatting
OUTFIL 223

four-digit year
transforming dates 198

FSZEST installation option 18
FTOV parameter

OUTFIL control statements option 207, 239
FTP site 4
functions of routines at user exits 319, 322

G
GENER installation option 18
general coding rules 100, 103
general considerations 12, 13
GNPAD installation option 18, 558
GNTRUNC installation option 19, 558

H
handling input data sets

E18 user exit 330
E38 user exit 341

handling input to a merge
E32 user exit 336

handling intermediate storage miscalculation
E16 user exit 329

handling output data sets
E39 user exit 341

handling output to work data sets
E19 user exit 333

handling special I/O 321
HEADER1 parameter

OUTFIL control statements option 207, 241, 245
HEADER2 parameter

OUTFIL control statements option 207, 251
HEADER3 parameter

OUTFIL control statements option 259
hexadecimal constants 118
hexadecimal display

DISPLAY operator 416
OCCUR operator 451

HFS 15
HILEVEL=YES

MODS control statement option 149
Hipersorting

advantages to using 555
defined 555

Hiperspace
defined 555
limiting factors 171

HIPRMAX
efficiency 555
EXEC PARM option 41
installation option 19
OPTION control statement option 171

home page (web) 3
how EFS works 511, 516
how user exit routines affect DFSORT

performance 323

I
I/O errors 321
ICEGENER

efficiency 556
example 588
return codes 558

ICEGENER facility 556, 559
ICEMAC installation options 17, 21
ICETOOL 386

calling from a program 477
coding rules 396
complete sample job 589
description 386
example of simple job 389
examples 391, 392, 399, 403, 429, 445, 455, 460,

464, 469, 473, 474, 476
ICETOOL/DFSORT relationship 387
invoking 390
JCL 387

DFSMSG DD statement 388
JOBLIB DD statement 387
restrictions 396
statements 394
STEPLIB DD statement 387
summary 387
SYMNAMES DD statemen 388
SYMNOUT DD statemen 388
TOOLIN DD statement 388, 395
TOOLMSG DD statement 388, 394

operators 388
COPY 388, 393, 397
COUNT 388, 401
DEFAULTS 403
DISPLAY 388, 391, 407
MODE 388, 391, 393, 444
OCCUR 389, 392, 446
RANGE 389, 391, 458
SELECT 389, 393, 461
SORT 389, 393, 467
STATS 389, 391, 471
summary 388
UNIQUE 389, 393, 473
VERIFY 389, 391, 475

Parameter List Interface 390, 395, 477
restrictions 483
return codes 484
statements 396
TOOLIN Interface 390, 395, 477
using symbols 390

IDRCPCT installation option 19
IEBGENER 556
IEFUSI 552
IEXIT installation option 19
IGNCKPT installation option 19
improving efficiency 542, 559
INCLUDE control statement

efficiency 548
examples 119, 128
function 98
logical operator 130
relational condition 113

668 DFSORT R14 Application Programming Guide

INCLUDE control statement (continued)
comparison operator 114, 128

substring comparison operator 122
INCLUDE parameter

OUTFIL control statements option 206, 210
INCLUDE/OMIT Statement Notes 130, 131
including records 1, 111, 151

user-defined data types 510
information DFSORT passes to your routine

E15 user exit 327
E32 user exit 336
E35 user exit 338
E61 user exit 335

information flags 528
Initialization Phase 513
initializing data sets 320, 513
initializing routines

E11 user exit 326
E31 user exit 336

initiating DFSORT
See invoking DFSORT 367

INPFIL control statement 103
input data set

requirements 11
valid types 11

input field 136
input file

size and efficiency 544
Input Phase 515
INREC control statement

column alignment 132
examples 141, 144
function 99
input field 136
notes 140, 141
separation field

binary zero separation 134
blank separation 133
character string separation 134
hexadecimal string separation 135

using 131, 143, 144
inserting comment statements 102
inserting records 321
installation defaults 16

displaying with DEFAULTS operator
(ICETOOL) 404

listing with ICETOOL 17
summary of options 17

installation options 17, 21
See ICEMAC 157

installation options, using to enhance performance 546
insufficient intermediate storage 600
intermediate storage 601
Internet 3
introducing DFSORT 1, 23
invoking DFSORT

24-bit parameter list 369, 375
dynamically 367
extended parameter list 375, 378
from a program 367, 384
methods 4

invoking DFSORT (continued)
using JCL 25

IOMAXBF installation option 19

J
Japanese characters 12, 510
JCL 25

cataloged procedure 63, 64, 81
cataloged procedures, specifying 28
DD statement summary 26
EFS coding rules 523
EXEC statement 27
improving DFSORT efficiency 542
JOB statement 27
overview 25
procedures, cataloged 28
required 25

JCL DD statements 368
JCL DD Statements 377
JCL-invoked DFSORT 605, 614
job control language

see also JCL 25
JOB statement

defined 27
using 27

JOBLIB DD statement
defined 26
using 62, 79

K
keeping records 1
key-sequenced data set (KSDS) 14
key, defined 5

L
label field 100
length

altered control statement 527
LRECL for variable-length record 15
maximum record 12
original control statement 527
record descriptor word (RDW) 15
record lengths list 528

limitations
data set 12
length

maximum record 12
minimum block 13
minimum record 13

record
maximum length 12
storage constraints 13

LINES parameter
OUTFIL control statements option 207, 241

LINK 367
writing macro instructions 379

link-editing
performance 549

Index 669

link-editing (continued)
user exit routines 325

linkage conventions 324
linkage editor 63, 81
linkage examples 325
LIST

EXEC PARM option 42
installation option 19
OPTION control statement option 172
with an EFS program 519

LISTX
EXEC PARM option 42
installation option 19
OPTION control statement option 173
with an EFS program 519

loading user exit routines 324
locale

affecting INCLUDE and OMIT processing 119
affecting MERGE processing 145
defined 6
restrictions

CHALT 159
EFS 38, 166

LOCALE
efficiency 548, 549
EXEC PARM option 43
installation option 19
OPTION control statement option 173
using 6

logical operator 130
lookup and change 207, 235, 277

M
macro instructions

See system macro instructions 367
main features of sources of DFSORT options 604, 605
main storage

allocating
consequences of increasing 551

allocating efficiently 550
factors affecting requirements 550
minimum 549
releasing 552
tuning 550
using efficiently 549, 553

MAINSIZE
See also SIZE
allocating storage 550
OPTION control statement option 175
releasing main storage 552

Major Call 1 538
Major Call 2 538
Major Call 3 539
Major Call 4 540
Major Call 5 540
major control field

See control field
managing system data, rules

system data management rules 12
master console messages 22

maximizing performance 542
MAXLIM

allocating storage 550
installation option 19
releasing main storage 552

MERGE control statement
examples 147, 148
function 98
using 145, 148

merge examples 583, 585
merge restriction 383
merging

data set requirements 12
defined 1
overview 12
records 145
specifying the estimated number of records to

merge 40
specifying the exact number of records to merge 39
specifying the number of records to merge 40
user-defined data types 510, 515

message data set 22
message list 530
messages

master console messages 22
message data set 22
return codes 22

migration 21
minimum block length 13
minimum record length 13
MINLIM

allocating storage 550
installation option 19

minor control field
See control field

modifying 103
modifying control fields

E61 user exit 334
with user exit 320

modifying the collating sequence 103
MODS control statement

examples 151
function 99
using 148, 151

MSGCON installation option 19
MSGDDN

EXEC PARM option 44
installation option 19
OPTION control statement option 176

MSGPRT
alternate forms 44
EXEC PARM option 44
installation option 19
OPTION control statement option 176

multiple output data sets
creating with OUTFIL 3, 204, 270

N
NOABEND

DEBUG control statement option 105

670 DFSORT R14 Application Programming Guide

NOABEND (continued)
EXEC PARM option 33

NOASSIST
DEBUG control statement option 109

NOBLKSET
efficiency 549
OPTION control statement option 177

NOCFW
using on OPTION control statement 107

NOCHALT
OPTION control statement option 159

NOCHECK
OPTION control statement option 159

NOCINV
efficiency 549
EXEC PARM option 35
OPTION control statement option 160

NODETAIL parameter
OUTFIL control statements option 207, 266

NOEQUALS
EXEC PARM option 38
MERGE control statement option 146
OPTION control statement option 166

NOESTAE
DEBUG control statement option 108

NOLIST
EXEC PARM option 42
OPTION control statement option 172
with an EFS program 519

NOLISTX
EXEC PARM option 42
OPTION control statement option 173
with an EFS program 519

NOMSGDD installation option 19
NOOUTREL

EXEC PARM option 46
OPTION control statement option 177

NOOUTSEC
OPTION control statement option 178

NORESET
EXEC PARM option 48

NOSOLRF
EXEC PARM option 51
OPTION control statement option 186

NOSTIMER
EXEC PARM option 51
OPTION control statement option 178

NOSZERO
EXEC PARM option 52
OPTION control statement option 190

notational conventions xiii
NOVERIFY

EXEC PARM option 53
OPTION control statement option 192

NOVLLONG
EXEC PARM option 54
OPTION control statement option 193

NOVLSCMP
EXEC PARM option 54
OPTION control statement option 193

NOVLSHRT
EXEC PARM option 55
OPTION control statement option 195

NOVSAMIO
EXEC PARM option 56

NOWRKREL
EXEC PARM option 56
OPTION control statement option 197

NOWRKSEC
EXEC PARM option 57
OPTION control statement option 198

numerice editing and formatting
DISPLAY operator 412

NVSAMEMT
EXEC PARM option 55

NZDPRINT
EXEC PARM option 58
OPTION control statement option 199

O
occurrences

OCCUR operator (ICETOOL) 446
SELECT operator (ICETOOL) 461

ODMAXBF
EXEC PARM option 45
installation option 19
OPTION control statement option 178
OUTFIL control statements option 267

OMIT control statement
efficiency 548
example 154
function 98
using 154

OMIT parameter
OUTFIL control statements option 206, 211

OMIT Statement Example 154
omitting records 1, 151

user-defined data types 510
opening and initializing data sets 320, 517
opening data sets

E11 user exit 326
E31 user exit 336
EFS 513
user exit routines 320

operand field 100
operating systems, compatible 5
operation field 100
OPTION control statement

examples 200, 204
function 98
special handling 523
using 155, 204

OPTION Statement Examples 200, 204
options, installation 16
OUTFIL

DD statement 71, 88
digits needed for numeric fields 227
edit field formats and lengths 223
edit mask output field lengths 228
edit mask patterns 224

Index 671

OUTFIL (continued)
edit mask signs 226
efficiency 548
lookup and change 207, 235, 277
producing reports 207, 213
storage limits 175, 267, 551
table lookup and change 235, 277

OUTFIL control statement
function 99

OUTFIL control statements
examples 270, 279, 280
function 98
using 204, 279, 280

outfil DD statement
defined 26
function 64, 81

OUTFIL statements examples 270, 279, 280
OUTFIL statements notes 267, 270
output data set

requirements 11
valid types 11

OUTREC control statement
column alignment 286
differences from OUTREC parameter 286
examples 293, 295, 296
function 99
input field 288
separation field

binary zero separation 287
blank separation 287
character string separation 287
current date constant 287
hexadecimal string separation 287

using 285, 295, 296
OUTREC parameter

lookup 207, 235, 277
OUTFIL control statements option 206, 212, 238

OUTREC statement examples 293, 295, 296
OUTREC statement notes 292
OUTREL

EXEC PARM option 46
installation option 19

OUTSEC installation option 19
overflow 141, 313
OVERRGN 552

installation option 19
releasing main storage 552

override tables 605
overriding

defaults 603
installation defaults 157

Overriding control statements 368
overview, DFSORT 1
OVFLO

EXEC PARM option 46
installation option 20
OPTION control statement option 179

P
PAD

EXEC PARM option 47
installation option 20
OPTION control statement option 180

padding
GNPAD 558
INCLUDE/OMIT 119
records 13, 119
truncating 119

PAGEHEAD parameter
OUTFIL control statements 260

parameter list
control statements 369, 375
description 604, 605
format 370, 376

PARM options
alias PARM options 58

PARMDDN installation option 20
passing control to user exits 148
passing records

E15 user exit 326, 348
PD (packed decimal) format

description 634
DISPLAY operator 411
INCLUDE statement 114
OCCUR operator 449
OUTFIL statements 223
RANGE operator 459
SELECT operator 463
SORT statement 303
STATS operator 472
SUM statement 311
UNIQUE operator 474
VERIFY operator 476

PD0 (part of packed decimal) format
OUTFIL control statement 224
SORT statement 303

performance
application design 543
dataspace sorting 555
efficient blocking 543
Hipersorting 555
HIPRMAX 555
ICEGENER 556
improving elapsed time with devices 546
JCL 542
main storage 549
maximizing 542
merging techniques 544
ODMAXBF effects 267
options that degrade 549
options that enhance 546
sorting techniques 543
specifying data sets 544
temporary work space 553
using BLDINDEX support 559
using DFSORT’s Performance Booster for The SAS

System 559
using SmartBatch pipes 545
using VIO in expanded storage 545

672 DFSORT R14 Application Programming Guide

Pipes
See SmartBatch pipe 15

procedures, catalogued
defined 28
specifying 28

processing and invoking programs 650
processing of error abends with A-type messages 649
processing order, record 7
processing user-defined data types with EFS program

user exit routines 519
program control statements

extended parameter list 375, 378
using with EXEC statement 29

program DD statements 64, 81
Program DD statements 76, 94
program invocation, defined 4
program phase

defined 317
initialization 513
input 515
termination 515

Q
QSAM

data set 11
data set considerations 14
E18 user exit 330
E19 user exit 333

R
RANGE operator (ICETOOL) 458
rearranging records

See sorting records 301
record

blocking 543
changing with user exit routines 337, 338
copying 146
data types 12
deleting 111, 151

with OMIT control statement 151
descriptor word (RDW) 15
EFS constraints 13
estimated number to be sorted 40
exact number to be sorted 39
formatting 131
inserting, deleting, and altering 321
maximum length 12
merging 145
minimum length 13
modifying with user exit 321
number to be sorted 40
padding 119, 558
passing with user exit routines 326
processing for OUTFIL 206
processing order 7, 130, 140, 141, 292

EFS 535
reformatting 285
sorting 301
storage constraints 13

record (continued)
summing 2, 310

E35 user exit 340
with user exits 321

truncating 119, 558
user-defined data types 510
variable-length

efficiency 544
RECORD control statement

coding notes 299
examples 299
function 99
using 296

record processing order 535, 537
record type

specifying 296
records

duplicate 310, 446, 461
unique

OCCUR operator (ICETOOL) 446
SELECT operator (ICETOOL) 461
UNIQUE operator (ICETOOL) 473

recovering from unexpected abends 648
reformatting records 2, 321

with INREC 131
with OUTREC 285

REGION
allocating storage 550
determining storage 550
releasing main storage 552
size 550

relational condition
comparison operator 114, 128
constants

character string format 117
date string format 129
decimal number format 116
hexadecimal string format 118

defined 113
description 113, 114
format 114, 119, 128

releasing main storage 552
remark field 101
REMOVECC parameter

OUTFIL control statements option 266
RENT 324
reordering control fields

See reformatting records 131, 285
report

ANSI carriage control character 207, 213, 240, 241,
246, 251, 253, 257, 259, 262, 267, 268

header, OUTFIL 242
ICETOOL DISPLAY 408, 441
ICETOOL OCCUR 447, 458
OUTFIL elements 3, 205
producing for OUTFIL 207, 213
trailer, OUTFIL 246

requesting a SNAP dump 537
requirements

input data set 11
JCL 25

Index 673

requirements (continued)
main storage

factors affecting 550
output data set 11

RESALL
EXEC PARM option 47
installation option 20
OPTION control statement option 180

RESERVEX
See ARESALL EXEC PARM option

RESET
installation option 20
OPTION control statement option 181

residence mode
EFS program 510
EFS program user exit routine 534
user exits 322

RESINV 552
installation option 20
OPTION control statement option 182

restarting after an abend 647
restrictions for dynamic invocation 383, 384
Return Code

DFSORT 22
return codes

EFS 535
Return Codes

ICEGENER 558
ICETOOL 484

REXX examples 562
RMODE 325
rules for parsing 524
rules, for managing system data

system data management rules 12
run-time phase 511
running DFSORT with JCL 59, 76, 94

S
sample job streams 561
sample jobs listing installation defaults 17
sample routines written in Assembler 342, 345
sample routines written in COBOL 360, 363
SAS

DFSORT’s Performance Booster for The SAS
System 559

SAVE parameter
OUTFIL control statements option 206, 212

SDB
EXEC PARM option 48
installation option 20
OPTION control statement option 182

SDB (system-determined block size) installation
option 72, 89

SDBMSG installation option 20
SECTIONS parameter

OUTFIL control statements option 207, 257
SELECT operator (ICETOOL) 461
separation field 133, 287
shared tape units 61, 62, 79

SIZE
allocating storage 550
EXEC PARM option 49
installation option 20
MERGE control statement option 147
OPTION control statement option 167, 185
releasing main storage 552
SORT control statement option 307

SKIP parameter
OUTFIL control statements 258

SKIPREC
efficiency 548
EXEC PARM option 50
MERGE control statement option 147
OPTION control statement option 185
SORT control statement option 307

sliding century window 198
SmartBatch pipe

and ICETOOL 483
considerations 15

SmartBatch Pipe
Sort example 580

SmartBatch pipes
OUTFIL example 278

SMF
Date (DTn) and Time (TMn) 224, 411, 449, 638
installation option 20
OPTION control statement option 186

SNAP dump 537
SOLRF

EXEC PARM option 51
installation option 20
OPTION control statement option 186

SORT cataloged procedure 28, 29, 63, 81
SORT control statement

effects of EQUALS 301
examples 308, 310
field formats 303
function 98
using 300, 310

sort examples 564, 582
SORT operator (ICETOOL) 467
SORT statement examples 308, 310
SORT statement image example 369, 370
SORT statement note 308
SORTCKPT DD statement

function 64, 82
using 73, 91

SORTCNTL data set 604
SORTCNTL DD statement

defined 26
function 64, 82
using 73, 74, 91, 92

SORTD cataloged procedure 64, 81
SORTDD

OPTION control statement option 187
SORTDIAG DD statement

defined 26
function 65, 82
using 76, 93, 94

674 DFSORT R14 Application Programming Guide

SORTDKdd DD statement
function 65, 82
using 76, 93

SORTIN
OPTION control statement option 188

SORTIN DD statement
defined 26
function 64, 81
using 66, 68, 83, 85

sorting
data set requirements 11
defined 1
identifying information to sort 5
overview 11
records 301
specifying the estimated number of records to

sort 40
specifying the exact number of records to sort 39
specifying the number of records to sort 40
user-defined data types 510, 515
using data space 546

sorting records 301
SORTINnn DD statement

defined 26
duplicate 61, 79
function 64, 81
using 68, 69, 85, 86

SORTLIB
ICEMAC installation option 65, 82

SORTLIB DD statement
defined 26
function 64, 81
using 65, 66, 82, 83

SORTLIB installation option 20
SORTMODS DD statement

defined 27
function 65, 82

SORTOUT
OPTION control statement option 188
OUTFIL ddname 205

SORTOUT DD statement
defined 26
function 64, 81
using 71, 73, 88, 91

SORTSNAP DD statement
defined 26
function 65, 82
using 76, 94

SORTWKdd DD statement
defined 26
duplicate 61, 79
function 64, 81
using 69, 86, 88

SPANINC
EXEC PARM option 51
installation option 20
option control statement 189

special handling of OPTION and DEBUG control
statements 523

specification/override of DFSORT options 603, 633
specifying efficient sort/merge techniques 543

specifying input/output data set characteristics
accurately 544

SPLIT parameter
OUTFIL control statements option 206, 212

STARTREC parameter
OUTFIL control statements option 206, 210

STATS operator (ICETOOL) 471
STEPLIB DD statement

defined 26
using 62, 79

STIMER
EXEC PARM option 51
installation option 20

STOPAFT
efficiency 548
EXEC PARM option 52
MERGE control statement option 147
OPTION control statement option 189
SORT control statement option 307

storage
efficient 544, 600
exceeding capacity 600, 601
intermediate 553
limits, OUTFIL 267
main

factors affecting requirements 550
releasing 552
tuning 550

specifying for user exit routine 149, 150
temporary 553
tracks versus cylinders 544, 600
user exit routine 322, 347

storage administrator examples 562
storage usage

records at E35 user exit 340
substring comparison operator 122
substring comparison tests 122

relational condition format 121
SUM control statement 315

description 310
efficiency 548
examples 313, 315
function 99
summary field 310
using 315

SUM statement examples 313, 315
SUM statement notes 312, 313
summarizing records 310
summary field

formats 310
table of formats and lengths 311

Summary Field Formats and Lengths Table 311
summing

records 310, 321
records at E35 user exit 340

summing records 2
supplying messages for printing to the message data

set 519
SVC installation option 20
Symbols

Comment and Blank Statement 488

Index 675

Symbols (continued)
example 486
for fields and constants 485
in DFSORT Statements 498
in ICETOOL Operators

DISPLAY 503
ICETOOL Example 504
OCCUR 503
RANGE 503, 504
SELECT 504
STATS, UNIQUE and VERIFY 504

in ICETOOL statements 503
INCLUDE and OMIT 500
INREC and OUTREC 500
Keyword Statements 495
Notes 505
OUTFIL 501
overview 485
SORT and MERGE 499
SUM 499
Symbol Statements 489
SYMNAMES DD Statement 488
SYMNAMES Statements 488
SYMNOUT DD Statement 488

SYMNAMES DD statement
defined 26
function 64

SYMNOUT DD statement
defined 26
function 64

SYNAD 331, 334
syntax diagrams

notational conventions xiii
option control statement 155

SYSABEND DD statement
defined 26
using 63, 81

SYSIN data set 604
SYSIN DD statement

defined 26
using 62, 79

SYSLIN DD statement
defined 27
using 64, 81

SYSLMOD DD statement
defined 27
using 64, 81

SYSMDUMP DD statement
defined 26
using 63, 81

SYSOUT DD statement
defined 26
using 63, 80

SYSPRINT DD statement
defined 27
using 63, 81

system DD statements 62, 64, 79, 81
system macro instructions

defined 367
using 367, 378
writing 379, 383

system-determined block size (SDB) 72, 89
SYSUDUMP DD statement

defined 26
using 63, 81

SYSUT1 DD statement
defined 27
using 64, 81

SZERO
EXEC PARM option 52
installation option 20
OPTION control statement option 190

T
tape

capacity considerations 600, 601
efficiency 549, 554, 600
insufficient intermediate storage 601
work space capacity 601
work storage devices 554

terminating DFSORT
E35 user exit 354
with an EFS program 519
with user exits 322

TEXIT installation option 20
time constant 136, 216, 288
TMAXLIM

allocating storage 550
installation option 20
releasing main storage 552

TMn (time) format
description 638
DISPLAY operator 411
OCCUR operator 449
OUTFIL statements 224

tracks 544, 600
TRAILER1 parameter

OUTFIL control statements option 207, 245, 251
TRAILER2 parameter

OUTFIL control statements option 207, 257
TRAILER3 parameter

OUTFIL control statements option 262
Translate characters

ALTSEQ 103, 138, 220, 290
lowercase to uppercase 132, 137, 218, 289
uppercase to lowercase 132, 137, 219, 290

TRUNC
EXEC PARM option 53
installation option 21
OPTION control statement option 191

truncating
GNTRUNC 558
INCLUDE/OMIT 119
records 13

truncating records 119
tuning main storage 550
two-digit year

conversion 198, 278
sorting 310
transforming dates 3, 205

676 DFSORT R14 Application Programming Guide

TYPE
RECORD control statement option 296

U
unexpected abends 648
UNIQUE operator (ICETOOL) 473
unique records

OCCUR operator (ICETOOL) 446
SELECT operator (ICETOOL) 461
UNIQUE operator (ICETOOL) 473

user exit
activating 316
addressing and residence mode 322
assembler routines

input phase 326
output phase 336

COBOL routines
input phase 348
output phase 354
overview 345

conventions for routines 323
DFSORT performance 323
E11 326
E15 326, 348
E16 329
E17 330
E18 330
E19 333
E31 336
E32 336
E35 337, 338, 354
E37 341
E38 341
E39 341
E61 334
efficiency 549
functions 319
language requirements 316
link-editing 325
linkage conventions 324
loading routines 324
overview 316
passing control with MODS control statement 148
summary of rules 323, 326
using RECORD control statement 296
using routines 316, 342
using your own routines 342, 367

user exit linkage conventions 324
USEWKDD

OPTION control statement option 192
using control statements from other IBM programs 103
using DD statements 59, 76, 94
using DFSORT program control statements 97, 315
using options that enhance performance 546

V
variable-length record

longest record length 15
record descriptor word 15

VERIFY
efficiency 549
EXEC PARM option 53
installation option 21
OPTION control statement option 192

VERIFY operator (ICETOOL) 475
VIO

ICEMAC installation option 76, 93
installation option 21

VLFILL parameter
OUTFIL control statements option 238

VLLONG
EXEC PARM option 54
installation option 21
OPTION control statement option 193

VLSCMP
EXEC PARM option 54
installation option 21
OPTION control statement option 193

VLSHRT
EXEC PARM option 55
installation option 21
OPTION control statement option 195

VLTRIM parameter
OUTFIL control statements option 240

VSAM
data set 11
data set considerations 14
E18 user exit 331
E38 user exit 341
E39 user exit 341
key-sequenced data set (KSDS) 14
maximum record size

with INREC control statement 140, 292
user exit functions 322
using RECORD control statement 296

VSAMBSP installation option 21
VSAMEMT

EXEC PARM option 55
installation option 21
OPTION control statement option 196

VSAMIO
EXEC PARM option 56
installation option 21
OPTION control statement option 196

VTOF parameter
OUTFIL control statements option 238

W
Web 3
web site 3
work space

requirements for DFSORT 593
using 593, 601

WRKREL
EXEC PARM option 56
installation option 21
OPTION control statement option 197

WRKSEC
EXEC PARM option 57

Index 677

WRKSEC (continued)
installation option 21
OPTION control statement option 198

X
XCTL

using 367
writing macro instructions 379

Y
Y2 formats

description 636
in INCLUDE and OMIT 128, 152
in OUTFIL OUTREC 221
in SORT and MERGE 303

Y2PAST
EXEC PARM option 57
installation option 21
MERGE control statement option 147
OPTION control statement option 198
SORT control statement option 308

Year 2000
century window 198
comparing dates 129
ordering dates 304
transforming dates 221

Z
ZD (zoned decimal) format

description 633
DISPLAY operator 411
INCLUDE statement 114
OCCUR operator 449
OUTFIL statements 223
RANGE operator 459
SELECT operator 463
SORT statement 303
STATS operator 472
SUM statement 311
UNIQUE operator 474
VERIFY operator 476

ZDPRINT
EXEC PARM option 58
installation option 21
OPTION control statement option 199

678 DFSORT R14 Application Programming Guide

Readers’ Comments — We’d Like to Hear from You

DFSORT
Application Programming Guide
Release 14

Publication No. SC33-4035-21

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC33-4035-21

SC33-4035-21

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
M86/050
5600 Cottle Road
SAN JOSE, CA 95193-0001

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5740-SM1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC33-4035-21

	Contents
	Preface
	About This Book
	Where to find more information
	DFSORT Publications
	DFSORT Library Softcopy Information

	How to Send Your Comments
	Notational Conventions

	Summary of Changes
	Twenty-Second Edition, March 2002
	New Programming Support for Release 14 (PTFs — March, 2002)
	z900
	Multiple Hiperspaces
	Managed Tapes
	ICETOOL Enhancements
	OUTFIL Enhancements
	INREC and OUTREC Enhancements
	SUM Enhancement
	SORT and MERGE Enhancements
	INCLUDE and OMIT Enhancements
	Other Enhancements

	Twenty-First Edition, July 2000
	New Programming Support for Release 14 (PTFs — July, 2000)
	Larger Tape Block Sizes with OS/390 R10
	New Device Support
	DFSMSrmm-Managed Tapes
	VSAM Processing
	HFS Files
	Productivity and Easier Migration from other Sort Products

	Twentieth Edition, March 1999
	New Programming Support for Release 14 (PTFs — March 1999)
	New Generation of Year 2000 Features

	Nineteenth Edition, September 1998
	New Programming Support for Release 14
	Symbols for Fields and Constants
	Improvements in Performance, Capacity and Storage Usage
	Time-of-Day Option Controls
	Repackaging
	OUTFIL Processing Enhancements
	ICETOOL Enhancement
	Installation and Run-Time Option Enhancements
	Other Enhancements
	OS/390 and MVS/ESA Only

	Chapter 1. Introducing DFSORT
	DFSORT Overview
	DFSORT on the Web
	DFSORT FTP Site
	Invoking DFSORT
	How DFSORT Works
	Operating Systems
	Control Fields and Collating Sequences
	Cultural Environment Considerations
	DFSORT Processing

	Input Data Sets—SORTIN and SORTINnn
	Output Data Sets—SORTOUT and OUTFIL
	Data Set Considerations
	Sorting or Copying Records
	Merging Records
	Data Set Notes and Limitations
	General Considerations
	Padding and Truncation
	QSAM Considerations
	VSAM Considerations

	SmartBatch Pipe Considerations
	HFS File Considerations
	Installation Defaults
	Migrating to DFSORT from Other Sort Products
	DFSORT Messages and Return Codes
	Use Blockset Whenever Possible

	Chapter 2. Invoking DFSORT with Job Control Language
	Using the JCL
	Using the JOB Statement
	Using the EXEC Statement
	Specifying EXEC Statement Cataloged Procedures
	SORT Cataloged Procedure
	SORTD Cataloged Procedure

	Specifying EXEC/DFSPARM PARM Options
	Aliases for PARM Options

	Using DD Statements
	Duplicate Ddnames
	Shared Tape Units
	System DD Statements
	Program DD Statements
	SORTLIB DD Statement
	SYMNAMES DD and SYMNOUT DD Statements
	SORTIN DD Statement
	SORTINnn DD Statement
	SORTWKdd DD Statement
	SORTOUT and OUTFIL DD Statements
	SORTCKPT DD Statement
	SORTCNTL DD Statement
	DFSPARM DD Statement
	SORTDKdd DD Statement
	SORTDIAG DD Statement
	SORTSNAP DD Statement
	Using DD Statements

	Chapter 3. Using DFSORT Program Control Statements
	Using Program Control Statements
	Control Statement Summary
	Describing the Primary Task
	Including or Omitting Records
	Reformatting and Editing Records
	Producing Multiple Output and Reports and Converting Records
	Invoking Additional Functions and Options
	Using Symbols

	General Coding Rules
	Continuation Lines
	Inserting Comment Statements
	Coding Restrictions
	EFS Restrictions When an EFS Program Is in Effect
	Using Control Statements from Other IBM Programs

	ALTSEQ Control Statement
	Altering EBCDIC Collating Sequence—Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	DEBUG Control Statement
	Specifying Diagnostic Options—Examples
	Example 1
	Example 2

	END Control Statement
	Discontinue Reading Control Statements—Examples
	Example 1
	Example 2

	INCLUDE Control Statement
	Relational Condition
	Comparisons
	Relational Condition Format
	Padding and Truncation
	Cultural Environment Considerations

	Including Records in the Output Data Set—Comparison Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Substring Comparison Tests
	Relational Condition Format

	Including Records in the Output Data Set—Substring Comparison Example
	Example

	Bit Logic Tests
	Method 1: Bit Operator Tests
	Relational Condition Format
	Fields
	Mask

	Padding and Truncation
	Including Records in the Output Data Set—Bit Operator Test Examples
	Example 1
	Example 2
	Example 3

	Method 2: Bit Comparison Tests
	Relational Condition Format
	Fields
	Bit Constant
	Padding and Truncation

	Including Records in the Output Data Set—Bit Comparison Test Examples
	Example 1
	Example 2
	Example 3

	Date Comparisons
	Relational Condition Format

	Including Records in the Output Data Set—Date Comparisons
	Example 1
	Example 2

	INCLUDE/OMIT Statement Notes

	INREC Control Statement
	INREC Statement Notes
	Reformatting Records Before Processing — Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	MERGE Control Statement
	Specifying a MERGE or COPY—Examples
	Example 1
	Example 2
	Example 3
	Example 4

	MODS Control Statement
	Identifying User Exit Routines—Examples
	Example 1
	Example 2

	OMIT Control Statement
	Omitting Records from the Output Data Set—Example
	Example

	OPTION Control Statement
	Aliases for OPTION Statement Options
	Specifying DFSORT Options or COPY—Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9

	OUTFIL Control Statements
	OUTFIL Statements Notes
	OUTFIL Features—Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13
	Example 14
	Example 15
	Example 16
	Example 17

	OUTREC Control Statement
	OUTREC Statement Notes
	Reformatting the Output Record—Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	RECORD Control Statement
	Describing the Record Format and Length—Examples
	Example 1
	Example 2

	SORT Control Statement
	SORT/MERGE Statement Notes
	Specifying a SORT or COPY—Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	SUM Control Statement
	SUM Statement Notes
	Adding Summary Fields—Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 4. Using Your Own User Exit Routines
	User Exit Routine Overview
	DFSORT Program Phases
	Functions of Routines at User Exits
	DFSORT Input/User Exit/Output Logic Examples
	Opening and Initializing Data Sets
	Modifying Control Fields
	Inserting, Deleting, and Altering Records
	Summing Records
	Handling Special I/O
	Routines for Read Errors
	Routines for Write Errors

	VSAM User Exit Functions
	Determining Action when Intermediate Storage Is Insufficient
	Closing Data Sets
	Terminating DFSORT

	Addressing and Residence Modes for User Exits
	How User Exit Routines Affect DFSORT Performance
	Summary of Rules for User Exit Routines
	Loading User Exit Routines
	User Exit Linkage Conventions
	Linkage Examples

	Dynamically Link-Editing User Exit Routines

	Assembler User Exit Routines (Input Phase User Exits)
	E11 User Exit: Opening Data Sets/Initializing Routines
	E15 User Exit: Passing or Changing Records for Sort and Copy Applications
	Information DFSORT Passes to Your Routine at E15 User Exit
	E15 Return Codes
	Storage Usage for E15 User Exit

	E16 User Exit: Handling Intermediate Storage Miscalculation
	E16 Return Codes

	E17 User Exit: Closing Data Sets
	E18 User Exit: Handling Input Data Sets
	Using E18 User Exit with QSAM/BSAM
	Using E18 User Exit with VSAM

	E19 User Exit: Handling Output to Work Data Sets
	Using E19 User Exit with QSAM/BSAM

	E61 User Exit: Modifying Control Fields
	Some Uses of E61 User Exit
	Information DFSORT Passes to Your Routine at E61 User Exit

	Assembler User Exit Routines (Output Phase User Exits)
	E31 User Exit: Opening Data Sets/Initializing Routines
	E32 User Exit: Handling Input to a Merge Only
	Information DFSORT Passes to Your Routine at E32 User Exit
	E32 Return Codes

	E35 User Exit: Changing Records
	Information DFSORT Passes to Your Routine at E35 User Exit
	E35 Return Codes
	Storage Usage for E35 User Exit

	E37 User Exit: Closing Data Sets
	E38 User Exit: Handling Input Data Sets
	Using E38 User Exit with VSAM

	E39 User Exit: Handling Output Data Sets
	Using E39 User Exit with QSAM/BSAM
	Using E39 User Exit with VSAM

	Sample Routines Written in Assembler
	E15 User Exit: Altering Record Length
	E16 User Exit: Sorting Current Records When NMAX Is Exceeded
	E35 User Exit: Altering Record Length
	E61 User Exit: Altering Control Fields

	COBOL User Exit Routines
	COBOL User Exit Requirements
	COBOL Requirements for Copy Processing
	COBOL Storage Requirements

	COBOL User Exit Routines (Input Phase User Exit)
	COBOL E15 User Exit: Passing or Changing Records for Sort
	E15 Interface with COBOL
	E15 LINKAGE SECTION Fields for Fixed-Length and Variable-Length Records
	E15 Return Codes
	E15 Procedure Division Requirements

	COBOL User Exit Routines (Output Phase User Exit)
	COBOL E35 User Exit: Changing Records
	E35 Interface with COBOL
	E35 LINKAGE SECTION Fields for Fixed-Length and Variable-Length Records
	E35 Return Codes
	E35 Procedure Division Requirements

	Sample Routines Written in COBOL
	COBOL E15 User Exit: Altering Records
	COBOL E35 User Exit: Inserting Records

	E15/E35 Return Codes and EXITCK

	Chapter 5. Invoking DFSORT from a Program
	Invoking DFSORT Dynamically
	What Are System Macro Instructions?
	Using System Macro Instructions
	Using JCL DD Statements
	Overriding DFSORT Control Statements from Programs
	Invoking DFSORT With the 24-Bit Parameter List
	Providing Program Control Statements
	CONTROL Statement Images Example
	Format of the 24-Bit Parameter List

	Invoking DFSORT With The Extended Parameter List
	Providing Program Control Statements
	Format of the Extended Parameter List

	Writing the Macro Instruction
	Parameter List Examples

	Restrictions for Dynamic Invocation
	Merge Restriction
	Copy Restrictions

	Chapter 6. Using ICETOOL
	Overview
	ICETOOL/DFSORT Relationship
	ICETOOL JCL Summary
	ICETOOL Operator Summary
	Complete ICETOOL Examples
	Using Symbols
	Invoking ICETOOL
	Putting ICETOOL to Use
	Obtaining Various Statistics
	Creating Multiple Versions/Combinations of Data Sets

	Job Control Language for ICETOOL
	JCL Restrictions

	ICETOOL Statements
	General Coding Rules

	COPY Operator
	Operand Descriptions
	COPY Examples
	Example 1
	Example 2
	Example 3

	COUNT Operator
	Operand Descriptions
	COUNT Examples
	Example 1
	Example 2
	Example 3

	DEFAULTS Operator
	Operand Description
	DEFAULTS Example

	DISPLAY Operator
	Simple Report
	Tailored Report
	Sectioned Report
	Operand Descriptions
	DISPLAY Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12

	MODE Operator
	Operand Descriptions
	MODE Example

	OCCUR Operator
	Simple Report
	Tailored Report
	Operand Descriptions
	OCCUR Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	RANGE Operator
	Operand Descriptions
	RANGE Example

	SELECT Operator
	Operand Descriptions
	SELECT Examples
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	SORT Operator
	Operand Descriptions
	SORT Examples
	Example 1
	Example 2
	Example 3

	STATS Operator
	Operand Descriptions
	STATS Example

	UNIQUE Operator
	Operand Descriptions
	UNIQUE Example

	VERIFY Operator
	Operand Descriptions
	VERIFY Example

	Calling ICETOOL from a Program
	TOOLIN Interface
	Parameter List Interface
	Explanation of Fields
	Parameter List Interface Example

	ICETOOL Notes and Restrictions
	ICETOOL Return Codes

	Chapter 7. Using Symbols for Fields and Constants
	Field and Constant Symbols Overview
	DFSORT Example

	SYMNAMES DD Statement
	SYMNOUT DD Statement
	SYMNAMES Statements
	Comment and Blank Statements
	Symbol Statements
	Keyword Statements
	Using SYMNOUT to Check Your SYMNAMES Statements

	Using Symbols in DFSORT Statements
	SORT and MERGE
	SUM
	INCLUDE and OMIT
	INREC and OUTREC
	OUTFIL

	Using Symbols in ICETOOL Operators
	COUNT
	DISPLAY
	OCCUR
	RANGE
	SELECT
	STATS, UNIQUE and VERIFY
	ICETOOL Example

	Notes for Symbols

	Chapter 8. Using Extended Function Support
	Using EFS
	Addressing and Residence Mode of the EFS Program
	How EFS Works
	DFSORT Program Phases
	DFSORT Calls to Your EFS Program
	Initialization Phase
	Input Phase
	Termination Phase

	What You Can Do with EFS
	Opening and Initializing Data Sets
	Examining, Altering, or Ignoring Control Statements
	Processing User-Defined Data Types with EFS Program User Exit Routines
	Supplying Messages for Printing to the Message Data Set
	Terminating DFSORT
	Closing Data Sets and Housekeeping

	Structure of the EFS Interface Parameter List
	Action Codes
	Control Statement Request List
	Control Statement String Sent to the EFS program
	Special Handling of OPTION and DEBUG Control Statements

	Control Statement String Returned by the EFS Program
	Rules for Parsing

	EFS Formats for SORT, MERGE, INCLUDE, and OMIT Control Statements
	D1 Format on FIELDS Operand
	D2 Format on COND Operand
	Length of Original Control Statement
	Length of the Altered Control Statement
	EFS Program Context Area
	Extract Buffer Offsets List
	Record Lengths List
	Information Flags
	Message List

	EFS Program Exit Routines
	EFS01 and EFS02 Function Description
	EFS01 User Exit Routine
	EFS01 Parameter List

	EFS02 User Exit Routine
	EFS02 Parameter List

	Addressing and Residence Mode of EFS Program User Exit Routines

	EFS Program Return Codes You Must Supply
	Record Processing Order
	How to Request a SNAP Dump
	EFS Program Example
	DFSORT Initialization Phase:
	Major Call 1
	Major Call 2
	Major Call 3

	DFSORT Termination Phase
	Major Call 4
	Major Call 5

	Chapter 9. Improving Efficiency
	Improving Performance
	Design Your Applications to Maximize Performance
	Directly Invoke DFSORT Processing
	Plan Ahead When Designing New Applications
	Efficient Blocking

	Specify Efficient Sort/Merge Techniques
	Sorting Techniques
	Merging Techniques

	Specify Input/Output Data Set Characteristics Accurately
	Input File Size
	Variable-Length Records
	Direct Access Storage Devices

	Use Sequential Striping
	Use Compression
	Use DFSMSrmm-Managed Tapes, or ICETPEX
	Use SmartBatch Pipes
	Use VIO in Expanded Storage
	Specify Devices that Improve Elapsed Time
	Use Options that Enhance Performance
	CFW
	COBEXIT
	DSA
	DSPSIZE
	FASTSRT
	SDB
	HIPRMAX

	Use DFSORT's Fast, Efficient Productivity Features
	INCLUDE or OMIT, STOPAFT, and SKIPREC
	OUTFIL
	LOCALE
	SUM
	ICETOOL

	Avoid Options that Degrade Performance
	CKPT
	EQUALS
	EQUCOUNT
	LOCALE
	NOCINV
	NOBLKSET
	VERIFY
	Tape Work Data Sets
	User Exit Routines
	Dynamic Link-Editing
	EFS Programs

	Use Main Storage Efficiently
	Tuning Main Storage
	Releasing Main Storage

	Allocate Temporary Work Space Efficiently
	Direct Access Work Storage Devices
	Virtual I/O for Work Data Sets
	Tape Work Storage Devices

	Use Hipersorting
	Sort with Data Space
	Use ICEGENER Instead of IEBGENER
	ICEGENER Return Codes

	Use DFSORT's Performance Booster for The SAS System
	Use DFSORT's BLDINDEX Support

	Chapter 10. Examples of DFSORT Job Streams
	Summary of Examples
	Storage Administrator Examples
	REXX Examples
	CLIST Examples
	Sort Examples
	Example 1. Sort with ALTSEQ
	Example 2. Sort with OMIT, SUM, OUTREC, DYNALLOC and ZDPRINT
	Example 3. Sort with ISCII/ASCII Tapes
	Example 4. Sort with E15, E35, FILSZ, AVGRLEN and DYNALLOC
	Example 5. Called sort with SORTCNTL, CHALT, DYNALLOC and FILSZ
	Example 6. Sort with VSAM Input/Output, DFSPARM and Option Override
	Example 7. Sort with COBOL E15, EXEC PARM, COBEXIT and MSGDDN
	Example 8. Sort with Dynamic Link-Editing of Exits
	Example 9. Sort with the Extended Parameter List Interface
	Example 10. Sort with OUTFIL
	Example 11. Sort with SmartBatch Pipes and OUTFIL SPLIT
	Example 12. Sort with INCLUDE and LOCALE
	Example 13: Sort with HFS Files

	Merge Examples
	Example 1. Merge with EQUALS
	Example 2. Merge with LOCALE and OUTFIL

	Copy Examples
	Example 1. Copy with EXEC PARMs, SKIPREC, MSGPRT and ABEND
	Example 2. Copy with INCLUDE and VLSHRT

	ICEGENER Example
	ICETOOL Example

	Appendix A. Using Work Space
	Introduction
	Hiperspace
	Work Data Set Devices
	DASD and Tape Devices
	Number of Devices
	Non-Synchronous Storage Subsystems

	Allocation of Work Data Sets
	Dynamic Allocation of Work Data Sets
	Automatic Dynamic Allocation
	Device Defaults
	File Size and Dynamic Allocation

	Dynamic Over-Allocation of Work Space
	JCL Allocation of Work Data Sets

	DASD Capacity Considerations
	Exceeding DASD Work Space Capacity

	Tape Capacity Considerations
	Exceeding Tape Work Space Capacity

	Appendix B. Specification/Override of DFSORT Options
	Main Features of Sources of DFSORT Options
	DFSPARM Data Set
	EXEC Statement PARM Options
	SORTCNTL Data Set
	SYSIN Data Set
	Parameter Lists
	Override Tables

	Directly Invoked DFSORT
	Notes to Directly Invoked DFSORT Table

	Program Invoked DFSORT with the Extended Parameter List
	Notes to Extended Parameter List Table

	Program Invoked DFSORT with the 24-Bit Parameter List
	Notes to 24-Bit List Table

	Appendix C. Data Format Descriptions
	Appendix D. EBCDIC and ISCII/ASCII Collating Sequences
	EBCDIC
	ISCII/ASCII

	Appendix E. DFSORT Abend Processing
	Checkpoint/Restart
	DFSORT Abend Categories
	Abend Recovery Processing for Unexpected Abends
	Processing of Error Abends with A-Type Messages
	CTRx Abend processing

	Appendix F. Notices
	Programming Interface Information
	Trademarks

	Summary of Changes
	New Programming Support for Release 13 (PTFs after April, 1996)
	Additional Year 2000 Features
	OS/390 Registration

	New Programming Support for Release 13 (PTFs – April, 1996)
	Year 2000 Features
	Performance Improvements for FLR and VLR Blockset Sorts
	Floating Point for SUM
	Security Improvements
	EXCPVR Processing Removed

	New Device Support for Release 13 (PTFs)
	New Programming Support for Release 13
	DFSORT's Performance Booster for The SAS** System
	Dynamic Hipersorting
	Performance
	OUTFIL Processing
	National Language Support
	Cultural Sort and Merge
	Cultural Include and Omit
	OUTFIL Reports
	ICETOOL Reports

	ICETOOL Enhancements
	INCLUDE/OMIT Substring Search
	SMF Type-16 Record Enhancements
	Other Enhancements

	New Programming Support for Release 12 (PTFs)
	New Device Support for Release 12 (PTFs)

	Index
	Readers’ Comments — We'd Like to Hear from You

